
i
i

“tsa3” — 2015/8/18 — 22:47 — page 228 — #238 i
i

i
i

i
i

228 4 Spectral Analysis and Filtering

4.9 Dynamic Fourier Analysis and Wavelets

If a time series, xt, is stationary, its second-order behavior remains the same,
regardless of the time t. It makes sense to match a stationary time series with
sines and cosines because they, too, behave the same forever. Indeed, based
on the Spectral Representation Theorem (Appendix C, §C.1), we may regard
a stationary series as the superposition of sines and cosines that oscillate at
various frequencies. As seen in this text, however, many time series are not
stationary. Typically, the data are coerced into stationarity via transforma-
tions, or we restrict attention to parts of the data where stationarity appears
to adhere. In some cases, the nonstationarity of a time series is of interest.
That is to say, it is the local behavior of the process, and not the global
behavior of the process, that is of concern to the investigator. As a case in
point, we mention the explosion and earthquake series first presented in Ex-
ample 1.7 (see Figure 1.7). The following example emphasizes the importance
of dynamic (or time-frequency) Fourier analysis.

Example 4.21 Dynamic Spectral Analysis of Seismic Traces

Consider the earthquake and explosion series displayed in Figure 1.7; it
should be apparent that the dynamics of the series are changing with time.
The goal of this analysis is to summarize the spectral behavior of the signal
as it evolves over time.

First, a spectral analysis is performed on a short section of the data.
Then, the section is shifted, and a spectral analysis is performed on the
new section. This process is repeated until the end of the data, and the
results are shown an image in Figure 4.17 and Figure 4.18; in the images,
darker areas correspond to higher power. Specifically, in this example, let
xt, for t = 1, . . . , 2048, represent the series of interest. Then, the sections of
the data that were analyzed were {xt

k

+1, . . . , xt
k

+256}, for tk = 128k, and
k = 0, 1, . . . , 14; e.g., the first section analyzed is {x1, . . . , x256}, the second
section analyzed is {x129, . . . , x384}, and so on. Each section of 256 observa-
tions was tapered using a cosine bell, and spectral estimation was performed
using a repeated Daniell kernel with weights 1

9{1, 2, 3, 2, 1}; see page 204.
The sections overlap each other, however, this practice is not necessary and
sometimes not desirable.17

The results of the dynamic analysis are shown as the estimated spectra
for frequencies up to 10 Hz (the folding frequency is 20 Hz) for each starting
location (time), tk = 128k, with k = 0, 1, . . . , 14. The S component for the

17 A number of technical problems exist in this setting because the process of interest
is nonstationary and we have not specified the nature of the nonstationarity. In
addition, overlapping intervals complicate matters by introducing another layer
of dependencies among the spectra. Consequently, the spectral estimates of con-
tiguous sections are dependent in a non-trivial way that we have not specified.
Nevertheless, as seen from this example, dynamic spectral analysis can be a help-
ful tool in summarizing the local behavior of a time series.
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Fig. 4.17. Time-frequency image for the dynamic Fourier analysis of the earthquake
series shown in Figure 1.7.

earthquake shows power at the low frequencies only, and the power remains
strong for a long time. In contrast, the explosion shows power at higher
frequencies than the earthquake, and the power of the signals (P and S
waves) does not last as long as in the case of the earthquake.

The following is an R session that corresponds to the analysis of the
explosion series. The images are generated using filled.contour() on
the log of the power; this, as well as using a gray scale and limiting the
number of levels was done to produce a decent black-and-white graphic. The
images look better in color, so we advise removing the nlevels=... and the
col=gray(...) parts of the code. We also include the code for obtaining a
three-dimensional graphic to display the information, however, the graphic
is not exhibited in the text.
nobs = length(EXP6) # number of observations
wsize = 256 # window size
overlap = 128 # overlap
ovr = wsize-overlap
nseg = floor(nobs/ovr)-1; # number of segments
krnl = kernel("daniell", c(1,1)) # kernel
ex.spec = matrix(0, wsize/2, nseg)
for (k in 1:nseg) {
a = ovr*(k-1)+1
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Fig. 4.18. Time-frequency image for the dynamic Fourier analysis of the explosion
series shown in Figure 1.7.

b = wsize+ovr*(k-1)
ex.spec[,k] = spectrum(EXP6[a:b], krnl, taper=.5, plot=F)$spec }

x = seq(0, 10, len = nrow(ex.spec)/2)
y = seq(0, ovr*nseg, len = ncol(ex.spec))
z = ex.spec[1:(nrow(ex.spec)/2),]
filled.contour(x, y, log(z), ylab="time", xlab="frequency (Hz)",

main="Explosion")
persp(x, y, z, zlab="Power", xlab="frequency (Hz)", ylab="time",

ticktype="detailed", theta=25,d=2, main="Explosion") # not shown

One way to view the time-frequency analysis of Example 4.21 is to consider
it as being based on local transforms of the data xt of the form

dj,k = n�1/2
n
X

t=1

xt j,k(t), (4.112)

where

 j,k(t) =

(

(n/m)1/2ht e�2⇡itj/m t 2 [tk + 1, tk +m],

0 otherwise,
(4.113)

where ht is a taper and m is some fraction of n. In Example 4.21, n = 2048,
m = 256, tk = 128k, for k = 0, 1, . . . , 14, and ht was a cosine bell taper
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Fig. 4.19. Local, tapered cosines at various frequencies.

over 256 points. In (4.112) and (4.113), j indexes frequency, !j = j/m, for
j = 1, 2, . . . , [m/2], and k indexes the location, or time shift, of the transform.
In this case, the transforms are based on tapered cosines and sines that have
been zeroed out over various regions in time. The key point here is that the
transforms are based on local sinusoids. Figure 4.19 shows an example of four
local, tapered cosine functions at various frequencies. In that figure, the length
of the data is considered to be one, and the cosines are localized to a fourth
of the data length.

In addition to dynamic Fourier analysis as a method to overcome the
restriction of stationarity, researchers have sought various alternative meth-
ods. A recent, and successful, alternative is wavelet analysis. The website
http://www.wavelet.org is devoted to wavelets, which includes information
about books, technical papers, software, and links to other sites. In addi-
tion, we mention the monograph on wavelets by Daubechies (1992), the text
by Percival and Walden (2000), and we note that many statistical software
manufacturers have wavelet modules that sit on top of their base package.
In this section, we rely primarily on the S-PLUS wavelets module (with a
manual written by Bruce and Gao, 1996), however, we will present some R
code where possible. The basic idea of wavelet analysis is to imitate dynamic
Fourier analysis, but with functions (wavelets) that may be better suited to
capture the local behavior of nonstationary time series.
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Wavelets come in families generated by a father wavelet, �, and a mother
wavelet,  . The father wavelets are used to capture the smooth, low-frequency
nature of the data, whereas the mother wavelets are used to capture the
detailed, and high-frequency nature of the data. The father wavelet integrates
to one, and the mother wavelet integrates to zero

Z

�(t)dt = 1 and

Z

 (t)dt = 0. (4.114)

For a simple example, consider the Haar function,

 (t) =

8

<

:

1, 0  t < 1/2,
�1, 1/2  t < 1,
0, otherwise.

(4.115)

The father in this case is �(t) = 1 for t 2 [0, 1) and zero otherwise. The
Haar functions are useful for demonstrating properties of wavelets, but they
do not have good time-frequency localization properties. Figure 4.20 displays
two of the more commonly used wavelets that are available with the S-PLUS
wavelets module, the daublet4 and symmlet8 wavelets, which are described in
detail in Daubechies (1992). The number after the name refers to the width
and smoothness of the wavelet; for example, the symmlet10 wavelet is wider
and smoother than the symmlet8 wavelet. Daublets are one of the first type
of continuous orthogonal wavelets with compact support, and symmlets were
constructed to be closer to symmetry than daublets. In general, wavelets do
not have an analytical form, but instead they are generated using numerical
methods.

Figure 4.20 was generated in S-PLUS using the wavelet module as fol-
lows:18

d4f <- wavelet("d4", mother=F)
d4m <- wavelet("d4")
s8f <- wavelet("s8", mother=F)
s8m <- wavelet("s8")
par(mfrow=c(2,2))
plot(d4f); plot(d4m)
plot(s8f); plot(s8m)

It is possible to draw some wavelets in R using the wavethresh pack-
age. In that package, daublets are called DaubExPhase and symmlets are
called DaubLeAsymm. The following R session displays some of the available
wavelets (this will produce a figure similar to Figure 4.20) and it assumes
the wavethresh package has been downloaded and installed (see Appendix
R, §R.2, for details on installing packages). The filter.number determines
the width and smoothness of the wavelet.
18 At this time, the R packages available for wavelet analysis are not extensive

enough for our purposes, hence we will rely on S-PLUS for some of the demon-
strations. We will provide R code when possible, and that will be based on the
wavethresh package (version 4.2-1) that accompanies Nason (2008).
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Fig. 4.20. Father and mother daublet4 wavelets (top row); father and mother
symmlet8 wavelets (bottom row).

library(wavethresh)
par(mfrow=c(2,2))
draw(filter.number=4, family="DaubExPhase", enhance=FALSE, main="")
draw(filter.number=8, family="DaubExPhase", enhance=FALSE, main="")
draw(filter.number=4, family="DaubLeAsymm", enhance=FALSE, main="")
draw(filter.number=8, family="DaubLeAsymm", enhance=FALSE, main="")

When we depart from periodic functions, such as sines and cosines, the
precise meaning of frequency, or cycles per unit time, is lost. When using
wavelets, we typically refer to scale rather than frequency. The orthogonal
wavelet decomposition of a time series, xt, for t = 1, . . . , n is

xt =
X

k

sJ,k�J,k(t) +
X

k

dJ,k J,k(t)

+
X

k

dJ�1,k J�1,k(t) + · · ·+
X

k

d1,k 1,k(t),
(4.116)

where J is the number of scales, and k ranges from one to the number of coe�-
cients associated with the specified component (see Example 4.22). In (4.116),
the wavelet functions �J,k(t), J,k(t), J�1,k(t), . . . , 1,k(t) are generated from
the father wavelet, �(t), and the mother wavelet,  (t), by translation (shift)
and scaling:
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Fig. 4.21. Scaled and translated daublet4 wavelets,  1,0(t) and  2,1(t) (top row);
scaled and translated symmlet8 wavelets,  1,0(t) and  2,1(t) (bottom row).

�J,k(t) = 2�J/2�

✓

t� 2Jk

2J

◆

, (4.117)

 j,k(t) = 2�j/2 

✓

t� 2jk

2j

◆

, j = 1, . . . , J. (4.118)

The choice of dyadic shifts and scales is arbitrary but convenient. The shift or
translation parameter is 2jk, and scale parameter is 2j . The wavelet functions
are spread out and shorter for larger values of j (or scale parameter 2j) and
tall and narrow for small values of the scale. Figure 4.21 shows  1,0(t) and
 2,1(t) generated from the daublet4 (top row), and the symmlet8 (bottom
row) mother wavelets. We may think of 1/2j (or 1/scale) in wavelet analysis as
being the analogue of frequency (!j = j/n) in Fourier analysis. For example,
when j = 1, the scale parameter of 2 is akin to the Nyquist frequency of
1/2, and when j = 6, the scale parameter of 26 is akin to a low frequency
(1/26 ⇡ 0.016). In other words, larger values of the scale refer to slower,
smoother (or coarser) movements of the signal, and smaller values of the scale
refer to faster, choppier (or finer) movements of the signal. Figure 4.21 was
generated in S-PLUS using the wavelet module as follows:
d4.1 <- wavelet("d4", level=1, shift=0)
d4.2 <- wavelet("d4", level=2, shift=1)
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s8.1 <- wavelet("s8", level=1, shift=0)
s8.2 <- wavelet("s8", level=2, shift=1)
par(mfrow=c(2,2))
plot(d4.1, ylim=c(-.8,.8), xlim=c(-6,20))
plot(d4.2, ylim=c(-.8,.8), xlim=c(-6,20))
plot(s8.1, ylim=c(-.8,.8), xlim=c(-6,20))
plot(s8.2, ylim=c(-.8,.8), xlim=c(-6,20))

The discrete wavelet transform (DWT) of the data xt are the coe�cients
sJ,k and dj,k for j = J, J � 1, . . . , 1, in (4.116). To some degree of approxima-
tion, they are given by19

sJ,k = n�1/2
n
X

t=1

xt�J,k(t), (4.119)

dj,k = n�1/2
n
X

t=1

xt j,k(t) j = J, J � 1, . . . , 1. (4.120)

It is the magnitudes of the coe�cients that measure the importance of the
corresponding wavelet term in describing the behavior of xt. As in Fourier
analysis, the DWT is not computed as shown but is calculated using a fast
algorithm. The sJ,k are called the smooth coe�cients because they represent
the smooth behavior of the data. The dj,k are called the detail coe�cients
because they tend to represent the finer, more high-frequency nature, of the
data.

Example 4.22 Wavelet Analysis of Earthquake and Explosion
Figure 4.22 and Figure 4.23 show the DWTs, based on the symmlet8 wavelet
basis, for the earthquake and explosion series, respectively. Each series is of
length n = 211 = 2048, and in this example, the DWTs are calculated using
J = 6 levels. In this case, n/2 = 210 = 1024 values are in d1 = {d1,k; k =
1, . . . , 210}, n/22 = 29 = 512 values are in d2 = {d2,k; k = 1, . . . , 29}, and
so on, until finally, n/26 = 25 = 32 values are in d6 and in s6. The detail
values d1,k, . . . , d6,k are plotted at the same scale, and hence, the relative
importance of each value can be seen from the graph. The smooth values s6,k
are typically larger than the detail values and plotted on a di↵erent scale. The
top of Figure 4.22 and Figure 4.23 show the inverse DWT (IDWT) computed
from all of the coe�cients. The displayed IDWT is a reconstruction of the
data, and it reproduces the data except for round-o↵ error.

Comparing the DWTs, the earthquake is best represented by wavelets
with larger scale than the explosion. One way to measure the importance
of each level, d1, d2, . . . , d6, s6, is to evaluate the proportion of the total
power (or energy) explained by each. The total power of a time series xt, for

19 The actual DWT coe�cients are defined via a set of filters whose coe�cients are
close to what you would get by sampling the father and mother wavelets, but not
exactly so; see the discussion surrounding Figures 471 and 478 in Percival and
Walden (2000).
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Fig. 4.22. Discrete wavelet transform of the earthquake series using the symmlet8
wavelets, and J = 6 levels of scale.
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Fig. 4.23. Discrete wavelet transform of the explosion series using the symmlet8
wavelets and J = 6 levels of scale.
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Table 4.2. Fraction of Total Power

Component Earthquake Explosion

s6 0.009 0.002
d6 0.043 0.002
d5 0.377 0.007
d4 0.367 0.015
d3 0.160 0.559
d2 0.040 0.349
d1 0.003 0.066

t = 1, . . . , n, is TP =
Pn

t=1 x
2
t . The total power associated with each level of

scale is (recall n = 211),

TP s
6 =

n/26
X

k=1

s26,k and TP d
j =

n/2j
X

k=1

d2j,k, j = 1, . . . , 6.

Because we are working with an orthogonal basis, we have

TP = TP s
6 +

6
X

j=1

TP d
j ,

and the proportion of the total power explained by each level of detail would
be the ratios TP d

j /TP for j = 1, . . . , 6, and for the smooth level, it would be
TP s

6 /TP . These values are listed in Table 4.2. From that table nearly 80%
of the total power of the earthquake series is explained by the higher scale
details d4 and d5, whereas 90% of the total power is explained by the smaller
scale details d2 and d3 for the explosion.

Figure 4.24 and Figure 4.25 show the time-scale plots (or scalograms)
based on the DWT of the earthquake series and the explosion series, re-
spectively. These figures are the wavelet analog of the time-frequency plots
shown in Figure 4.17 and Figure 4.18. The power axis represents the mag-
nitude of each value djk or s6,k. The time axis matches the time axis in the
DWTs shown in Figure 4.22 and Figure 4.23, and the scale axis is plotted
as 1/scale, listed from the coarsest scale to the finest scale. On the 1/scale
axis, the coarsest scale values, represented by the smooth coe�cients s6, are
plotted over the range [0, 2�6), the coarsest detail values, d6, are plotted over
[2�6, 2�5), and so on. In these figures, we did not plot the finest scale values,
d1, so the finest scale values exhibited in Figure 4.24 and Figure 4.25 are in
d2, which are plotted over the range [2�2, 2�1).

The conclusions drawn from these plots are the same as those drawn from
Figures Figure 4.17 and Figure 4.18. That is, the S wave for the earthquake
shows power at the high scales (or low 1/scale) only, and the power remains
strong for a long time. In contrast, the explosion shows power at smaller
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Fig. 4.24. Time-scale image (scalogram) of the earthquake series.

scales (or higher 1/scale) than the earthquake, and the power of the signals
(P and S waves) do not last as long as in the case of the earthquake.

Assuming the data files EQ5 and EXP6 have been read into S-PLUS, the
analyses of this example can performed using the S-PLUS wavelets module
(which must be loaded prior to the analyses) as follows:
eq <- scale(EQ5)
ex <- scale(EXP6)
eq.dwt <- dwt(eq)
ex.dwt <- dwt(ex)
plot(eq.dwt)
plot(ex.dwt)
# energy distributions (Table 4.2)
dotchart(eq.dwt) # a graphic
summary(eq.dwt) # numerical details
dotchart(ex.dwt)
summary(ex.dwt)
# time scale plots
time.scale.plot(eq.dwt)
time.scale.plot(ex.dwt)
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Fig. 4.25. Time-scale image (scalogram) of the explosion series.

Similar analyses may be performed in R using the wavelets, wavethresh,
or waveslim packages. We exhibit the analysis for the earthquake series using
wavesthresh, assuming it has been downloaded and installed.20

library(wavethresh)
eq = scale(EQ5) # standardize the series
ex = scale(EXP6)
eq.dwt = wd(eq, filter.number=8)
ex.dwt = wd(ex, filter.number=8)
# plot the wavelet transforms
par(mfrow = c(1,2))
plot(eq.dwt, main="Earthquake")
plot(ex.dwt, main="Explosion")
# total power
TPe = rep(NA,11) # for the earthquake series
for (i in 0:10){TPe[i+1] = sum(accessD(eq.dwt, level=i)^2)}
TotEq = sum(TPe) # check with sum(eq^2)
TPx = rep(NA,11) # for the explosion series
for (i in 0:10){TPx[i+1] = sum(accessD(ex.dwt, level=i)^2)}
TotEx = sum(TPx) # check with sum(ex^2)
# make a nice table

20 In wavethresh, the transforms are denoted by the resolution rather than the scale.
If the series is of length n = 2p, then resolution p � i corresponds to level i for
i = 1, . . . , p.
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Fig. 4.26. Waveshrink estimates of the earthquake and explosion signals.

Power = round(cbind(11:1, 100*TPe/TotEq, 100*TPx/TotEx), digits=3)
colnames(Power) = c("Level", "EQ(%)", "EXP(%)")
Power

Wavelets can be used to perform nonparametric smoothing along the lines
first discussed in §2.4, but with an emphasis on localized behavior. Although a
considerable amount of literature exists on this topic, we will present the basic
ideas. For further information, we refer the reader to Donoho and Johnstone
(1994, 1995). As in §2.4, we suppose the data xt can be written in terms of a
signal plus noise model as

xt = st + ✏t. (4.121)
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The goal here is to remove the noise from the data, and obtain an estimate of
the signal, st, without having to specify a parametric form of the signal. The
technique based on wavelets is referred to as waveshrink.

The basic idea behind waveshrink is to shrink the wavelet coe�cients in
the DWT of xt toward zero in an attempt to denoise the data and then to
estimate the signal via (4.116) with the new coe�cients. One obvious way to
shrink the coe�cients toward zero is to simply zero out any coe�cient smaller
in magnitude than some predetermined value, �. Such a shrinkage rule is
discontinuous and sometimes it is preferable to use a continuous shrinkage
function. One such method, termed soft shrinkage, proceeds as follows. If the
value of a coe�cient is a, we set that coe�cient to zero if |a|  �, and to
sign(a)(|a| � �) if |a| > �. The choice of a shrinkage method is based on
the goal of the signal extraction. This process entails choosing a value for the
shrinkage threshold, �, and we may wish to use a di↵erent threshold value, say,
�j , for each level of scale j = 1, . . . , J . One particular method that works well
if we are interested in a relatively high degree of smoothness in the estimate
is to choose � = b�✏

p
2 log n for all scale levels, where b�✏ is an estimate of

the scale of the noise, �✏. Typically a robust estimate of �✏ is used, e.g., the
median of the absolute deviations of the data from the median (MAD). For
other thresholding techniques or for a better understanding of waveshrink, see
Donoho and Johnstone (1994, 1995), or the S-PLUS wavelets module manual
(Bruce and Gao, 1996, Ch 6).

Example 4.23 Waveshrink Analysis of Earthquake and Explosion

Figure 4.26 shows the results of a waveshrink analysis on the earthquake and
explosion series. In this example, soft shrinkage was used with a universal
threshold of � = b�✏

p
2 log n where b�✏ is the MAD. Figure 4.26 displays the

data xt, the estimated signal bst, as well as the residuals xt�bst. According to
this analysis, the earthquake is mostly signal and characterized by prolonged
energy, whereas the explosion is comprised of short bursts of energy.

Figure 4.26 was generated in S-PLUS using the wavelets module. For ex-
ample, the analysis of the earthquake series was performed as follows.
eq.dwt <- dwt(eq)
eq.shrink <- waveshrink(eq.dwt, shrink.rule="universal",

shrink.fun="soft")

In R, using the wavethresh package, use the following commands for the
earthquake series.
library(wavethresh)
eq = scale(EQ5)
par(mfrow=c(3,1))
eq.dwt = wd(eq, filter.number=8)
eq.smo = wr(threshold(eq.dwt, levels=5:10))
ts.plot(eq, main="Earthquake", ylab="Data")
ts.plot(eq.smo, ylab="Signal")
ts.plot(eq-eq.smo, ylab="Resid")










