Chapter 4

Spectral Analysis and Filtering

In this chapter, we focus on the frequency domain approach to time series analysis.
We argue that the concept of regularity of a series can best be expressed in terms of
periodic variations of the underlying phenomenon that produced the serie

An important part of analyzing data in the frequency domain, as well as the time
domain, is the investigation and exploitation of the properties of the time-invariant
linear filter. This special linear transformation is used similarly to linear regression in
conventional statistics, and we use many of the same terms in the time series context.

We also introduce coherency as a tool for relating the common periodic behavior
of two series. Coherency is a frequency based measure of the correlation between
two series at a given frequency, and we show later that it measures the performance
of the best linear filter relating the two series.

Throughout the text, we measure frequency, w, at
cycles per time point rather than the alternative 4 = 2w that would give radians per
point. Of descriptive interest is the of a time series, defined as the number of
points in a cycle, i.e. . Hence, the predominant period of the Johnson & Johnson
series is , whereas the predominant period of the SOI
series is
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4.1 Cyclical Behavior and Periodicity

We have already encountered the notion of periodicity in numerous examples in
Chapters 1, 2 and 3. The general notion of periodicity can be made more precise by
introducing some terminology. In order to define the rate at which a series oscillates,
we first define a cycle as one complete period of a sine or cosine function defined
over a unit time interval. As in (1.5), we consider the periodic process

., where w is a frequency index, defined in cycles per unit time

fort =0, +1
with
determining the start point of the cosine function. We can introduce random variation
in this time series by allowing the amplitude and phase to vary randomly.

As discussed in Example 2.10, for purposes of data analysis, it is easier to use a
trigonometric identity*! and write (4.1) as

where U; = Acos¢ and U, = —Asin ¢ are often taken to be normally distributed
random variables. In this case, the amplitude is A = (U 12 + U22) and the phase is
¢ = tan~!(=U,/U;). From these facts we can show that if, and only if, in (4.1), A
and ¢ are independent random variables, where A? is chi-squared with 2 degrees of
freedom, and ¢ is uniformly distributed on (-, xr), then U; and U, are independent,
standard normal random variables (see Problem 4.3).

If we assume that U; and U, are uncorrelated random variables with mean O
and variance o2, then x, in (4.2) is stationary with mean E(x;) = O and, writing
¢; = cos(2nwt) and s, = sin(27wt), autocovariance function

Yx(h) = cov(Xsipn, Xt) = cov(Uicrin + Uasein, Urer + Uasy)
= cov(Uicin, Urcy) + cov(Uicrin, Uasy) “3)
+ cov(UaStin, Urct) + cov(UaStin, Uast) '

= 02cinc + 0+ 0+ 0 2syns: = 02 cos(2rwh),
using Footnote 4.1 and noting that cov(U;, Uy) = 0. From (4.3), we see that
var(x;) = yx(0) = o>

Thus, if we observe U; = a and U, = b, an estimate of o2 is the sample variance of
2 2
these two observations, which in this case is simply §? = % =a’ + b’

The random process in (4.2) is function of its frequency, w. For w = 1, the series

and so on. In general, for data that occur
at discrete time points, we will need at least two points to determine a cycle, so the

41 cos(a + B) = cos(a) cos(B) F sin() sin(B3).
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Higher frequencies sampled this way will appear at lower frequencies, called aliases;
an example is the way a camera samples a rotating wheel on a moving automobile in
a movie, in which the wheel appears to be rotating at a different rate, and sometimes
backwards (the wagon wheel effect). For example, most movies are recorded at 24
frames per second (or 24 Hertz). If the camera is filming a wheel that is rotating at
24 Hertz, the wheel will appear to stand still.

Consider a generalization of (4.2) that allows mixtures of periodic series with
multiple frequencies and amplitudes,

q
% = ) [Uri cos(2raxt) + Uga sin2ract)] (4.4)
k=1

where Uy, Uy, for k = 1,2,...,q, are uncorrelated zero-mean random variables
with variances U,f, and the wy, are distinct frequencies. Notice that (4.4) exhibits the
process as a sum of uncorrelated components, with variance 0',3 for frequency wy.
As in (4.3), it is easy to show (Problem 4.4) that the autocovariance function of the

process is

q
ye(h) = Z o2 cos(2rnwih), 4.5)
k=1
and we note the autocovariance function is the sum of periodic components with
weights proportional to the variances 0',3. Hence, x; is a mean-zero stationary pro-
cesses with variance

q
7x(0) = var(x;) = > o7, (4.6)
k=1

exhibiting the overall variance as a sum of variances of each of the component parts.

As in the simple case, if we observe Uy} = ax and Uy, = by for k = 1,...,4,
then an estimate of the kth variance component, -2, of var(x; ), would be the sample
variance S]% = ai + bi. In addition, an estimate of the total variance of x;, namely,
vx(0) would be the sum of the sample variances,

q
7x(0) = var(x,) = > (af + b}). 4.7)
k=1

Hold on to this idea because we will use it in Example 4.2.

Example 4.1 A Periodic Series
Figure 4.1 shows an example of the mixture (4.4) with ¢ = 3 constructed in the
following way. First, for # = 1,.. ., 100, we generated three series
x;1 = 2cos(2mt 6/100) + 3 sin(27¢ 6/100)
X2 = 4cos(2nt 10/100) + 5 sin(27¢ 10/100)
X3 = 6.cos(2mt 40/100) + 7 sin(27¢ 40/100)
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Fig. 4.1. Periodic components and their sum as described in Example 4.1.

These three series are displayed in Figure 4.1 along with the corresponding fre-
quencies and squared amplitudes. For example, the squared amplitude of x;; is
A% = 22 + 32 = 13. Hence, the maximum and minimum values that x,; will attain
are +V13 = +3.61.

Finally, we constructed

Xt = X1 + X2 + X3

and this series is also displayed in Figure 4.1. We note that x, appears to behave
as some of the periodic series we saw in Chapters 1 and 2. The systematic sorting
out of the essential frequency components in a time series, including their relative
contributions, constitutes one of the main objectives of spectral analysis. The R
code to reproduce Figure 4.1 is

x1 = 2*%cos(2*pi*1:100%6/100) + 3*sin(2*pi*1:100%6/100)
x2 = 4%cos(2*pi*1:100%10/100) + 5*sin(2*pi*1:100%10/100)
X3 = 6%cos(2*pi*1:100%40/100) + 7*sin(2*pi*1:100%40/100)
x =x1+ x2 + x3

par (mfrow=c(2,2))

plot.ts(x1l, ylim=c(-10,10),
plot.ts(x2, ylim=c(-10,10),
plot.ts(x3, ylim=c(-10,10),
plot.ts(x, ylim=c(-16,16),

main=expression(omega==6/100~~~A2==[8))
main=expression(omega==10/100~~~Ar2==21))
main=expression(omega==40/100~~~Ar2==88))
main="sum")

The model given in (4.4) along with the corresponding autocovariance function
given in (4.5) are population constructs. Although, in (4.7), we hinted as to how we
would estimate the variance components, we now discuss the practical aspects of
how, given data x, .. ., x,, to actually estimate the variance components U,f in (4.6).
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Example 4.2 Estimation and the Periodogram

, representation
(4.8) can be modified by summing to (rn/2 — 1) and adding an additional component
given by a,/, cos(2nt %) = a,2(—1)". The crucial point here is that (4.8) is exact
for any sample. Hence (4.4) may be thought of as an approximation to (4.8), the
e it ot ey ofthe Goehcents n . may b close o e

Using the regression results from Chapter 2, the coefficients a; and b; are of the
form X7, X2/ 20 ztzj, where z;; is either cos(2xt j/n) or sin(2xt j/n). Using
Problem 4.1 . = n/2 when j/n # 0,1/2, so

We then define the

studying the periodicities in the sunspot series (shown in Figure 4.22).

Although we will discuss it in more detail in Section 4.3, the discrete Fourier
transform ) is a complex-valued weighted average of the data given by*?

n (4.10)
—p 12 Z x; cos(2mtj/n) —i Z Xy sin(27rtj/n)) ,

=1 =1

4.2 Buler’s formula: e'® = cos(a) + i sin(a). Consequently, cos(a) = w and sin(a) = emgg_m

Also, & = —i because —ixi = 1.Ifz = a+ib is complex, then |z|?> = z z* = (a+ib)(a—ib) = a®+b?;
the * c!enotes conjugation.
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Fig. 4.2. The scaled periodogram (4.12) of the data generated in Example 4.1.

| = ...,n—1, where
Because of a lar

¢ may calculate the scaled

In addition, note that

Assuming the simulated data, x, were retained from the previous example, the
R code to reproduce Figure 4.2 is
P = Mod(2*fft(x)/100)22; Fr = 0:99/100

non

plot(Fr, P, type="o0", xlab="frequency", ylab="scaled periodogram")

Different packages scale the FFT differently, so it is a good idea to consult the
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Fig. 4.3. Star magnitudes and part of the corresponding periodogram.

The following is an example using

actual data.

Example 4.3 Star Magnitude
The data in Figure 4.3 are the magnitude of a star taken at midnight for 600 consec-
utive days. The data are taken from the classic text, The Calculus of Observations,
a Treatise on Numerical Mathematics, by E.T. Whittaker and G. Robinson, (1923,
Blackie & Son, Ltd.).

The periodogram for frequencies less than .08 is also displayed in the figure;
the periodogram ordinates for frequencies higher than .08 are essentially zero. Note
that the 29 (~ 1/.035) day cycle and the 24 (~ 1/.041) day cycle are the most
prominent periodic components of the data.

We can interpret this result as we are observing an amplitude modulated sig-
nal. For example, suppose we are observing signal-plus-noise, x; = s; + v;, where
s; = cos(2nwt) cos(2ndt), and ¢ is very small. In this case, the process will os-
cillate at frequency w, but the amplitude will be modulated by cos(27dt). Since
2 cos(a) cos(6) = cos(a + ) + cos(a — 0), the periodogram of data generated as x;
will have two peaks close to each other at @ + 6. Try this on your own:

t = 1:200

plot.ts(x <- 2*cos(2*pi*.2*t)*cos(2*pi*.01%t)) # not shown
lines(cos(2*pi*.19*%t)+cos(2*pi*.21%t), col=2) # the same

Px = Mod(£fft(x))*2; plot(0:199/200, Px, type='o') # the periodogram
The R code to reproduce Figure 4.3 is

n = length(star)

par (mfrow=c(2,1), mar=c(3,3,1,1), mgp=c(1.6,.6,0))
plot(star, ylab="star magnitude", xlab="day")
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Per = Mod(fft(star-mean(star)))*2/n

Freq = (1:n -1)/n

plot(Freq[1:50], Per[1:50], type='h', 1lwd=3, ylab="Periodogram",
xlab="Frequency")

u = which.max(Per[1:50]) # 22 freq=21/600=.035 cycles/day
uu = which.max(Per[1:50][-ul) # 25 freq=25/600=.041 cycles/day
1/Freq[22]; 1/Freq[26] # period = days/cycle

text (.05, 7000, "24 day cycle"); text(.027, 9000, "29 day cycle")
### another way to find the two peaks is to order on Per
y = cbind(1:50, Freq[1:50], Per[1:50]); y[order(y[,3]1),]

4.2 The Spectral Density

In this section, we define the fundamental frequency domain tool, the spectral density.
In addition, we discuss the spectral representations for stationary processes. Just as
the Wold decomposition (Theorem B.5) theoretically justified the use of regression
for analyzing time series, the spectral representation theorems supply the theoretical
justifications for decomposing stationary time series into periodic components ap-
pearing in proportion to their underlying variances. This material is enhanced by the
results presented in Appendix C.

Example 4.4 A Periodic Stationary Process

Consider a periodic stationary random process given by (4.2), with a fixed frequency
wo, Say,
x; = Uy cos(Qrwot) + Uy sin(2rwyt ), (4.13)

where U; and U, are uncorrelated zero-mean random variables with equal variance
o?. The number of time periods needed for the above series to complete one cycle is
exactly 1/wq, and the process makes exactly wq cycles per pointfors = 0, 1, +2, . . ..
Recalling (4.3) and using Footnote 4.2, we have

2
g .
emeoh

2
g7 _H_s
e 2riwoh

o2 cos(2rwoh) =

1
w/mzeZRHUhdF(ao

1
2

y(h)

using Riemann—Stieltjes integration (see Section C.4.1), where F(w) is the function
defined by

0 w < —wo,
F(w)=130%/2 —-wy<w < wy,
o2 w > wp.

The function F(w) behaves like a cumulative distribution function for a discrete
random variable, except that F(co0) = o = var(x;) instead of one. In fact, F(w) is a
cumulative distribution function, not of probabilities, but rather of variances, with
F(co) being the total variance of the process x;. Hence, we term F(w) the spectral
distribution function. This example is continued in Example 4.9.
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A representation such as the one given in Example 4.4 always exists for a stationary
process. For details, see Theorem C.1 and its proof; Riemann—Stieltjes integration is
described in Section C.4.1.

Property 4.1 Spectral Representation of an Autocovariance Function

If {x;} is stationary with autocovariance y(h) = cov(x;1n, X;), then there exists
a unique monotonically increasing function F(w), called the spectral distribution
function, with F(—o0) = F(—=1/2) = 0, and F(c0) = F(1/2) = y(0) such that

1

y(h) = / ? 2micoh dF (w). (4.14)

D=

An important situation we use repeatedly is the case when the autocovariance
function is absolutely summable, in which case the spectral distribution function is
absolutely continuous with dF(w) = f(w) dw, and the representation (4.14) becomes
the motivation for the property given below.

Property 4.2 The Spectral Densit
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which expresses the total variance as the integrated spectral density over all of the
frequencies. We show later on, that a linear filter can isolate the variance in certain
frequency intervals or bands.

It should now be clear that the autocovariance and the spectral distribution func-
tions contain the same information. That information, however, is expressed in dif-
ferent ways. The autocovariance function expresses information in terms of lags,
whereas the spectral distribution expresses the same information in terms of cycles.
Some problems are easier to work with when considering lagged information and we
would tend to handle those problems in the time domain. Nevertheless, other prob-
lems are easier to work with when considering periodic information and we would
tend to handle those problems in the spectral domain.

We note that the autocovariance function, y(h), in (4.16) and the spectral density,
f(w), in (4.17) are Fourier transform pairs. In particular, this means that if f(w) and
g(w) are two spectral densities for which

: :
= [ f e do= [ g do =y, @18)
) -2
forall h =0, +1,+2,..., then
f(@) = g(@). (4.19)

Finally, the absolute summability condition, (4.15), is not satisfied by (4.5), the
example that we have used to introduce the idea of a spectral representation. The
condition, however, is satisfied for ARMA models.

It is illuminating to examine the spectral density for the series that we have looked
at in earlier discussions.

Example 4.5 White Noise Series

A simulated set of data
is displayed in the top of Figure 1.8. Because the autocovariance function was

in Example 1.16 as y,, (h) = a'gv for h = 0, and zero, otherwise,-
that

Hence the process contains equal power at all frequencies. This

e realization, which seems to contain all different frequencies

1 mix, In f:

The top of Figure 4.4 shows a plot of the white noise spectrum for
o2, = 1. The R code to reproduce the figure is given at the end of Example 4.7.

Since the linear process is an essential tool, it is worthwhile investigating the














(4.20)

(4.21)

_ If, in (4.20), x; has spectral density f,(w),

we have the following result.

Property 4.3 Output Spectrum of a Filtered Stationary Series

Proof: The autocovariance function of the filtered output y, in (4.20) is

Vy(h) = COV( Xy 47, Xz)

= Cov (Z Ay Xt+h-r, Z asxt—s)

r

S
= Z Z aryx(h—r+ s)ag

1

(QZZS:‘I’[/_E

1
2

— /%(Z are—Zniwr)(Z ase2niws) elniwhfx(w) dw

eZniw(h—r+s)fx(w)dw] as

1
2 r S
:
2 .
@ / MO | AW fo(w) do,
—% —_—
5 (w)

where we have, (1) replaced vy, (-) by its representation (4.16), and (2) substituted A(w)
from (4.21). The result holds by exploiting the uniqueness of the Fourier transform.
O

The use of Property 4.3 is explored further in Section 4.7. If x; is ARMA, its
spectral density can be obtained explicitly using the fact that it is a linear process,
e, x, = X2oWwe—j, where 372, |y;| < co. The following property is a direct
consequence of Property 4.3, by using the additional facts that the spectral density of
white noise is f,,(w) = o2, and by Property 3.1, ¥(z) = 6(z)/¢(z).
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Property 4.4 The Spectral Density of ARMA

(4.23)

where ¢(z) = 1 = X7 _ ¢rz* and 6(z) = 1 + T _, 02"

Example 4.6 Moving Average

As an example of a series that does not have an equal mix of frequencies, we
consider a moving average model. Specifically, consider the MA(1) model given by

A sample realization is shown in the top of Figure 3.2 and we note that the series
has [ EEREE]. Th.c <poctral density will verify this

observation.
The autocovariance function is displayed in Example 3.5, and for this particular
example, we have

v(0)=(1+ .52)0'3‘, = 1.250'3,; y(xl) = .50'3,; v(xh) =0for h > 1.

Substituting this directly into the definition given in (4.17), we have

(4.24)

We can also compute the spectral density using Property 4.4, which states that
for an MA, f(w) = 02 |6(e"¥*¢)|2. Because #(z) = 1 + .5z, we have

|0(e—27ria))|2 — |1 + .56—27riw|2 — (1 + .5e_2”i‘”)(1 + .5627riw)

=125+.5 (e_z”i“’ + ez’”")

which leads to aireement with ‘4.24|.

Example 4.7 A Second-Order Autoregressive Series
We now consider the spectrum of an - series of the form

Figure 1.9 shows a sample realization of

for the special case
such a pro

cess for =T data exhibit a strong periodic component
that makes HEYEIEADONTENEIY S PO
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To use Property 4.4, note that 6(z) = 1, ¢(z) = 1 — z + .9z% and

|¢(e—27tiw)|2 — (1 _ e—Zniw + .96—47riw)(1 _ e27riw + .9e4niw)
=2.281- 1.9(62m’w + e—27riw) + .9(64711.0.) + e—47riw)

=2.81 —3.8cos(2nw) + 1.8 cos(4nw).

Using this result in (4.23), we have that the spectral density of x; is

K@) =341

—3.8cos(2nw) + 1.8 cos(4nw)”

In this case, modifying
the white noise series by applying the second-order AR operator has concentrated

the power or variance of the resulting series in a very narrow frequency band.
, without having

to use Property 4.4. Because w; = x; — x;—1 + .9x;_> in this example, we have
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Now, substituting the spectral representation (4.16) for y, (%) in the above equation
yields

[2 81 —1. 9(627r1w 27riw) + ‘9(e4m’w+ e—4ﬂiw)162ﬂiwhfx(w)dw

[ ST

[2.81 — 3.8 cos(2nw) + 1.8 cos(dnw)|e*™ ™ £ (w)dw.

1
2

2
|\=\

If the spectrum of the white noise process, wy, is gw(w), the uniqueness of the
Fourier transform allows us to identify

gw(w) =[2.81 — 3.8 cos(2nw) + 1.8 cos(4nw)] fr(w).

But, as we have already seen, g,,(w) = (7‘%, from which we deduce that

o2

fr(w) = _38 cos(zyrz) + 1.8 cos(4nw)

is the spectrum of the autoregressive series.
To reproduce Figure 4.4, use arma. spec from astsa:
par (mfrow=c(3,1))

BFmalsped (1og="no", main="White Noise")
arma.spec(ma=.5, log="no", main="Moving Average")
arma.spec(ar=c(1l,-.9), log="no", main="Autoregression")

Example 4.8 Every Explosion has a Cause (cont)
In Example 3.4, we discussed the fact that explosive models have causal counter-
parts. In that example, we also indicated that it was easier to show this result in
general in the spectral domain. In this example, we give the details for an AR(1)
model, but the techniques used here will indicate how to generalize the result.
As in Example 3.4, we suppose that x;, = 2x,_; + w;, where w; ~ iid N(0, 0'&,).
Then, the spectral density of x; is

folw) = a2 |1 = 2779|172, (4.25)

But, |1 — 26—2m’w| =11 - 2627riw| = |(262ﬂiw)(%e—27riw _ 1)| =2|1- %e‘zm“ﬂ,
Thus, (4.25) can be written as

2 —2riw |2
fx(w) = %o-w |1 - %e 7le| >

which implies that x; = %xt_l + v, with v, ~ iid N(0, }10;%) is an equivalent form
of the model.

We end this section by mentioning another spectral representation that deals with
the process directly. In nontechnical terms, the result suggests that (4.4) is approx-
imately true for any stationary time series, and this gives an additional theoretical
justification for decomposing time series into harmonic components.
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Example 4.9 A Periodic Stationary Process (cont)
In Example 4.4, we considered the periodic stationary process given in (4.13),
namely, x; = Uj cos(2rnwot) + U, sin(2rwyt). Using Footnote 4.2, we may write
this as
X = (U1 +iUp)e” 2 1 LUy - iUp)e?™ !,

where we recall that U and U, are uncorrelated, mean-zero, random variables each
with variance 2. If we call Z = %(Ul +iU;),then Z* = %(Ul —iU,), where * denotes
conjugation. In this case, E(Z) = %[E(Ul) + iE(U;)] = 0 and similarly E(Z*) = 0.
For mean-zero complex random variables, say X and Y, cov(X,Y) = E(XY™). Thus

var(Z) = E(1Z*) = E(ZZ") = ZE[(U1 +iU2)(U; = iU2)]
0_2

= §[EWD) +E(WU5)] = 5

Similarly, var(Z*) = 0% /2. Moreover, since Z** = Z,

cov(Z, Z2%) = B(ZZ™) = 1E[(U; +iUx)(U; +ilh)] = HEU?Y) - E(U3)] = 0.

Hence, (4.13) may be written as

1
driwet | e 2miwot 2 omiwt
X, = Ze2miont o gredmioor _ [ 7 2mion g7y

(Sl

where Z(w) is a complex-valued random process that makes uncorrelated jumps at
—wyp and wp with mean-zero and variance o2 /2. Stochastic integration is discussed
further in Section C.4.2. This notion generalizes to all stationary series in the
following property (also, see Theorem C.2).

Property 4.5 Spectral Representation of a Stationary Process

If x; is a mean-zero stationary process, with spectral distribution F(w) as given in
Property 4.1, then there exists a complex-valued stochastic process Z(w), on the in-
terval w € [—1/2,1/2], having stationary uncorrelated non-overlapping increments,
such that x; can be written as the stochastic integral (see Section C.4.2)

1

7.
Xz :/ ezm“’tdZ(a)),

Bl

where, for —1/2 < w; < wy < 1/2,

var {Z(w2) = Z(w1)} = F(w2) = F(wy).

4.3 Periodogram and Discrete Fourier Transform

We are now ready to tie together the periodogram, which is the sample-based concept
presented in Section 4.1, with the spectral density, which is the population-based
concept of Section 4.2.
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fort = 1, ..., n. The following example shows how to calculate the DFT and its inverse
in R for the data set {1, 2, 3,4}; note that R writes a complex number z = a + ib as
a+bi.
(dft = fft(1:4)/sqrt(4))

[1] 5+0i -1+1i -1+40i -1-1i
(idft = fft(dft, inverse=TRUE)/sqrt(4))

[1] 1+0i 2+0i 3+0i 4+0i
(Re(idft)) # keep it real

[111 2 3 4

We now define the periodogram as the squared modulus of the DFT.

Definition 4.2

(4.28)
forj=0,1,2,...,n—1.

Note that 1(0) = nx?, where & is the sample mean. Also, P exp(—27rit%) = 0 for
j #0,%3 so we can write the DFT as

for j # 0. Thus,

_.n . P
4.3 >zt =z 11_ZZ for z # 1. In this case, z"* = e 271 = 1.




A

for j # 0, where we have put 4 = t — s, with 9(h) as given in (1.36).** In view of

Definition 4.3 Given data xi, . . ., x,, we define _

X; sin(2rw;it) (4.32)

We note that d(w;) = d.(w;) — i ds(w;) and hence

We have also discussed the fact that spectral analysis can be thought of as an
analysis of variance. The next example examines this notion.

4-4 Note that (4.30) can be used to obtain $(h) by taking the inverse DFT of I(w 7). This approach was
used in Example 1.31 to obtain a two-dimensional ACF.
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Example 4.10 Spectral ANOVA
Let x1,...,x, be a sample of size n, where for ease, n is odd. Then, recalling
Example 4.2,

X =ag+ ) [ajcosQrw;t) + by sin2rw;1)] (4.34)
j=1

wherem = (n—1)/2,isexactfort = 1,. .., n.In particular, using multiple regression
formulas, we have ap = X,

2 2

aj = — th COS(Zﬂa)jt) = _dc(w])
i Vi
2 2

bj = - th sin2rw;t) = —ds(w;).
n & \n

Hence, we may write

(xy —X) = % ; [dc(wj)cos(27rwjt) + ds(wj) sin(27ra)jt)]

fort = 1,...,n. Squaring both sides and summing we obtain

Source df SS MS
wi 2 21(w1) I(wr)
wr 2 2[(602) I((l)2)
Wm 2 21(wy) I(wy)

Total n—-1 X7 (x— %)?

The following is an R example to help explain this concept. We consider n = 5

to be small.
x =c(l, 2, 3,2, 1

cl
c2

cos(2*pi*1:5*1/5); sl
cos(2*pi*1:5*2/5); s2

sin(2*pi*1:5%1/5)
sin(2*pi*1:5%2/5)
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omegal = cbind(cl, sl); omega2 = cbind(c2, s2)
anova(lm(x~omegal+omega2)) # ANOVA Table
Df Sum Sqg Mean Sq

Mod (££t(x))A2/5 # the periodogram (as a check)

[1] 16.2 1.37082 .029179 .029179 1.37082

# I(0) I(1/5) I(2/5) I(3/5) @ I(4/5)
Note that 7(0) = nx> = 5 x 1.8% = 16.2. Also, the sum of squares associated with
the residuals (SSE) is zero, indicating an exact fit.

Example 4.11 Spectral Analysis as Principal Component Analysis
It is also possible to think of spectral analysis as a principal component analysis. In
Section C.5, we show that the spectral density may be though of as the approximate
eigenvalues of the covariance matrix of a stationary process. If X = (xq,..., xy)
are n values of a mean-zero time series, x; with spectral density f,(w), then

y©0)  y(1) - y(n-1)
y1  y©0 - y(n-2)
cov(X)=1, = : : . :
Y -1 yn=2) - (0)

For n sufficiently large, the eigenvalues of I, are

4~ flwp) = > y(yemhimn,
h=—c0
with approximate eigenvectors
gj* — #(e—Znin/n’ e—27ri1j/n, o e—27ri(n—l)j/n)’
forj =0,1,...,n—1.If we let G be the complex matrix with columns g;, then the

complex vector Y = G*X has elements that are the DFTs,

RN 27itj
= — ) xe2nitj/n
Yj Vi ; t

forj =0,1,...,n— 1.Inthiscase, the elements of Y are asymptotically uncorrelated
complex random variables, with mean-zero and variance f(w,). Also, X may be
recovered as X = GY, so that x; = # Z;‘:—O] yjezmtf In
We are now ready to present some large sample properties of the periodogram.
First, let u be the mean of a stationary process x; with absolutely summable autoco-
variance function y(h) and spectral density f(w). We can use the same argument as
in (4.30), replacing x by u in (4.29), to write
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n-1 n—|h|
Hop=n"" > > Corapny = ), — e s (4.35)
h=—(n-1) t=1

where w; is a non-zero fundamental frequency. Taking expectation in (4.35) we obtain

n—1 A .
E[lw)] = ), (" n' ')y(h)e‘z”““fh. (4.36)
h=—(n-1)
4.5

For any given w # 0, choose a
from which it follo

sequence of fundamental frequencies w;., — w

y(h)e 27ihe . (4.37)

Additional asymptotic properties may be established under the condition that the
autocovariance function satisfies

0 = Z |h|ly(h)| < oo. (4.38)

h:—OO

First, we note that straight-forward calculations lead to

covlde(w;), de(wi)] = n~! Z Z (s — 1) cos(2nw;s) cosQmawt),  (4.39)

s=1 t=1

M=
M=

cov[d.(wj), ds(wk)] = n! Y(s —t)cos(2nw;js) sin(2rwit), (4.40)

©
I
—_
~
I
—_

S
N

-1

covlds(wj), ds(wi)] = n y(s — 1) sin(2rw;s) sin(2rwit), 4.41)

=1 t=1

)

where the variance terms are obtained by setting w; = wy in (4.39) and (4.41).
In Appendix C, Section C.2, we show the terms in (4.39)—(4.41) have interesting
properties under assumption that (4.38) holds. In particular, for w;, wi # 0 or 1/2,

f(wj)/2 t+&, Wi = W,

4.42
En Wj * W, ( )

COV[dc(wj)a de(wi)] = {

4-5 By this we mean w j:n = Jn/n, where {j, } is a sequence of integers chosen so that j, /n is the closest
Fourier frequency to w; consequently, |j, /n — w| < %

4-6 From Definition 4.2 we have I(0) = nxZ, so the analogous result of (4.37) for the case w = 0 is
E[1(0)] — nu? = nvar(x) — £(0) as n — co.
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/2 + 1 — ,
covlds(w)). dy(wy)] = {f (@2t enwj = o (4.43)
En wj # W,
and
COV[dc (wj), dy (wk)] =&n, (4.44)
where the error term &,, in the approximations can be bounded,
leqn] < 0/n, (4.45)

and € is given by (4.38). If w; = wy = Oor 1/2in (4.42), the multiplier 1/2 disappears;
note that ds(0) = ds(1/2) = 0, so (4.43) does not apply in these cases.

Example 4.12 Covariance of Sine and Cosine Transforms
For the three-point moving average series of Example 1.9 and n = 256 obser-

vations, the theoretical covariance matrix of the vector D = (d.(w2e), ds(w2e),
dc(w27), ds(w27)) using (4.39)—(4.41) is

3752 —-.0009 -.0022 -.0010

cov(D) —.0009 3777 1 —.0009 .0003
'V = B I R L I ] .
—-.0022 -.0009 : .3667 -.0010

—-.0010 .00035—.0010 .3692

The diagonal elements can be compared with half the theoretical spectral val-
ues of % f(wre) = .3774 for the spectrum at frequency wy¢ = 26/256, and of
% f(wz7) = .3689 for the spectrum at wp7 = 27/256. Hence, the cosine and sine
transforms produce nearly uncorrelated variables with variances approximately
equal to one half of the theoretical spectrum. For this particular case, the uniform
bound is determined from 6 = 8/9, yielding |e356| < .0035 for the bound on the
approximation error.

If x, ~ iid(0, o2), then it follows from (4.38)—(4.44), and a central limit theorem*’
that
de(wj.n) ~ AN(0,0%/2) and  ds(w;.,) ~ AN(0,0%/2) (4.46)

jointly and independently, and independent of d(wk.,) and ds(wk.,) provided w;.,, —
wy and wy., — wy where 0 < w; # wy < 1/2. We note that in this case, fi(w) = o2.
In view of (4.46), it follows immediately that as n — oo,

2l(wi-p 21wy
©in) 4 2 g k)

4 (4.47)

o2 o2

with I(wj.,) and I(wy.,) being asymptotically independent, where y denotes a chi-
squared random variable with v degrees of freedom. If the process is also Gaussian,
then the above statements are true for any sample size.

Using the central limit theory of Section C.2, it is fairly easy to extend the results
of the iid case to the case of a linear process.

471t {Y; } ~iid(0, o2) and {a;} are constants for which Z;‘Zl ajz./maxlgjs,l aJZ. — o0 as n — oo, then

27:1 ajYj ~ AN(O, o2 27:1 an.). AN is read asymptotically normal; see Definition A.5.
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Property 4.6 Distribution of the Periodogram Ordinates
If

Xy = i ijt_j, i |lﬁj| < o0 (448)

j:—oo j:—OO

where w, ~ iid(0,02), and (4.38) holds, then for any collection of m distinct fre-
quencies w; € (0,1/2) with wj., = w;j

(4.49)

This result is stated more precisely in Theorem C.7. Other approaches to large
sample normality of the periodogram ordinates are in terms of cumulants, as in
Brillinger (1981), or in terms of mixing conditions, such as in Rosenblatt (1956a).
Here, we adopt the approach used by Hannan (1970), Fuller (1996), and Brockwell
and Davis (1991).

The distributional result (4.49) can be used to derive an approximate confidence
interval for the spectrum in the usual way. Let y2(a) denote the lower a probability
tail for the chi-squared distribution with v degrees of freedom; that is,

Prix, < xy(@)} =a. (4.50)

As previously indicated, it is often convenient to calculate the DFTs, and hence the
periodogram, using the fast Fourier transform algorithm. The FFT utilizes a number
of redundancies in the calculation of the DFT when 7 is highly composite; that is, an
integer with many factors of 2, 3, or 5, the best case being when n = 27 is a factor of
2. Details may be found in Cooley and Tukey (1965). To accommodate this property,
we can pad the centered (or detrended) data of length n to the next highly composite

: ’ : 3 3 c — C — — c _ C
integer n’ by adding zeros, i.e., setting x, , = x. , = --- = x;, = 0, where x;
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denotes the centered data. This means that the fundamental frequency ordinates will
be w; = j/n’ instead of j/n. We illustrate by considering the periodogram of the SOI
and Recruitment series shown in Figure 1.5. Recall that they are monthly series and
n = 453 months. To find n’ in R, use the command nextn(453) to see that n’ = 480

will be used in the spectral analyses by default.

Example 4.13 Periodogram of SOI and Recruitment Series
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We now give the R commands that can be used to reproduce Figure 4.5. To
calculate and graph the periodogram, we used the fi¥8pe€ command in available
from astsa. We note that the value of 4 is the reciprocal of the value of frequency
for the data of a time series object. If the data are not a time series object, frequency
is set to 1. Also, we set log="no" because the periodogram is plotted on a logjg
scale by default. Figure 4.5 displays a bandwidth. We will discuss bandwidth in the
next section, so ignore this for the time being.

par (mfrow=c(2,1))

soi.per = mvspec(soi, log="no")
abline(v=1/4, 1lty=2)

rec.per = mvspec(rec, log="no")
abline(v=1/4, 1lty=2)

The confidence intervals for the SOI series at the yearly cycle, w = 1/12 =
40/480, and the possible El Nifio cycle of four years w = 1/48 = 10/480 can be
computed in R as follows:
soi.per$spec[40] # 0.97223; soi pgram at freq 1/12
soi.per$spec[10] # 0.05372; soi pgram at freq 1/48
# conf intervals - returned value:

U = gchisq(.025,2) # 0.05063
L = qchisq(.975,2) # 7.37775
“soi.per$spec[10]/L # 0.01456
“soi.per$spec[10]/U # 2.12220
#
#

40/480
10/480

*so0i.per$spec[40]/L 0.26355
*soi.per$spec[40]/U 38.40108

NN NN

The preceding example made it clear that the periodogram as an estimator is
susceptible to large uncertainties, and we need to find a way to reduce the variance.
Not surprisingly, this result follows if consider (4.49) and the fact that, for an
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Fig. 4.6. A small section (near the peak) of the AR(2) spectrum shown in Figure 4.4 .

4.4 Nonparametric Spectral Estimation

B:{w*: wj—ﬂSa)*Sa)j+ﬂ}, (4.52)

where

L=2m+1 (4.53)

is an odd number, chosen such that _,

flwj+k/n), k=-m,...,0,....m

are approximately equal to f(w). This structure can be realized for large sample
sizes, as shown formally in Section C.2. Values of the spectrum in this band should
be relatively constant for the smoothed spectra defined below to be good estimators.
For example, to see a small section of the AR(2) spectrum (near the peak) shown in
Figure 4.4, use
arma.spec(ar=c(1,-.9), xlim=c(.15,.151), n.freq=100000)
which is displayed in Figure 4.6.

We now define an averaged (or smoothed) periodogram as the average of the
periodogram values, say,

(4.54)

over the band B. Under the assumption that the spectral density is fairly constant in
the band B3, and in view of (4.49) we can show that under appropriate conditions,*®

4-8 The conditions, which are sufficient, are that x; is a linear process, as described in Property 4.6, with
2 Vil g < co, and w; has a finite fourth moment.









192 4 Spectral Analysis and Filtering

conditions, Lf(w) is the sum of L approximately independent f(w) )(22 /2 random

variables. It follows that,

(4.55)

where ~ means is approximately distributed as.
In this scenario, where we smooth the periodogram by simple averaging, it seems
reasonable to call the width of the frequency interval defined by (4.52),

_4'9 The concept of bandwidth, however, becomes more complicated
with the introduction of spectral estimators that smooth with unequal weights. Note
that (4.56) implies the degrees of freedom can be expressed as

2L =2Bn, (4.57)

or twice the time-bandwidth product. The result (4.55) can be rearranged to obtain

(4.58)

for the true spectrum, f(w).

Many times, the visual impact of a spectral density plot will be improved by
plotting the logarithm of the spectrum instead of the spectrum (the log transformation
is the variance stabilizing transformation in this situation). This phenomenon can

occur when regions of the spectrum exist with peaks of interest much smaller than
Lo o HEIO A 4S80S0

ot

4.9 There are many definitions of bandwidth and an excellent discussion may be found in Percival and
Walden (1993, §6.7). The bandwidth value used in R for spec.pgram is based on Grenander (1951).
The basic idea is that bandwidth can be related to the standard deviation of the weighting distribution.
For the uniform distribution on the frequency range —m/n to m/n, the standard deviation is L/nV12
(using a continuity correction). Consequently, in the case of (4.54), R will report a bandwidth of
L/nV12, which amounts to dividing our definition by V12. Note that in the extreme case L = n, we
would have B = 1 indicating that everything was used in the estimation. In this case, R would report a
bandwidth of 1/ V12 ~ .29, which seems to miss the point.

where
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arp = —log2L + log)(zzL(l —a/2) and by =log2L - log)(%L(a/Z)

do not depend on w.

If zeros are appended before computing the spectral estimators, we need to adjust
the degrees of freedom (because you do not get more information by padding) and
an approximation is to replace 2L by 2Ln/n’. Hence, we define the adjusted degrees
of freedom as

2Ln

n/

df = (4.60)

and use it instead of 2L in the confidence intervals (4.58) and (4.59). For example,
(4.58) becomes

af (@) af (@)
— < < — 4.61
a5 2 ) on

A number of assumptions are made in computing the approximate confidence
intervals given above, which may not hold in practice. In such cases, it may be
reasonable to employ resampling techniques such as one of the parametric bootstraps
proposed by Hurvich and Zeger (1987) or a nonparametric local bootstrap proposed
by Paparoditis and Politis (1999). To develop the bootstrap distributions, we assume
that the contiguous DFTs in a frequency band of the form (4.52) all came from a time
series with identical spectrum f(w). This, in fact, is exactly the same assumption made
in deriving the large-sample theory. We may then simply resample the L DFTs in the
band, with replacement, calculating a spectral estimate from each bootstrap sample.
The sampling distribution of the bootstrap estimators approximates the distribution
of the nonparametric spectral estimator. For further details, including the theoretical
properties of such estimators, see Paparoditis and Politis (1999).

Before proceeding further, we consider computing the average periodograms for
the SOI and Recruitment series.

Example 4.14 Averaged Periodogram for SOI and Recruitment

Generally, itis a good idea to try several bandwidths that seem to be compatible with
the general overall shape of the spectrum, as suggested by the periodogram. We will
discuss this problem in more detail after the example. The SOI and Recruitment
series periodograms, previously computed in Figure 4.5, suggest the power in

the lower El Nifio frequency needs smoothing to identify the predominant overall
iirliilﬁ

The smoothed spectra shown provide a sensible compromise between the noisy
version, shown in Figure 4.5, and a more heavily smoothed spectrum, which might
lose some of the peaks. An undesirable effect of averaging can be noticed at
the yearly cycle, w = 14, where the narrow band peaks that appeared in the
eriodograms in Figure 4.5 have been flattened and spread out to nearby frequencies.

see Example 4.15.
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Fig. 4.7. The averaged periodogram of the SOI and Recruitment series n = 453, n’ = 480, L =
9, df = 17, showing common peaks at the four year period, w = %A = 1/48 cycles/month, the
yearly period, w = 14 = 1/12 cycles/month and some of its harmonics w = kA for k = 2,3.

Figure 4.7 can be reproduced in R using the following commands. To compute
averaged periodograms, use the Daniell kernel, and specify m, where L = 2m + 1
(L =9 and m = 4 in this example). We will explain the kernel concept later in this
section, specifically just prior to Example 4.16.
soi.ave = fiVSped(soi, kernel('daniell',4)), log='no')
abline(v=c(.25,1,2,3), 1lty=2)
soi.ave$bandwidth #=0.225
# Repeat above lines using rec in place of soi on line 3

The displayed bandwidth (.225) is adjusted for the fact that the frequency scale
of the plot is in terms of cycles per year instead of cycles per month. Using (4.56),
the bandwidth in terms of months is 9/480 = .01875; the displayed value is simply
converted to years, .01875 x 12 = .225.

The adjusted degrees of freedom are df = 2(9)(453)/480 ~ 17. We can use this
value for the 95% confidence intervals, with )(‘21 f('025) = 7.56 and )(in f('975) =
30.17. Substituting into (4.61) gives the intervals in Table 4.1 for the two frequenc

For example,
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Fig. 4.8. Figure 4.7 with the average periodogram ordinates plotted on a logy scale. The
display in the upper right-hand corner represents a generic 95% confidence interval where the
middle tick mark is the width of the bandwidth.

the El Nifio frequency of 48 months has lower limits that exceed the values the
spectrum would have if there were simply a smooth underlying spectral function
without the peaks. The relative distribution of power over frequencies is different,
with the SOI having less power at the lower frequency, relative to the seasonal
periods, and the Recruitment series having more power at the lower or El Nifio
frequency.

The entries in Table 4.1 for SOI can be obtained in R as follows:

df = soi.ave$df # df = 16.9875 (returned values)
U = gchisq(.025, df) # U = 7.555916

L = gqchisq(.975, df) # L = 30.17425

soi.ave$spec[10] # 0.0495202

soi.ave$spec[40] # 0.1190800

# intervals

df*soi.ave$spec[10]/L # 0.0278789
df*soi.ave$spec[10]/U # 0.1113333
df*soi.ave$spec[40]/L # 0.0670396

df*soi.ave$spec[40]/U # 0.2677201
# repeat above commands with soi replaced by rec

Finally, Figure 4.8 shows the averaged periodograms in Figure 4.7 plotted on a
log scale. This is the default can be obtained by removing the statement 1og="no".
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Table 4.1. Confidence Intervals for the Spectra of the SOI and Recruitment Series

Series w Period Power Lower Upper
SOI 1/48 4 years .05 .03 11
1/12 1 year 12 .07 .27

Recruits 1/48 4 years 6.59 3.71 14.82
x10% 1/12 1 year 2.19 1.24 4.93

We note that displaying
the estimates on a log scale tends to emphasize the harmonic components.

Example 4.15 Harmonics

In the previous example, we saw that the spectra of the annual signals displayed
minor peaks at the harmonics; that is, the signal spectra had a large peak at w =
14 = 1/12 cycles/month (the one-year cycle) and minor peaks at its harmonics
w = kdfork =2,3,...(two-, three-, and so on, cycles per year). This will often be
the case because most signals are not perfect sinusoids (or perfectly cyclic). In this
case, the harmonics are needed to capture the non-sinusoidal behavior of the signal.
As an example, consider the signal formed in Figure 4.9 from a (fundamental)
sinusoid oscillating at two cycles per unit time along with the second through sixth
harmonics at decreasing amplitudes. In particular, the signal was formed as

x; = sin(272t) + .5 sin(274¢t) + .4 sin(276t)
+.3sin(278¢) + .2 sin(2710¢) + .1 sin(2712¢) (4.62)

for 0 < ¢ < 1. Notice that the signal is non-sinusoidal in appearance and rises
quickly then falls slowly.
A figure similar to Figure 4.9 can be generated in R as follows.
t = seq(®, 1, by=1/200)
amps = c(1, .5, .4, .3, .2, .1)
x = matrix(0®, 201, 6)
for (j in 1:6){ x[,j] = amps[j]*sin(2*pi*t*2*j) }
x = ts(cbind(x, rowSums(x)), start=0, deltat=1/200)
ts.plot(x, lty=c(1l:6, 1), lwd=c(rep(l,6), 2), ylab="Sinusoids")
names = c("Fundamental","2nd Harmonic",'"3rd Harmonic","4th Harmonic", "5th
Harmonic", "6th Harmonic", "Formed Signal')
legend("topright", names, lty=c(l:6, 1), lwd=c(rep(1l,6), 2))

Example 4.14 points out the necessity for having some relatively systematic pro-
re for deciding whether peaks are significan
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Fig. 4.9. A signal (thick solid line) formed by a fundamental sinusoid (thin solid line) oscillating
at two cycles per unit time and its harmonics as specified in (4.62).

To be consistent with our stated

indifference to the upper limits, we might use a one-sided confidence interval.
An important aspect of interpreting the significance of confidence intervals and
tests involving spectra is that typically, more than one frequency will be of interest,
so that we will potentially be interested in simultaneous statements about a whole

The use of the confidence intervals and the necessity for smoothing requires that
we make a decision about the _ over which the spectrum will be essentially
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We have already seen these results in the case of f(w), where the weights are
constant, hy = L~!, in which case ¥7'_ h* = L~'. The distributional properties
of (4.64) are more difficult now because f(w) is a weighted linear combination of
asymptotically independent y? random variables. An approximation that seems to

-1
work well is to replace L by (Z?:_m hi) . That is, -

m -1
B ( > l) (4.65)
k=—m
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In analogy to (4.56), el AEfine the BARdWIdH A i Caseiobe

- (4.67)

Using the approximation (4.66) we obtain an approximate 100(1 — @)% confidence
interval of the form

2nflw) 2Ly f ()
 a-ap 55 @

for the true spectrum, f(w). If the data are padded to n’, then replace 2L in (4.68)
with df = 2Lyn/n’ as in (4.60).

(4.68)

We can apply the same kernel again to the i,

2 1a Ir , 1n
Up = U1 + U + U4,
which simplifies to
A 1 2 3 2 1
Ur = gUs—2 + GUr—1 + GlUr + GUrs1 + qlUs2.

The modified Daniell kernel puts half weights at the end points, so with m = 1 the
weights are {h; } = {%, %, %} and

~ 1 1 1
Uur = Zut_l + fut + Zqu.

Applying the same kernel again to #i; yields

2 1 4 6 4 1
Ur = TgUr-2 + TgUt-1 + Jgls + TgUe+1 + TgUr+2-

The other kernels that are currently available in R are the Dirichlet kernel
and the Fejér kernel, which we will discuss shortly.

It is interesting to note that these kernel weights form a probability distribution.
If X and Y are independent discrete uniforms on the integers {—1,0, 1} each with
probability %, then the convolution X + Y is discrete on the integers {-2,—1,0, 1,2}
12321

with corresponding probabilities {3, §, 5, §> 5}

4-10 The approximation proceeds as follows: If f ~ c,\(,%, where ¢ is a constant, then Ef ~ ¢y and

n -1
varf ~ f2 ¥y h2 ~ ¢22v. Solving, ¢ ~ f Y h2/2 = f/2L;, andv ~ 2 (zk hi) =2L,,.



200 4 Spectral Analysis and Filtering
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Fig. 4.10. Smoothed (1apered) spectral estimates of the SOI and Recruitment series: scc

Example 4.16 for details.

Example 4.16 Smoothed Periodogram for SOI and Recruitment

kernel("modified.daniell”, c(3,3))
coef[-6] = 0.006944 = coef[ 6]
coef[-5] = 0.027778 = coef[ 5]
coef[-4] = 0.055556 = coef[ 4]
coef[-3] = 0.083333 = coef[ 3]
coef[-2] = 0.111111 = coef[ 2]
coef[-1] = 0.138889 = coef[ 1]
coef[ 0] = 0.152778

plot(kernel ("modified.daniell™, c(3,3))) # not shown

The resulting spectral estimates can be viewed in Figure 4.10 and we notice that
the estimates more appealing than those in Figure 4.7. Figure 4.10 was generated
in R as follows; we also show how to obtain the associated bandwidth and degrees
of freedom.
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k = kernel("modified.daniell”, c(3,3))

soi.smo = fiVSpee(soi, kernel=k, taper=.1, log="no")
abline(v=c(.25,1), 1lty=2)

## Repeat above lines with rec replacing soi in line 3
df = soi.smo$df # df = 17.42618
soi.smo$bandwidth # B 0.2308103

Note that a taper was applied in the estimation process; we discuss tapering in the
next part. Reissuing the mvspec commands with 1og="no" removed will result in a
figure similar to Figure 4.8. Finally, we mention that the modified Daniell kernel is
used by default and an easier way to obtain soi. smo is to issue the command:
soi.smo = mvspec(soi, taper=.1, spans=c(7,7))

Notice that spans is a vector of odd integers, given in terms of L = 2m + 1 instead
of m.

There have been many attempts at dealing with the problem of smoothing the
periodogram in a automatic way; an early reference is Wahba (1980). It is apparent
from Example 4.16 that the smoothing bandwidth for the broadband El Nifio behavior
(near the 4 year cycle), should be much larger than the bandwidth for the annual
cycle (the 1 year cycle). Consequently, it is perhaps better to perform automatic
adaptive smoothing for estimating the spectrum. We refer interested readers to Fan
and Kreutzberger (1998) and the numerous references within.

TAPERING

We are now ready to introduce the concept of fapering; a more detailed discussion

may be found in Bloomfield (2000, §9.5). Suppose x; is a mean-zero, stationar
Ws with spectral density fy(w).
=iz, (4.69)

) =" S SRR (470)
t=1

see Problem 4.17)
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Fig. 4.11. Averaged Fejér window (top row) and the corresponding cosine taper window
(bottom row) for L = 9, n = 480. The extra tic marks on the horizontal axis of the left-hand
plots exhibit the predicted bandwidth, B = 9/480 = .01875.

sin?(nrw)

Wa(w) = (4.74)

nsin?(nw)

ié odified Bartlett kernel. -

(4.75)

-bell of the form
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Fiil 4|12|—
- see Example 4.17. The insert shows a full cosine bell taper, (4.76), with

horizontal axis (t —t)/n, fort = 1,...,n.

ht=.5

1+ cos(@)], (4.76)

where t = (n + 1)/2, favored by Blackman and Tukey (1959). The shape of this taper
is shown in the insert to Figure 4.12. In Figure 4.11, we have plotted the shapes
of two windows, W,,(w), for n = 480 and L = 9, when (i) 4, = 1, in which case,
(4.75) applies, and (ii) h; is the cosine taper in (4.76). In both cases the predicted
bandwidth should be B = 9/480 = .01875 cycles per point, which corresponds to the
“width” of the windows shown in Figure 4.11. Both windows produce an integrated
average spectrum over this band but the untapered window in the top panels shows
considerable ripples over the band and outside the band. The ripples outside the
band are called sidelobes and tend to introduce frequencies from outside the interval
that may contaminate the desired spectral estimate within the band. For example, a
large dynamic range for the values in the spectrum introduces spectra in contiguous
frequency intervals several orders of magnitude greater than the value in the interval
of interest. This effect is sometimes called leakage. Figure 4.11 emphasizes the
suppression of the sidelobes in the Fejér kernel when a cosine taper is used.

Example 4.17 The Effect of Tapering the SOI Series

The estimates in Example 4.16 were obtained by tapering the upper and lower 10%
of the data. In this example, we examine the effect of tapering on the estimate of
the spectrum of the SOI series (the results for the Recruitment series are similar).
Figure 4.12 shows two spectral estimates plotted on a log scale. The dashed line in
Figure 4.12 shows the estimate without any tapering. The solid line shows the result
with full tapering. Notice that the tapered spectrum does a better job in separating
the yearly cycle (w = 1) and the El Nifio cycle (w = 1/4).

Was used to ienerate Fiiure 4.12. We note thatil
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-In Example 4.16, we used taper=. 1.

s® = mvspec(soi, spans=c(7,7), plot=FALSE) # no taper

s50 = mvspec(soi, spans=c(7,7), taper=.5, plot=FALSE) # full taper

plot(s50%$freq, s50%spec, log="y", type="1", ylab="spectrum",
xlab="frequency") # solid line

lines(s0$%$freq, sO$spec, lty=2) # dashed line

We close this section with a brief discussion of lag window estimators. First,
consider the periodogram, /(w;), which was shown in (4.30) to be

I(wj): Z ,f/(h)e—lm'wjh.

|h|<n

Thus, (4

(4.77)
-Z|k|5m hy exp(—2mikh/n). Equation (4.77) suggests estimators of the
fw)y= > wk) p(hjeicn (4.78)

|h|<r

w(x) =0 for |x| > 1,

Note that if w(x) = 1 for |x| < 1 and r = n, then f(wj) = I(wj), the periodogram.
This result indicates the problem with the periodogram as an estimator of the spectral
density is that it gives too much weight to the values of y(h) when h is large, and
hence is unreliable [e.g, there is only one pair of observations used in the estimate
9(n — 1), and so on].

4.79)

and it determines which part of the periodogram will be used to form the estimate of
f(w). The asymptotic theory for f(w) holds for f(w) under the same conditions and
provided r — oo as n — oo but with r/n — 0. That is,

E{f(w)} = f(w), (4.80)

1
gcov (f(w), f(1) = fAw) / w?(x)dx  w=A1%#0,1/2. (4.81)
-1
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In (4.81), replace f%(w) by 0if w # A and by 2f%(w)if w =1 =0or 1/2.

Many authors have developed various windows and Brillinger (2001, Ch 3) and
Brockwell and Davis (1991, Ch 10) are good sources of detailed information on this
topic.

4.5 Parametric Spectral Estimation

The methods of the previous section lead to what is generally referred to as non-
parametric spectral estimators because no assumption is made about the parametric
form of the spectral dens1ty In Property 4.4, we exh1b1ted the spectrum of an ARMA

SPLLLLAL USLLITIALVIL, |

, where the order p is determined by one of the model

and are preferred
by engineers for a broad variety of problems (see Kay, 1988). The development of
aut . . .

(4.82)

where
(4.83)

The asymptotic distribution of the autoregressive spectral estimator has been obtained

by Berk (1974) under the conditions p — o, p3/n — 0 as p, n — co, which may be
We for most applications. The limiting results imply—

X
using a procedure similar to the one used for p = 1 in Example 3.36. An alternative

for higher order autoregressive series is to put the AR(p) in state-space form and use

the bootstrai irocedure discussed in Section 6.7.
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Fig. 4.13. Model selection criteria AIC and BIC as a function of order p for autoregressive
models fitted to the SOI series.

Property 4.7 AR Spectral Approximation
Let g(w) be the spectral density of a stationary process. Then, given € > 0, there
is a time series with the representation

P
X = Z Qi Xtk + Wy
k=1
where w; is white noise with variance O'VZV, such that
| fx(w) —g(w)| <€ forall we[-1/2,1/2].

Moreover, p is finite and the roots of $(z) = 1 — Zlgzl Prz* are outside the unit circle.

Property 4.7 also holds for MA and for ARMA processes in general, and a proof of
the result may be found in Section C.6. We demonstrate the technique in the following
example.

Example 4.18 Autoregressive Spectral Estimator for SOI

Consider obtaining results comparable to the nonparametric estimators shown in

as shown
in Figure 4.13. We can see from Figure 4.13 that BIC is very definite about which
model it chooses; that is, the minimum BIC is very distinct. On the other hand, it
is not clear what is going to happen with AIC; that is, the minimum is not so clear,
and there is some concern that AIC will start decreasing after p = 30. Minimum
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Fig. 4.14. Autoregressive spectral estimator for the SOI series using the AR(15) model selected
by AIC, AICc, and BIC.

To perform a similar analysis in R, the command SPEEYaE can be used to fit the
best model via AIC and plot the resulting spectrum. A quick way to obtain the AIC
values is to run the ar command as follows.

spaic = spec.ar(soi, log="no") # min AIC spec
abline(v=frequency(soi)*1/52, 1lty=3) # E1 Nino peak
(soi.ar = ar(soi, order.max=30)) # estimates and AICs
dev.new()

plot(1:30, soi.ar$aic[-1], type="o0") # plot AICs

No likelihood is calculated here, so the use of the term AIC is loose. To generate
Figure 4.13 we used the following code to (loosely) obtain AIC, AICc, and BIC.
Because AIC and AICc are nearly identical in this example, we only graphed AIC
and BIC+1; we added 1 to the BIC to reduce white space in the graphic.

n = length(soi)

AIC = rep(0, 30) -> AICc -> BIC

for (k in 1:30){

sigma2 = ar(soi, order=k, aic=FALSE)S$var.pred
BIC[k] = log(sigma2) + (k*log(n)/n)
AICc[k] = log(sigma2) + ((n+k)/(n-k-2))

AIC[k] = log(sigma2) + ((n+2*k)/n) }
IC = cbind(AIC, BIC+1)
ts.plot(IC, type="o", xlab="p", ylab="AIC / BIC")

Finally, it should be mentioned that any parametric spectrum, say f(w; 6), depend-
ing on the vector parameter 6 can be estimated via the Whittle likelihood (Whittle,
1961), using the approximate properties of the discrete Fourier transform derived in
Appendix C. We have that the DFTs, d(w;), are approximately complex normally
distributed with mean zero and variance f(w;; #) and are approximately independent
for w; # wy. This implies that an approximate log likelihood can be written in the
form
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|d(w))I?

In L(x;0) ~ ; (4.85)

where the sum is sometimes expanded to include the frequencies w; = 0, 1/2. If the
form with the two additional frequencies is used, the multiplier of the sum will be
unity, except for the purely real points at w; = 0, 1/2 for which the multiplier is 1/2.
For a discussion of applying the Whittle approximation to the problem of estimating
parameters in an ARMA spectrum, see Anderson (1978). The Whittle likelihood is
especially useful for fitting long memory models that will be discussed in Chapter 5.

4.6 Multiple Series and Cross-Spectra

The notion of analyzing frequency fluctuations using classical statistical ideas extends
to the case in which there are several jointly stationary series, for example,
In this case, we can introduce the idea of a correlation indexed by fre uency, called
the coherence. The results in Section C.2 1mp1y

(4.86)

assummg that the cross-covariance function is absolutely summable, as was the case
for th ian.

(4.88)

(4.89)

(4.90)

Because of the rela-
tionship yyx(h) = yxy(=h), it follows, by substituting into (4.87) and rearranging,
that
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Syx(w) = fiy(w), 4.91)

Wugation. This result, in turn, implies that

4.94)

e inputs later,
it is instructive to display the single input case as (4.94) to emphasize the analogy
with conventional squared correlation, which takes the form

2
O-yx

2
Pyx = ’
T 202
for random variables with variances o2 and O'y2 and covariance oyy = Oyy. This
motivates the interpretation of squared coherence and the squared correlation between
two time series at frequency w.

Example 4.19 Three-Point Moving Average

where we have use (4.16). , We argue
from the spectral repre
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so that the cross-spectrum is real in this case. Using Property 4.3, the spectral
density of y;, is

. . 2
foy(@) = % |e27ruu 14+ e—27nw|2 lxx(w) = é [1 + 2cos(27rw)] j‘

that is, . This is
a characteristic inherited by more general linear filters; see Problem 4.30. However,
if some noise is added to the three-point moving average, the coherence is not unity;
these kinds of models will be considered in detail later.

Property 4.8 Spectral Representation of a Vector Stationary Process
If x; = (X411, X125 - . ., X;p) is a pX 1 stationary process with autocovariance matrix

I'(h) = E[(x1n — )(xr = )] = {yjx(h)} satisfying
Z [Vjr(h)] < oo (4.95)
h=-co0

forall j,k =1,...,p, then I'(h) has the representation

1

r'(h)= / T TOh f(w)dw h=0,+1,42, ... (4.96)
1
-3
as the inverse transform of the spectral density matrix, f(w) = {fjx(w)}, for j, k =
1,...,p. The matrix f(w) has the representation
flw)y= > rme™eh  —12<w<1/2. (4.97)
h=—c0

The spectral matrix f(w) is Hermitian, f(w) = f*(w), where * means to conjugate
and transpose.

Example 4.20 Spectral Matrix of a Bivariate Process
Consider a jointly stationary bivariate process (x;, y;). We arrange the autocovari-

ances in the matrix
')’xx(h) ny(h))
I'(h) = .
") (yyxm) Yo ()
The spectral matrix would be given by

_ fxx(w) fx (w)
flw) = (fyxw) Fon(@) )

where the Fourier transform (4.96) and (4.97) relate the autocovariance and spectral
matrices.
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The extension of spectral estimation to vector series is fairly obvious. For the
vector series x; = (X;1, X2, . . ., X;p)’, we may use the vector of DFTs, say d(w;) =
(di(wj), dr(wj), . . ., dp(wj))’, and estimate the spectral matrix by

f@)=L" " I +k/n) (4.98)
k=—m
where now
I(wj) = d(a)j) d*(a)j) (499)

is a p X p complex matrix. The series may be tapered before the DFT is taken in (4.98)
and we can use weighted estimation,

fw)y= > I, +k/n) (4.100)
k=—m

where ihii are weiihts as defined in (4.64). _
p-(w) = * (4.101)
Jxx(@) fyy (@)

If the spectral estimates in (4.101) are obtained using equal weights, we will write
ﬁ%.x (w) for the estimate.

2

Under genera

(4.102)

where L, is defin in Brockwell and
Davis (1991, Ch 11). We may use (4.102) to obtain approximate confidence intervals
for the squared coherence, p?_ (w).

We may also test _ if we use 72 (w) for the
estimate with L > 1,* ,

_ | fox(w)]?
Pnw) = —2m— (4.103)
Jrx (‘U)fyy (w)
In this case, under the null hypothesis, the statistic
03 ()
Fo P gy (4.104)
(1 - pyx(w))

has an approximate F-distribution with 2 and 2L — 2 degrees of freedom. When the
series have been extended to length n’, we replace 2L — 2 by df — 2, where df is
defined in (4.60). Solving (4.104) for a particular significance level « leads to

SIVIFL = 1 then 2, (w) = 1.
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Fig. 4.15.
480, and a = .001. The horizontal line is C og.

L=19 n=453,n' =

Frop-2(@)
L—-1+Fpo(a)

Co = (4.105)

as the approximate value that must be exceeded for the original squared coherence to
be able to reject pi x(w) =0 at an a priori specified frequency.

Example 4.21 Coherence Between SOI and Recruitment

the fact that the F-statistic is approximate, we are examining the squared coherence
across all frequencies with the Bonferroni inequality, (4.63), in mind. Figure 4.15
also exhibits confidence bands as part of the R plotting routine. We emphasize that
these bands are only valid for w where

This example may be reproduced using the following R commands.
sr = mvspec(cbind(soi,rec), kernel("daniell",9), plot=FALSE)

sr$df # df = 35.8625
f = qf(.999, 2, sr$df-2) = 8.529792
= £/(18+%) # = 0.321517

plot(sr, plot.type =
abline(h = O

"coh", ci.lty = 2)
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4.7 Linear Filters

Some of the examples of the previous sections have hinted at the possibility the
distribution of power or variance in a time series can be modified by making a
linear transformation. In this section, we explore that notion further by showing how
linear filters can be used to extract signals from a time series. These filters modify
the spectral characteristics of a time series in a predictable way, and the systematic
development of methods for taking advantage of the special properties of linear filters
is an important topic in time series analysis.
Recall Property 4.3 that stated I

Example 4.22 First Difference and Moving Average Filters

filter

ing average filter,
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Now, having done the filtering, it is essential to determine the exact way in
which the filters change the input spectrum. We shall use (4.21) and (4.22) for

and the squared frequency response becomes

recommend it as a procedure for retaining only the hi
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The filter is not completely efficient at attenuating high frequencies; some power

contributions are left at higher frequencies, as shown in the function |A,(w)|*.
The following R session shows how to filter the data, perform the spectral

analysis of a filtered series, and plot the squared frequency response curves of the

difference and moving average filters.

par (mfrow=c(3,1), mar=c(3,3,1,1), mgp=c(1.6,.6,0))

plot(soi) # plot data

plot(diff(soi)) # plot first difference

k = kernel("modified.daniell"”, 6) # filter weights

plot(soif <- Kernapply(soi, k))  # plot 12 month filter

dev.new()

spectrum(soif, spans=9, log="no") # spectral analysis (not shown)

abline(v=12/52, lty="dashed")

dev.new()

##-- frequency responses --##

par (mfrow=c(2,1), mar=c(3,3,1,1), mgp=c(1.6,.6,0))

w = seq(®, .5, by=.01)

FRAiff = abs(l-exp(2i*pi*w))+2

plot(w, FRdiff, type='l', xlab='frequency')
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u = cos(2*pi*w)+cos(4*pi*w)+cos(6*pi*w)+cos(8*pi*w)+cos(10*pi*w)
FRma = ((1 + cos(12*pi*w) + 2*u)/12)A2
plot(w, FRma, type='l', xlab='frequency')

The two filters discussed in the previous example were different in that the fre-
quency response function of the first difference was complex-valued, whereas the
frequency response of the moving average was purely real. A short derivation similar
to that used to verify (4.22) shows, when x; and y, are related by the linear filter
relation (4.20), the cross-spectrum satisfies

fyx (w) = Ayx (W) frx(w),

so the frequency response is of the form

Ayx(w) = ﬁiig; (3109
(@) gyx(w) (4.109)

T fe@) | fal@)

where we have used (4.88) to get the last form. Then, we may write (4.109) in polar
coordinates as

Ayx(w) = |Ayx(w)| exp{—i ¢yx(w)}, (4.110)
where the amplitude and phase of the filter are defined by
[Ayx(w)] = \/ch(w) () (4.111)
fXX ((U)
and
$yx(w) = tan™! (—qy’“—(‘”)). 4.112)
ny(w)

A simple interpretation of the phase of a linear filter is that it exhibits time delays as
a function of frequency in the same way as the spectrum represents the variance as
a function of frequency. Additional insight can be gained by considering the simple
delaying filter

Yt = Axi—p,
where the series gets replaced by a version, amplified by multiplying by A and delayed
by D points. For this case,

fix(w) = AP £ (),
and the amplitude is |A|, and the phase is
¢yx(w) = —2rwD,

or just a linear function of frequency w. For this case, applying a simple time delay
causes phase delays that depend on the frequency of the periodic component being
delayed. Interpretation is further enhanced by setting
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x; = cos(2nwt),

in which case
vt = Acos(2nwt — 2nwD).

Thus, the output series, y;, has the same period as the input series, x;, but the amplitude
of the output has increased by a factor of |A| and the phase has been changed by a
factor of —2rwD.

Example 4.23 Difference and Moving Average Filters

We consider calculating the amplitude and phase of the two filters discussed in
Example 4.22. The case for the moving average is easy because A,,(w) given in
(4.107) is purely real. So, the amplitude is just |Ay(w)| and the phase is ¢ (w) = 0.
In general, symmetric (a; = a_;) filters have zero phase. The first difference,
however, changes this, as we might expect from the example above involving the
time delay filter. In this case, the squared amplitude is given in (4.106). To compute
the phase, we write

Ayx(w) =1-= e—27riw — e—imu(eimu _ e—iﬂw)

= 2ie”" sin(nw) = 2 sin’(mw) + 2i cos(nw) sin(rw)
_ ox()  gyx(w)

T @) fex(@)

SO

¢yx((1)) = tan‘l (—q};x—(a))) _ tan'l (COS(ﬂ'a))).

Cyx(w) B sin(rw)

Noting that
cos(mw) = sin(—nw + m/2)

and that
sin(rw) = cos(—nw + 7 /2),

we get
dyx(w) = —nw + /2,

and the phase is again a linear function of frequency.

The above tendency of the frequencies to arrive at different times in the filtered
version of the series remains as one of two annoying features of the difference type
filters. The other weakness is the gentle increase in the frequency response function.
If low frequencies are really unimportant and high frequencies are to be preserved,
we would like to have a somewhat sharper response than is obvious in Figure 4.17.
Similarly, if low frequencies are important and high frequencies are not, the moving
average filters are also not very efficient at passing the low frequencies and attenuating
the high frequencies. Improvement is possible by designing better and longer filters,
but we do not discuss this here.

We will occasionally use results for multivariate series x; = (x;1,...,X;p)" that
are comparable to the simple property shown in (4.22). Consider the matrix filter
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yi= ) A, (4.113)

J==

o0

where {A;} denotes a sequence of ¢ X p matrices such that 2);2__ [|A;|| < oo and
|| - || denotes any matrix norm, x; = (Xs1,...,X;p)" is a p X 1 stationary vector process
with mean vector u, and p X p, matrix covariance function Iy, (/) and spectral matrix
fxx(w), and y, is the g X 1 vector output process. Then, we can obtain the following

property.

Property 4.9 Output Spectral Matrix of Filtered Vector Series
The spectral matrix of the filtered output y, in (4.113) is related to the spectrum
of the input x; by

fiy(@) = Alw) frx(w)A™(w), (4.114)
where the matrix frequency response function A(w) is defined by
Aw) = ) Ajexp(-2riwj). (4.115)
Jj=—00

4.8 Lagged Regression Models

One of the intriguing possibilities offered by the coherence analysis of the relation be-
tween the SOI and Recruitment series discussed in Example 4.21 would be extending
classical regression to the analysis of lagged regression models of the form

Y= ) Brris v (4.116)

r=—00

where v; is a stationary noise process, x; is the observed input series, and y; is
the observed output series. We are interested in estimating the filter coefficients S,
relating the adjacent lagged values of x; to the output series y;.

In the case of SOI and Recruitment series, we might identify the El Nifio driving
series, SOI, as the input, x;, and y,, the Recruitment series, as the output. In general,
there will be more than a single possible input series and we may envision a g X 1
vector of driving series. This multivariate input situation is covered in Chapter 7. The
model given by (4.116) is useful under several different scenarios, corresponding to
different assumptions that can be made about the components.

We assume that the inputs and outputs have zero means and are jointly stationary
with the 2 X 1 vector process (x;, y;)’ having a spectral matrix of the form

_ [ fax(@) fry(w)
= (o) i) @117

Here, fyy(w) is the cross-spectrum relating the input x; to the output y;, and fy(w)
and f,y(w) are the spectra of the input and output series, respectively. Generally, we
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observe two series, regarded as input and output and search for regression functions
{B; } relating the inputs to the outputs. We assume all autocovariance functions satisfy
the absolute summability conditions of the form (4.38).

Then, minimizing the mean squared error

oo 2
MSE =E|y, - Z ﬁrxt_r) (4.118)

leads to the usual orthogonality conditions

E (y, - i ,Brx,_r) xt_s] =0 (4.119)
r=—co
forall s = 0,1, £2, . . .. Taking the expectations inside leads to the normal equations
i Br Yxx(s = 1) = yyx(s) (4.120)
r=—oo
for s = 0,+1,+2,.... These equations might be solved, with some effort, if the
covariance functions were known exactly. If data (x;, y;) for¢t = 1, ..., n are available,

we might use a finite approximation to the above equations with 9, (h) and 7y, (h)
substituted into (4.120). If the regression vectors are essentially zero for |s| > M /2,
and M < n, the system (4.120) would be of full rank and the solution would involve
inverting an (M — 1) X (M — 1) matrix.

A frequency domain approximate solution is easier in this case for two reasons.
First, the computations depend on spectra and cross-spectra that can be estimated
from sample data using the techniques of Section 4.5. In addition, no matrices will
have to be inverted, although the frequency domain ratio will have to be computed
for each frequency. In order to develop the frequency domain solution, substitute
the representation (4.96) into the normal equations, using the convention defined in
(4.117). The left side of (4.120) can then be written in the form

/% i Br e2riw(s=r) fer() dw = /% ezni“’sB(w)fxx(w) dw,

1 1
2 r=—00 2

where

B(w) = Z B, e 2miwr (4.121)

yr=—00

is the Fourier transform of the regression coefficients S;. Now, because yy.(s) is
the inverse transform of the cross-spectrum fy,(w), we might write the system of
equations in the frequency domain, using the uniqueness of the Fourier transform, as

B(w) fix(w) = fyx(w)’ (4.122)

which then become the analogs of the usual normal equations. Then, we may take
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Fig. 4.18. Estimated impulse response functions relating SOI to Recruitment (top) and Re-
cruitment to SOI (bottom) L = 15, M = 32.

_ fyx (wk)
f;Cx (wk)

as the estimator for the Fourier transform of the regression coeflicients, evaluated at
some subset of fundamental frequencies wy = k/M with M << n. Generally, we as-
sume smoothness of B(-) over intervals of the form {wy +¢€/n; € = -m,...,0,...,m},
with L = 2m + 1. The inverse transform of the function B(w) would give B, and we
note that the discrete time approximation can be taken as

B(wy) (4.123)

M-1
Br=M" > Blawg)ermien! (4.124)
k=0

fort = 0,+1,+2, ..., +(M/2—-1).If we were to use (4.124) to define 3, for |¢| > M /2,
we would end up with a sequence of coefficients that is periodic with a period of M.
In practice we define 3; = O for || > M2 instead. Problem 4.32 explores the error
resulting from this approximation.

Example 4.24 Lagged Regression for SOI and Recruitment

The high coherence between the SOI and Recruitment series noted in Example 4.21
suggests a lagged regression relation between the two series. A natural direction
for the implication in this situation is implied because we feel that the sea surface
temperature or SOI should be the input and the Recruitment series should be the
output. With this in mind, let x; be the SOI series and y, the Recruitment series.

Although we think naturally of the SOI as the input and the Recruitment as the
output, two input-output configurations are of interest. With SOI as the input, the
model is

[e9)

e = Z arXg—r + Wt

¥y =—00
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whereas a model that reverses the two roles would be

(]
Xt = Z bryt—r + Vg

r=—00

where w; and v, are white noise processes. Even though there is no plausible
environmental explanation for the second of these two models, displaying both
possibilities helps to settle on a parsimonious transfer function model.

Based on the script LagReg in astsa, the estimated regression or impulse re-
sponse function for SOI, with M =32 and L = 15 is

LagReg(soi, rec, L=15, M=32, threshold=6)
lag s beta(s)

[1,] 5 -18.479306
[2,] 6 -12.263296
[3,] 7 -8.539368
[4,] 8 -6.984553

The prediction equation is

rec(t) = alpha + sum_s[ beta(s)*soi(t-s) ], where alpha = 65.97

MSE = 414.08

Note the negative peak at a lag of five points in the top of Figure 4.18; in this
case, SOI is the input series. The fall-off after lag five seems to be approximately
exponential and a possible model is

yVr = 66 — 18.5xt_5 - 12.3xt_6 - 8.5xt_7 - 7xt_8 + wy.

If we examine the inverse relation, namely, a regression model with the Recruitment
series y; as the input, the bottom of Figure 4.18 implies a much simpler model,
LagReg(rec, soi, L=15, M=32, inverse=TRUE, threshold=.01)

lag s beta(s)
[1,] 4 0.01593167
[2,] 5 -0.02120013

The prediction equation is
soi(t) = alpha + sum_s[ beta(s)*rec(t+s) ], where alpha = 0.41
MSE = 0.07

depending on only two coefficients, namely,
x; = .41+ .016y;44 — .02y 45 + ;.
Multiplying both sides by 50B> and rearranging, we have
(1 - .8B)y, =20.5-50Bx; + € .

Finally, we check whether the noise, ¢, is white. In addition, at this point, it sim-
plifies matters if we rerun the regression with autocorrelated errors and reestimate
the coeflicients. The model is referred to as an ARMAX model (the X stands for
exogenous; see Section 5.6 and Section 6.6.1):

fish = ts.intersect(R=rec, RL1=lag(rec,-1), SL5=lag(soi,-5))
(u = Im(fish[,1]~fish[,2:3], na.action=NULL))

acf2(resid(u)) # suggests arl

sarima(fish[,1], 1, ®, O, xreg=fish[,2:3]) # armax model
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Coefficients:
arl intercept RL1 SL5
0.4487 12.3323 0.8005 -21.0307
s.e. 0.0503 1.5746 0.0234 1.0915

sigma’2 estimated as 49.93

Our final parsimonious fitted model is (with rounding)
Ve = 12 + -8)’t—l - 21xt_5 + €, and € = '456t—1 + Wye,

where w; is white noise with o2, = 50. This example is also examined in Chapter 5
and the fitted values for the final model can be viewed Figure 5.12.

The example shows we can get a clean estimator for the transfer functions relating
the two series if the coherence ﬁ)%y (w) is large. The reason is that we can write the
minimized mean squared error (4.118) as

MSE = E[(yt - Z ﬁrxt—r)yt] = 7yy(0) - Z ﬁryxy(_r)’

r=—00 r=—00

using the result about the orthogonality of the data and error term in the Projection
theorem. Then, substituting the spectral representations of the autocovariance and
cross-covariance functions and identifying the Fourier transform (4.121) in the result
leads to

MSE = / Lo (@) — B(@) foy(@)] dev

Wl =

= [ Ayl - pl(w)]dw, (4.125)

_1
2

where ng (w) is just the squared coherence given by (4.94). The similarity of (4.125)
to the usual mean square error that results from predicting y from x is obvious. In
that case, we would have

E(y - Bx)* = o}(1 - p%y)

for jointly distributed random variables x and y with zero means, variances o> and
0'y2, and covariance 0y = pxy0x0y. Because the mean squared error in (4.125)
satisfies MSE > 0 with f,,(w) a non-negative function, it follows that the coherence
satisfies
2
0<pyy(w)<l

for all w. Furthermore, Problem 4.33 shows the squared coherence is one when
the output are linearly related by the filter relation (4.116), and there is no noise,
i.e.,, v = 0. Hence, the multiple coherence gives a measure of the association or
correlation between the input and output series as a function of frequency.

The matter of verifying that the F-distribution claimed for (4.104) will hold when
the sample coherence values are substituted for theoretical values still remains. Again,
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the form of the F-statistic is exactly analogous to the usual z-test for no correlation in
a regression context. We give an argument leading to this conclusion later using the
results in Section C.3. Another question that has not been resolved in this section is
the extension to the case of multiple inputs x;1, X;2, . . ., X;4. Often, more than just a
single input series is present that can possibly form a lagged predictor of the output
series y;. An example is the cardiovascular mortality series that depended on possibly
a number of pollution series and temperature. We discuss this particular extension as
a part of the multivariate time series techniques considered in Chapter 7.

4.9 Signal Extraction and Optimum Filtering

A model closely related to regression can be developed by assuming again that

Y= ) B +v, (4.126)

r=—00

but where the s are known and x; is some unknown random signal that is uncorrelated
with the noise process v;. In this case, we observe only y; and are interested in an
estimator for the signal x; of the form

% = Z a4 Yooy (4.127)

r=—00

In the frequency domain, it is convenient to make the additional assumptions that the
series x; and v; are both mean-zero stationary series with spectra fy,(w) and f,,,,(w),
often referred to as the signal spectrum and noise spectrum, respectively. Often, the
special case 8; = d;, in which ¢, is the Kronecker delta, is of interest because (4.126)
reduces to the simple signal plus noise model

)’t = Xt + Vi (4.128)

in that case. In general, we seek the set of filter coeflicients a, that minimize the mean
squared error of estimation, say,

o 2
MSE =E (x, - Z aryt_r) . (4.129)

r=—00

This problem was originally solved by Kolmogorov (1941) and by Wiener (1949),
who derived the result in 1941 and published it in classified reports during World
War II.

We can apply the orthogonality principle to write

(xt - i aryt—r) yt—s] =0

r=—0o0

E
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fors =0,x1, £2, ..., which leads to

(9]

D aryyy(s = 1) =7 (5),

r=—00

to be solved for the filter coefficients. Substituting the spectral representations for the
autocovariance functions into the above and identifying the spectral densities through
the uniqueness of the Fourier transform produces

A(w) fyy(@) = fay(w), (4.130)

where A(w) and the optimal filter @, are Fourier transform pairs for B(w) and ;.
Now, a special consequence of the model is that (see Problem 4.30)

fxy(w) = B*(w)fxx(w) (4.131)

and
fyy(@) = |B)* fex(@) + frv(w), (4.132)

implying the optimal filter would be Fourier transform of
B (w)

Alw) = ,
2 fvv(a))
('B(‘”)| +fx_x<w>)

(4.133)

where the second term in the denominator is just the inverse of the signal to noise
ratio, say,
fxx(w)
fVV(w) .
The result shows the optimum filters can be computed for this model if the signal
and noise spectra are both known or if we can assume knowledge of the signal-to-
noise ratio SNR(w) as function of frequency. In Chapter 7, we show some methods
for estimating these two parameters in conjunction with random effects analysis of
variance models, but we assume here that it is possible to specify the signal-to-noise
ratio a priori. If the signal-to-noise ratio is known, the optimal filter can be computed
by the inverse transform of the function A(w). It is more likely that the inverse
transform will be intractable and a finite filter approximation like that used in the
previous section can be applied to the data. In this case, we will have

SNR(w) = (4.134)

M-1
aM = p! Z A(wy )eXrient (4.135)
k=0

as the estimated filter function. It will often be the case that the form of the specified
frequency response will have some rather sharp transitions between regions where
the signal-to-noise ratio is high and regions where there is little signal. In these cases,
the shape of the frequency response function will have ripples that can introduce
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Fig. 4.19. Filter coefficients (top) and frequency response functions (bottom) for designed SOI
filters.

frequencies at different amplitudes. An aesthetic solution to this problem is to intro-
duce tapering as was done with spectral estimation in (4.69)—(4.76). We use below
the tapered filter a; = h;a; where h; is the cosine taper given in (4.76). The squared
frequency response of the resulting filter will be |A(w)|?, where

oo

Alw) = Z a hye” et

t=—00

(4.136)

The results are illustrated in the following example that extracts the El Nifio compo-
nent of the sea surface temperature series.

Example 4.25 Estimating the El Nifio Signal via Optimal Filters
Figure 4.7 shows the spectrum of the SOI series, and we note that essentially two
components have power, the El Nifio frequency of about .02 cycles per month (the
four-year cycle) and a yearly frequency of about .08 cycles per month (the annual
cycle). We assume, for this example, that we wish to preserve the lower frequency
as signal and to eliminate the higher order frequencies, and in particular, the annual
cycle. In this case, we assume the simple signal plus noise model

Ve = Xt + Vg,

so that there is no convolving function B;. Furthermore, the signal-to-noise ratio is
assumed to be high to about .06 cycles per month and zero thereafter. The optimal
frequency response was assumed to be unity to .05 cycles per point and then to decay
linearly to zero in several steps. Figure 4.19 shows the coefficients as specified by
(4.135) with M = 64, as well as the frequency response function given by (4.136),
of the cosine tapered coefficients; recall Figure 4.11, where we demonstrated the



226 4 Spectral Analysis and Filtering

Original series

o _
[
Q0
IS
w
o
T T T T T T
0 100 200 300 400
Time
< Filtered series
3
%o |
oo
@
s ]
<
S
T T T T T
0 100 200 300 400
Time

Fig. 4.20. Original SOI series (top) compared to filtered version showing the estimated El Nifio
temperature signal (bottom).

need for tapering to avoid severe ripples in the window. The constructed response
function is compared to the ideal window in Figure 4.19.

Figure 4.20 shows the original and filtered SOI index, and we see a smooth
extracted signal that conveys the essence of the underlying El Nifio signal. The
frequency response of the designed filter can be compared with that of the symmetric
12-month moving average applied to the same series in Example 4.22. The filtered
series, shown in Figure 4.16, shows a good deal of higher frequency chatter riding
on the smoothed version, which has been introduced by the higher frequencies that
leak through in the squared frequency response, as in Figure 4.17.

The analysis can be replicated using the script SigExtract.

SigExtract(soi, L=9, M=64, max.freq=.05)

The design of finite filters with a specified frequency response requires some
experimentation with various target frequency response functions and we have only
touched on the methodology here. The filter designed here, sometimes called a
low-pass filter reduces the high frequencies and keeps or passes the low frequencies.
Alternately, we could design a high-pass filter to keep high frequencies if that is where
the signal is located. An example of a simple high-pass filter is the first difference
with a frequency response that is shown in Figure 4.17. We can also design band-pass
filters that keep frequencies in specified bands. For example, seasonal adjustment
filters are often used in economics to reject seasonal frequencies while keeping both
high frequencies, lower frequencies, and trend (see, for example, Grether and Nerlove,
1970).

The filters we have discussed here are all symmetric two-sided filters, because
the designed frequency response functions were purely real. Alternatively, we may
design recursive filters to produce a desired response. An example of a recursive filter
is one that replaces the input x; by the filtered output
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p q

Ye = Z Pk Y-k + Xt — Z Ok Xtk - (4.137)

k=1 k=1

Note the similarity between (4.137) and the ARMA(p, g) model, in which the white
noise component is replaced by the input. Transposing the terms involving y; and
using the basic linear filter result in Property 4.3 leads to

_ |9(e—27riw)|2
fw) = fo(w), (4.138)
where
BT = 1= ) gre e
k=1
and

q
e(e—Zniw) -1- Z gke—Znika)'
k=1

Recursive filters such as those given by (4.138) distort the phases of arriving frequen-
cies, and we do not consider the problem of designing such filters in any detail.

4.10 Spectral Analysis of Multidimensional Series

Multidimensional series of the form x;, where s = (s1, 52, ..., s,-)" is an r-dimensional
vector of spatial coordinates or a combination of space and time coordinates, were
introduced in Section 1.6. The example given there, shown in Figure 1.18, was a
collection of temperature measurements taking on a rectangular field. These data
would form a two-dimensional process, indexed by row and column in space. In that
section, the multidimensional autocovariance function of an r-dimensional stationary
series was given as yy(h) = E[xs+nxs], where the multidimensional lag vector is
h=C(hy,hy,...,h).

The multidimensional wavenumber spectrum is given as the Fourier transform of
the autocovariance, namely,

felw)= D> ylyemeh, (4.139)
h

Again, the inverse result

1 1

= [ [ R (4.140)
2 2

holds, where the integral is over the multidimensional range of the vector w. The

wavenumber argument is exactly analogous to the frequency argument, and we have

the corresponding intuitive interpretation as the cycling rate w; per distance traveled

s; in the i-th direction.
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Two-dimensional processes occur often in practical applications, and the repre-
sentations above reduce to

frlwr, wr) = Z Z Yy (hy, hy)e i@ teh) (4.141)

hl =—00 h2:—c>o
and

% % 2ri(wih h
y(h1, hy) = / felwi, wp)eXri@ihired) g, gy (4.142)

1 1
2 2

in the case r = 2. The notion of linear filtering generalizes easily to the two-
dimensional case by defining the impulse response function ag, 5, and the spatial

filter output as
Ysi,50 = Z Z Aypuy Xsi—uy, so—uo - (4.143)
U, U

The spectrum of the output of this filter can be derived as

f(w1, w2) = |A(w1, w2)|? fe(wi, wa), (4.144)
where ,
A((,L)l, (1)2) = Z Z aul,uze_Zﬂl(wlul+w2u2). (4145)
up up

These results are analogous to those in the one-dimensional case, described by Prop-
erty 4.3.

The multidimensional DFT is also a straightforward generalization of the uni-
variate expression. In the two-dimensional case with data on a rectangular grid,
{Xs1.5,5 s1=1,..,n1, s2=1,...,nm}, we will write, for —-1/2 < w, w2 < 1/2,

ny ny
d(wi, ) = (mm) ™7 )" g, e e (4.146)
S1=1 s2:1

as the two-dimensional DFT, where the frequencies w1, w, are evaluated at multiples
of (1/ny,1/ny) on the spatial frequency scale. The two-dimensional wavenumber
spectrum can be estimated by the smoothed sample wavenumber spectrum

folwr, wp) = (L1 Ly)™! Z |d(wy + €1 /n1, wy + o /my)|?, (4.147)
1,6

where the sum is taken over the grid {-m; < {; < m;; j = 1,2}, where L| = 2m; + 1
and L, = 2my, + 1. The statistic

2L\ L, fr(wi, ws) g
fr(wi, w2) 2LiLe

can be used to set confidence intervals or make approximate tests against a fixed
assumed spectrum fy(w1, wy).

(4.148)
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Fig. 4.21. Two-dimensional periodogram of soil temperature profile showing peak at .0625
cycles/row. The period is 16 rows, and this corresponds to 16 X 17 ft = 272 ft.

Example 4.26 Soil Surface Temperatures

As an example, consider the periodogram of the two-dimensional temperature series
shown in Figure 1.18 and analyzed by Bazza et al. (1988). We recall the spatial
coordinates in this case will be (s, s2), which define the spatial coordinates rows
and columns so that the frequencies in the two directions will be expressed as
cycles per row and cycles per column. Figure 4.21 shows the periodogram of the
two-dimensional temperature series, and we note the ridge of strong spectral peaks
running over rows at a column frequency of zero. An obvious periodic component
appears at frequencies of .0625 and —.0625 cycles per row, which corresponds to
16 rows or about 272 ft. On further investigation of previous irrigation patterns over
this field, treatment levels of salt varied periodically over columns. This analysis
is extended in Problem 4.24, where we recover the salt treatment profile over rows
and compare it to a signal, computed by averaging over columns.

Figure 4.21 may be reproduced in R as follows. In the code for this example,

the periodogram is computed in one step as per; the rest of the code is simply

manipulation to obtain a nice graphic.

per = Mod(fft(soiltemp-mean(soiltemp))/sqrt(64%36))A2

per2 = cbind(per[1:32,18:2], per[1:32,1:18])

per3 = rbind(per2[32:2,],per2)

par(mar=c(1,2.5,0,0)+.1)

persp(-31:31/64, -17:17/36, per3, phi=30, theta=30, expand=.6,
ticktype="detailed", xlab="cycles/row", ylab="cycles/column",
zlab="Periodogram Ordinate")
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Another application of two-dimensional spectral analysis of agricultural field
trials is given in McBratney and Webster (1981), who used it to detect ridge and
furrow patterns in yields. The requirement for regular, equally spaced samples on
fairly large grids has tended to limit enthusiasm for strict two-dimensional spectral
analysis. An exception is when a propagating signal from a given velocity and azimuth
is present so predicting the wavenumber spectrum as a function of velocity and
azimuth becomes feasible (see Shumway et al., 1999).

Problems

Section 4.1

4.1 Verify that for any positive integer n and j, k = 0, 1, . . ., [[n/2]], where [[-]| denotes
the greatest integer function:

(a) Except for j = 0 or j = n/2,*12

n

Z cos®(2ntj/n) = Z sin?(2tj /n) = n/2.

t=1 t=1
(b) When j =0orj =n/2,

n n

Z cos’(2ntj/n) = n but Z sin?(27tj/n) = 0.

t=1 =1
(c) For j # k,

n n

Z cos(2tj /n) cos(2mtk n) = Z sin(27tj /n) sin(2xtk /n) = 0.

t=1 t=1
Also, for any j and &,

n

Z cos(2xtj/n) sin(2atk /n) = 0.

t=1

412 Hing: We'll do part of the problem.
ZCOSZ(Zﬂtj/n) — % Z(eZHitj/n + e—27ritj/n)(627ritj/n + e—271izj/n)
t=1

(eiti/n 41 41 4 etriti/m) = g

~

n

n n

~
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4.2 Repeat the simulations and analyses in Example 4.1 and Example 4.2 with the
following changes:

(a) Change the sample size to n = 128 and generate and plot the same series as in
Example 4.1:

x:1 = 2cos(2m .06¢) + 3sin(27 .06 1),
Xip = 4cos(2m .10¢) + 5sin(2x .1071),
X3 = 6¢cos(2m .40¢) + 7sin(2x .4071),

Xy = Xg1 + X2 + Xg3.

What is the major difference between these series and the series generated in
Example 4.1? (Hint: The answer is fundamental. But if your answer is the series
are longer, you may be punished severely.)

(b) As in Example 4.2, compute and plot the periodogram of the series, x;, generated
in (a) and comment.

(c) Repeat the analyses of (a) and (b) but with n = 100 (as in Example 4.1), and
adding noise to x;; that is

Xy = Xp1 + X2 + X3 + Wy

where w; ~ iid N(0, 25). That is, you should simulate and plot the data, and then
plot the periodogram of x; and comment.

4.3 With reference to equations (4.1) and (4.2), let Z; = U; and Z, = -U, be
independent, standard normal variables. Consider the polar coordinates of the point
(Z1, Zy), that is,

A*=7+7; and ¢ =tan"'(Z2/Z)).

(a) Find the joint density of A? and ¢, and from the result, conclude that A? and ¢ are
independent random variables, where A? is a chi-squared random variable with 2
df, and ¢ is uniformly distributed on (-, 7).

(b) Going in reverse from polar coordinates to rectangular coordinates, suppose we
assume that A> and ¢ are independent random variables, where A? is chi-squared
with 2 df, and ¢ is uniformly distributed on (-, 7). With Z; = Acos(¢) and
7, = Asin(¢), where A is the positive square root of A%, show that Z; and Z, are
independent, standard normal random variables.

4.4 Verity (4.5).

Section 4.2

4.5 A time series was generated by first drawing the white noise series w; from a
normal distribution with mean zero and variance one. The observed series x; was
generated from

X;=w; — 0w, t=0%1,£2,...,

where 6 is a parameter.
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(a) Derive the theoretical mean value and autocovariance functions for the series x;
and w;. Are the series x; and w, stationary? Give your reasons.
(b) Give a formula for the power spectrum of x;, expressed in terms of 6 and w.

4.6 A first-order autoregressive model is generated from the white noise series wy
using the generating equations

Xt = Qxr—1 + Wy,

where ¢, for |¢| < 1, is a parameter and the w, are independent random variables
with mean zero and variance o2,.

(a) Show that the power spectrum of x; is given by

2
Oy

1+ ¢? —2¢cos(2rw)’

fx(w) =

(b) Verify the autocovariance function of this process is

2 Lk
oy P
«(h) = ——-,
x(h) = —— 7
h=0,+1,+2,..., by showing that the inverse transform of vy, (%) is the spectrum

derived in part (a).

4.7 In applications, we will often observe series containing a signal that has been
delayed by some unknown time D, i.e.,

Xy =8; + As;_p + ny,

where s; and n; are stationary and independent with zero means and spectral densities
fs(w) and f;(w), respectively. The delayed signal is multiplied by some unknown
constant A. Show that

fe(lw)=[1+ AZ+2A cos(2rwD)] fs(w) + fu(w).

4.8 Suppose x; and y, are stationary zero-mean time series with x; independent of y;
for all s and ¢. Consider the product series

It = XtYr-

Prove the spectral density for z; can be written as

£ = [ flw-f) dr.

NI
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Fig. 4.22. Smoothed 12-month sunspot numbers (sunspotz) sampled twice per year.

Section 4.3

4.9 Figure 4.22 shows the biyearly smoothed (12-month moving average) number of
sunspots from June 1749 to December 1978 with n = 459 points that were taken
twice per year; the data are contained in sunspotz. With Example 4.13 as a guide,
perform a periodogram analysis identifying the predominant periods and obtaining
confidence intervals for the identified periods. Interpret your findings.

4.10 The levels of salt concentration known to have occurred over rows, corresponding
to the average temperature levels for the soil science data considered in Figure 1.18
and Figure 1.19, are in salt and saltemp. Plot the series and then identify the
dominant frequencies by performing separate spectral analyses on the two series.
Include confidence intervals for the dominant frequencies and interpret your findings.

4.11 Let the observed series x; be composed of a periodic signal and noise so it can
be written as
x; = B1 cosRrwgt) + B sin(Qrwyt) + wy,

where w; is a white noise process with variance o2 The frequency wy is assumed
to be known and of the form k/n in this problem. Suppose we consider estimating
B1, B2 and o2, by least squares, or equivalently, by maximum likelihood if the w, are
assumed to be Gaussian.

(a) Prove, for a fixed wy, the minimum squared error is attained by

31) _12 (dc(wk))

A | =2n ,

(,82 ds(wy)

where the cosine and sine transforms (4.31) and (4.32) appear on the right-hand

side.
(b) Prove that the error sum of squares can be written as

SSE = Z x2 = 2L (w)
t=1
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so that the value of wy that minimizes squared error is the same as the value that
maximizes the periodogram /I, (wy) estimator (4.28).

(c) Under the Gaussian assumption and fixed wg, show that the F'-test of no regression
leads to an F'-statistic that is a monotone function of 7, (wy).

4.12 Prove the convolution property of the DFT, namely,

n
§ As Xt
s=1

fort =1,2,...,n, where da(wy) and d,(wy) are the discrete Fourier transforms of a,
and x;, respectively, and we assume that x; = x;,, is periodic.

-1

S

_s = ) da(wr)dy(wi) exp{2rwit},
=0

Section 4.4

4.13 Analyze the chicken price data (chicken) using a nonparametric spectral esti-
mation procedure. Aside from the obvious annual cycle discovered in Example 2.5,
what other interesting cycles are revealed?

4.14 Repeat Problem 4.9 using a nonparametric spectral estimation procedure. In
addition to discussing your findings in detail, comment on your choice of a spectral
estimate with regard to smoothing and tapering.

4.15 Repeat Problem 4.10 using a nonparametric spectral estimation procedure. In
addition to discussing your findings in detail, comment on your choice of a spectral
estimate with regard to smoothing and tapering.

4.16 Cepstral Analysis. The periodic behavior of a time series induced by
echoes can also be observed in the spectrum of the series; this fact can be
seen from the results stated in Problem 4.7. Using the notation of that prob-
lem, suppose we observe x; = s; + As,_p + n;, which implies the spectra sat-
isfy fo(w) = [1 + A> + 2AcosQnwD)]fs(w) + f.(w). If the noise is negligible
(fu(w) = 0) then log fy(w) is approximately the sum of a periodic component,
log[1 + A% + 2A cos(2nwD)], and log f;(w). Bogart et al. (1962) proposed treating
the detrended log spectrum as a pseudo time series and calculating its spectrum,
or cepstrum, which should show a peak at a quefrency corresponding to 1/D. The
cepstrum can be plotted as a function of quefrency, from which the delaty D can be
estimated.

For the speech series presented in Example 1.3, estimate the pitch period using
cepstral analysis as follows. The data are in speech.

(a) Calculate and display the log-periodogram of the data. Is the periodogram peri-
odic, as predicted?

(b) Perform a cepstral (spectral) analysis on the detrended logged periodogram, and
use the results to estimate the delay D. How does your answer compare with the
analysis of Example 1.27, which was based on the ACF?
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4.17 Use Property 4.2 to verify (4.71). Then verify (4.74) and (4.75).

4.18 Consider two time series
Xt = Wy — Wr—1,

_ 1
yi = 3(wr +wip),
formed from the white noise series w; with variance o2, = 1.

(a) Are x; and y, jointly stationary? Recall the cross-covariance function must also
be a function only of the lag 4 and cannot depend on time.

(b) Compute the spectra f,(w) and fi(w), and comment on the difference between
the two results.

(c) Suppose sample spectral estimators fy(.IO) are computed for the series using
L = 3. Find a and b such that

P{a < f(10) < b} =.90.

This expression gives two points that will contain 90% of the sample spectral
values. Put 5% of the area in each tail.

Section 4.5

4.19 Often, the periodicities in the sunspot series are investigated by fitting an au-
toregressive spectrum of sufficiently high order. The main periodicity is often stated
to be in the neighborhood of 11 years. Fit an autoregressive spectral estimator to the
sunspot data using a model selection method of your choice. Compare the result with
a conventional nonparametric spectral estimator found in Problem 4.9.

4.20 Analyze the chicken price data (chicken) using a parametric spectral estimation
procedure. Compare the results to Problem 4.13.

4.21 Fit an autoregressive spectral estimator to the Recruitment series and compare
it to the results of Example 4.16.

4.22 Suppose a sample time series with n = 256 points is available from the first-
order autoregressive model. Furthermore, suppose a sample spectrum computed with
L = 3 yields the estimated value f,(1/8) = 2.25. Is this sample value consistent with
o2 =1,¢ = .57 Repeat using L = 11 if we just happen to obtain the same sample
value.

4.23 Suppose we wish to test the noise alone hypothesis Hy : x; = n; against the
signal-plus-noise hypothesis H; : x; = s; +n;, where s; and n, are uncorrelated zero-
mean stationary processes with spectra f;(w) and f,(w). Suppose that we want the test
overaband of L = 2m+1 frequencies of the form w;., +k/n,fork = 0,1, £2, ..., +m
near some fixed frequency w. Assume that both the signal and noise spectra are
approximately constant over the interval.
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(a) Prove the approximate likelihood-based test statistic for testing Hy against H; is
proportional to

_ A + & 2( | 1 )
T ;| Wjan + K\ 700 ™ T + @)

(b) Find the approximate distributions of 7 under Hy and H.

(c) Define the false alarm and signal detection probabilities as Pr = P{T > K|H}
and P; = P{T > k|H,}, respectively. Express these probabilities in terms of the
signal-to-noise ratio fy(w)/ fn(w) and appropriate chi-squared integrals.

Section 4.6

4.24 Analyze the coherency between the temperature and salt data discussed in Prob-
lem 4.10. Discuss your findings.

4.25 Consider two processes
Xy =wy and y; = @xp + vy

where w; and v, are independent white noise processes with common variance o2, ¢
is a constant, and D is a fixed integer delay.

(a) Compute the coherency between x; and y;.

(b) Simulate n = 1024 normal observations from x; and y; for ¢ = .9, o> = 1, and
D = 0. Then estimate and plot the coherency between the simulated series for the
following values of L and comment:

(i) L =1, (i) L =3, (iii) L = 41, and (iv) L = 101.

Section 4.7

4.26 For the processes in Problem 4.25:

(a) Compute the phase between x; and y;.

(b) Simulate n = 1024 observations from x; and y, for ¢ = .9, 0> = 1,and D = 1.
Then estimate and plot the phase between the simulated series for the following
values of L and comment:

(i) L =1, (i) L =3, (iii) L =41, and (iv) L = 101.

4.27 Consider the bivariate time series records containing monthly U.S. production
(prod) as measured by the Federal Reserve Board Production Index and the monthly
unemployment series (unemp).

(a) Compute the spectrum and the log spectrum for each series, and identify statis-
tically significant peaks. Explain what might be generating the peaks. Compute
the coherence, and explain what is meant when a high coherence is observed at a
particular frequency.
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(b) What would be the effect of applying the filter
uy = x; — x,—1 followed by v, =u; —us—12

to the series given above? Plot the predicted frequency responses of the simple
difference filter and of the seasonal difference of the first difference.

(c) Apply the filters successively to one of the two series and plot the output. Examine
the output after taking a first difference and comment on whether stationarity is a
reasonable assumption. Why or why not? Plot after taking the seasonal difference
of the first difference. What can be noticed about the output that is consistent with
what you have predicted from the frequency response? Verify by computing the
spectrum of the output after filtering.

4.28 Determine the theoretical power spectrum of the series formed by combining
the white noise series w; to form

Ve = Wia 4w + 6w + 4wy + Wiy,
Determine which frequencies are present by plotting the power spectrum.

4.29 Let x; = cos(2nwt), and consider the output

(o)

Yt = Z Ak Xt—k»

k=—0c0
where ;. |ax| < co. Show
yr = |A(w)| cos2rwt + ¢(w)),

where |A(w)| and ¢(w) are the amplitude and phase of the filter, respectively. Interpret
the result in terms of the relationship between the input series, x;, and the output series,

Yt-

4.30 Suppose x; is a stationary series, and we apply two filtering operations in suc-

cession, say,
Y = Zarxt—r then z; = Z bsyi—s.
S

r

(a) Show the spectrum of the output is

fo(@) = [A@)PP|B)P fe(w),

where A(w) and B(w) are the Fourier transforms of the filter sequences a; and b;,
respectively.
(b) What would be the effect of applying the filter

Uy = Xy — Xr—1 fOllOWCd by Ve = Uy — Usr_12

to a time series?
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(c) Plot the predicted frequency responses of the simple difference filter and of the
seasonal difference of the first difference. Filters like these are called seasonal
adjustment filters in economics because they tend to attenuate frequencies at
multiples of the monthly periods. The difference filter tends to attenuate low-
frequency trends.

4.31 Suppose we are given a stationary zero-mean series x; with spectrum fy(w) and
then construct the derived series

Ve =aye—1 +x;, t==1,+2, ...

(a) Show how the theoretical fy(w) is related to fy(w).
(b) Plot the function that multiplies f;(w) in part (a) for a = .1 and for a = .8. This
filter is called a recursive filter.

Section 4.8

4.32 Consider the problem of approximating the filter output

o0

o0
Vi = Z AR Xe—k Z lax| < oo,
—00

k=—0c0
by
)’;VI = Z a]ith—k
lk|<M /2
fort=M/2-1,M/2,...,n— M/2, where x, is available fort = 1,...,n and
M-1
aﬁ” =M"! A(wy) exp{2miwit}
k=0

with wr = k/M. Prove

2
B 027 < 41,0 Y ]

lk|>M /2

4.33 Prove the squared coherence pi »(w) =1 for all w when

(o)

Yr = Z Ay Xt—r

r=—o00
that is, when x; and y, can be related exactly by a linear filter.

4.34 The data set climhyd, contains 454 months of measured values for six climatic
variables: (i) air temperature [Temp], (ii) dew point [DewPt], (iii) cloud cover [C1dCvr],
(iv) wind speed [WndSpd], (v) precipitation [Precip], and (vi) inflow [Inflow], at Lake
Shasta in California; the data are displayed in Figure 7.3. We would like to look at
possible relations among the weather factors and between the weather factors and the
inflow to Lake Shasta.
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(a) First transform the inflow and precipitation series as follows: I; = logi;, where i,
is inflow, and P; = 4/p,, where p; is precipitation. Then, compute the square co-
herencies between all the weather variables and transformed inflow and argue that
the strongest determinant of the inflow series is (transformed) precipitation. [Tip:
If x contains multiple time series, then the easiest way to display all the squared
coherencies is to plot the coherencies suppressing the confidence intervals, e.g.,
mvspec(x, spans=c(7,7), taper=.5, plot.type="coh", ci=-1).

(b) Fit a lagged regression model of the form

Iy = Bo + Zﬁjpt—j + wy,

Jj=0

using thresholding, and then comment of the predictive ability of precipitation
for inflow.

Section 4.9

4.35 Consider the signal plus noise model

(]
Y = Z BrXi—r + vy,

r=—00

where the signal and noise series, x; and v; are both stationary with spectra fy(w)
and f, (w), respectively. Assuming that x, and v, are independent of each other for all
t, verify (4.131) and (4.132).

4.36 Consider the model
YVt = Xt +Vy,
where

X = QX1 + Wy,

such that v, is Gaussian white noise and independent of x;, with var(v;) = 0'3, and wy
is Gaussian white noise and independent of v;, with var(w;) = o2, and |¢| < 1 and
Exo = 0. Prove that the spectrum of the observed series y; is

5 |1 _ 96—27riw|2

fy(w) =0 |1 _ ¢e—27ria)|2’
where
g CF -4 0_2:O'VZ¢
2 ’ 0’
and

0'3V + 0'3(1 + ¢2)
ol '

4.37 Consider the same model as in the preceding problem.

Cc =
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(a) Prove the optimal smoothed estimator of the form

o0
Xt = Z AsYt—s

S=—00

has 2 s
S
oy 0

o2 1-62
(b) Show the mean square error is given by

as =

2 2
0,0y

o2(1-62)
(c) Compare mean square error of the estimator in part (b) with that of the optimal
finite estimator of the form

E{(x; - )?t)z} =

X =aryi-1 +axyi—

when o2 = .053,02 = .172, and ¢; = .9.

Section 4.10
4.38 Consider the two-dimensional linear filter given as the output (4.143).

(a) Express the two-dimensional autocovariance function of the output, say, v, (h1, h2),
in terms of an infinite sum involving the autocovariance function of x; and the
filter coeflicients a, g, .

(b) Use the expression derived in (a), combined with (4.142) and (4.145) to derive
the spectrum of the filtered output (4.144).

The following problems require supplemental material from Appendix C

4.39 Let w, be a Gaussian white noise series with variance o2,. Prove that the results
of Theorem C.4 hold without error for the DFT of w;.

4.40 Show that condition (4.48) implies (C.19) by showing

w2 hy) < o2 3 il Y T 1.

h>0 k>0 Jj>0
4.41 Prove Lemma C 4.
4.42 Finish the proof of Theorem C.5.

4.43 For the zero-mean complex random vector z = x. — ix,, with cov(z) = 2 =
C —-iQ, with 2 = X*, define
w = 2Re(a”z),

where a = a. — iay is an arbitrary non-zero complex vector. Prove
cov(w) = 2a*Xa.

Recall * denotes the complex conjugate transpose.



Chapter 5

Additional Time Domain Topics

In this chapter, we present material that may be considered special or advanced topics
in the time domain. Chapter 6 is devoted to one of the most useful and interesting
time domain topics, state-space models. Consequently, we do not cover state-space
models or related topics—of which there are many—in this chapter. This chapter
contains sections of independent topics that may be read in any order. Most of the
sections depend on a basic knowledge of ARMA models, forecasting and estimation,
which is the material that is covered in Chapter 3. A few sections, for example the
section on long memory models, require some knowledge of spectral analysis and
related topics covered in Chapter 4. In addition to long memory, we discuss unit root
testing, GARCH models, threshold models , lagged regression or transfer functions,
and selected topics in multivariate ARMAX models.

5.1 Long Memory ARMA and Fractional Differencing

The conventional ARMA(p, q) process is often referred to as a short-memory process
because the coeflicients in the representation

(o)
Xt = Z Yiwe—j,
Jj=0

obtained by solving
P2 (2) = 0(2),

are dominated by exponential decay. As pointed outin Section 3.2 and Section 3.3, this
result implies the ACF of the short memory process satisfies p(h) — 0 exponentially
fast as h — oo. When the sample ACF of a time series decays slowly, the advice given
in Chapter 3 has been to difference the series until it seems stationary. Following
this advice with the glacial varve series first presented in Example 3.33 leads to
the first difference of the logarithms of the data being represented as a first-order
moving average. In Example 3.41, further analysis of the residuals leads to fitting an
ARIMAC(1, 1, 1) model,



