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4.9 Dynamic Fourier Analysis and Wavelets

If a time series, x;, is stationary, its second-order behavior remains the same,
regardless of the time t. It makes sense to match a stationary time series with
sines and cosines because they, too, behave the same forever. Indeed,

Typically, the data are coerced into stationarity via transforma-
tions, or we restrict attention to parts of the data where stationarity appears
to adhere.

As a case in
point, we mention the explosion and earthquake series first presented in Ex-
ample 1.7 (see Figure 1.7). The following example emphasizes the importance
of dynamic (or time-frequency) Fourier analysis.

Example 4.21 Dynamic Spectral Analysis of Seismic Traces

see page 204.
necessary and

i )

sometimes not desirable.!”

The results of the dynamic analysis are shown as the estimated spectra
for frequencies up to 10 Hz (the folding frequency is 20 Hz) for each starting
location (time), ¢t = 128k, with k& = 0,1,...,14. The S component for the

17 A number of technical problems exist in this setting because the process of interest
is nonstationary and we have not specified the nature of the nonstationarity. In
addition, overlapping intervals complicate matters by introducing another layer
of dependencies among the spectra. Consequently, the spectral estimates of con-
tiguous sections are dependent in a non-trivial way that we have not specified.
Nevertheless, as seen from this example, dynamic spectral analysis can be a help-
ful tool in summarizing the local behavior of a time series.
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The following is an R session that corresponds to the analysis of the
explosion series. The images are generated using filled.contour() on

the log of the power; this;—as—well-as—using—a—grayseate—andtHmiting—the

eei—g—raf;r—H—p&Pbs—ef—t—he—eeée— We also 1nclude the code for obtalnlng a

three-dimensional graphic to display the information, however, the graphic
is not exhibited in the text.

nobs = length(EXP6) # number of observations
wsize = 266  # window size

overlap = 128 # owerlap

ovr = wsize-overlap
nseg = floor(nobs/ovr)-1; # number of segments
krnl = kernel("daniell", c(1,1)) # kernel
ex.spec = matrix(0, wsize/2, nseg)

for (k in 1:nseg) {

a = ovrkx(k-1)+1
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Fig. 4.18. Time-frequency image for the dynamic Fourier analysis of the explosion
series shown in Figure 1.7.

b = wsize+ovr*(k-1)
ex.spec[,k] = spectrum(EXP6[a:b], krnl, taper=.5, plot=F)$spec }
x = seq(0, 10, 1len = nrow(ex.spec)/2)
y = seq(0, ovr*nseg, len = ncol(ex.spec))
z = ex.spec[1: (nrow(ex.spec)/2),]
EIIEANCORECUEGEIVAIIORZ), ylab="tine", xlab="frequency (Hz)",
main="Explosion")
persp(x, y, z, zlab="Power", xlab="frequency (Hz)", ylab="time",
ticktype="detailed", theta=25,d=2, main="Explosion") # not shoun

dj =12 " mh; p(t), (4.112)
t=1

where

(n/m)/2hy e=27%/™  t € [t + 1,t +m],

) (4.113)
0 otherwise,

Vjx(t) = {

where h; is a taper and m is some fraction of n. In Example 4.21, n = 2048,
m = 256, t = 128k, for £k = 0,1,...,14, and h; was a cosine bell taper
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Fig. 4.19. Local, tapered cosines at various frequencies.

over 256 points. In (4.112) and (4.113), j indexes frequency, w; = j/m, for
J = 1.2.....[n/2. and k indexes the location, or time shift, of the transform.

n that figure, the length
of the data is considered to be one, and the cosines are localized to a fourth
of the data length.

http://www.wavelet.org is devoted to wavelets, which includes information

about books, technical papers, software, and links to other sites. In addi-
tion, we mention the monograph on wavelets by Daubechies (1992), the text
by Percival and Walden (2000), and we note that many statistical software
manufacturers have wavelet modules that sit on top of their base package.
In this section, we rely primarily on the S-PLUS wavelets module (with a
manual written by Bruce and Gao, 1996), however, we will present some R
code where possible
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/ 6()dt =1 and / W($)dt = 0, (4.114)
For a simple example, consider the Haar function,

1, 0<t<1/2
P(t)y=<¢ -1, 1/2<t <1, (4.115)
0, otherwise.

The number after the name refers to the width
and smoothness of the wavelet; for example, the symmlet10 wavelet is wider

and smoother than the symmlet8 wavelet.
and symmlets were

constructed to be closer to symmetry than daublets. In general, wavelets do
not have an analytical form, but instead they are generated using numerical
methods.

Figure 4.20 was generated in S-PLUS using the wavelet module as fol-

lows: 8

d4f <- WANWENSE("d4", mother=F)
d4m <- wavelet("d4")

s8f <- wavelet("s8", mother=F)
s8m <- wavelet("s8")

par (mfrow=c(2,2))

plot(d4f); plot(d4m)
plot(s8f); plot(s8m)

It is possible to draw some wavelets in R using the Wavethresh pack-
age. In that package, daublets are called DaubExPhase and symmlets are
called DaubLeAsymm. The following R session displays some of the available
wavelets (this will produce a figure similar to Figure 4.20) and it assumes
the wavethresh package has been downloaded and installed (see Appendix

R, §R.2, for details on installing packages). [The filter . number determines
the width and smoothness of the wavelet.

18 At this time, the R packages available for wavelet analysis are not extensive
enough for our purposes, hence we will rely on S-PLUS for some of the demon-
strations. We will provide R code when possible, and that will be based on the
wavethresh package (version 4.2-1) that accompanies Nason (2008).
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library(wavethresh)
par (mfrow=c(2,2))

draw(filter.
draw(filter.
draw(filter.
draw(filter.

number=4,
number=8,
number=4,
number=8,

family="DaubExPhase",
family="DaubExPhase",
family="DaubLeAsymm",
family="DaubLeAsymm",

-2 o 2

‘s8’ mother, psi(0,0)

enhance=FALSE,
enhance=FALSE,
enhance=FALSE,
enhance=FALSE,

main="")
main="")
main="")
main="")
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(4.117)

L (4.118)

Figure 4.21 was

generated in S-PLUS using the wavelet module as follows:
dd.1 <- wavelet("d4", level=1, shift=0)
d4.2 <- wavelet("d4", level=2, shift=1)
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8.1 <- wavelet("s8", level=1, shift=0)
8.2 <- wavelet("s8", level=2, shift=1)
par (mfrow=c(2,2))

plot(d4.1, ylim=c(-.8,.8), xlim=c(-6,20))
plot(d4.2, ylim=c(-.8,.8), xlim=c(-6,20))
plot(s8.1, ylim=c(-.8,.8), xlim=c(-6,20))
plot(s8.2, ylim=c(-.8,.8), xlim=c(-6,20))

To some degree of approxima-

(4.119)

(4.120)

[

As in Fourier
analysis, the DWT is not computed as shown but is calculated using a fast
algorithm.

19 The actual DWT coefficients are defined via a set of filters whose coefficients are
close to what you would get by sampling the father and mother wavelets, but not
exactly so; see the discussion surrounding Figures 471 and 478 in Percival and
Walden (2000).
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Fig. 4.22. Discrete wavelet transform of the carthquake series using the symmlets
wavelots, and J = 6 levels of scale.
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Table 4.2. Fraction of Total Power

Component Earthquake Explosion

s6 0.009 0.002
d6 0.043 0.002
d5 0.377 0.007
d4 0.367 0.015
d3 0.160 0.559
d2 0.040 0.349

d1 0.003 0.066
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Fig. 4.24. Time-scale image (scalogram) of the earthquake series.

Assuming the data files EQ5 and EXP6 have been read into S-PLUS, the
analyses of this example can performed using the S-PLUS wavelets module
(which must be loaded prior to the analyses) as follows:
eq <- scale(EQ5)
ex <- scale(EXP6)
eq.dwt <- dwt(eq)
ex.dwt <- dwt(ex)
plot(eq.dwt)
plot(ex.dwt)

# energy distributions (Table 4.2)
dotchart(eq.dwt) # a graphic
summary(eq.dwt) # numerical detatils
dotchart (ex.dwt)

summary (ex.dwt)

# time scale plots
time.scale.plot(eq.dwt)
time.scale.plot(ex.dwt)
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Fig. 4.25. Time-scale image (scalogram) of the explosion series.

Similar analyses may be performed in R using the wavelets, wavethresh,
or waveslim packages. We exhibit the analysis for the earthquake series using
wavesthresh, assuming it has been downloaded and installed.??

library(wavethresh)
eq = scale(EQ5) # standardize the series
ex = scale(EXP6)

eq.dwt = wd(eq, filter.number=8)

ex.dwt = wd(ex, filter.number=8)

# plot the wavelet transforms

par(mfrow = c(1,2))

plot(eq.dwt, main="Earthquake")

plot(ex.dwt, main="Explosion")

# total power

TPe = rep(NA,11) # for the earthquake series

for (i in 0:10){TPe[i+1] = sum(accessD(eq.dwt, level=i)~2)}
TotEq = sum(TPe) # check with sum(eq”2)

TPx = rep(NA,11) # for the explosion series

for (i in 0:10){TPx[i+1] = sum(accessD(ex.dwt, level=i)~2)}
TotEx = sum(TPx) # check with sum(ex”2)

# make a nice table

20 Tn wavethresh, the transforms are denoted by the resolution rather than the scale.
If the series is of length n = 2P, then resolution p — ¢ corresponds to level ¢ for
1=1,...,p.
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Fig. 4.26. Waveshrink estimates of the earthquake and explosion signals.

Power = round(cbind(11:1, 100*TPe/TotEq, 100*TPx/TotEx), digits=3)
colnames (Power) = c("Level", "EQ(W)", "EXP(%)™)
Power
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or the S-PLUS wavelets module manual

(Bruce and Gao, 1996, Ch 6).

Example 4.23 Waveshrink Analysis of Earthquake and Explosion

Figure 4.26 was generated in S-PLUS using the wavelets module. For ex-
ample, the analysis of the earthquake series was performed as follows.
eq.dwt <- dwt(eq)
eq.shrink <- waveshrink(eq.dwt, shrink.rule="universal",

shrink.fun="soft")
In R, using the wavethresh package, use the following commands for the
earthquake series.
library(wavethresh)
eq = scale(EQ5)
par (mfrow=c(3,1))
eq.dwt = wd(eq, filter.number=8)
eq.smo = wr(threshold(eq.dwt, levels=5:10))
ts.plot(eq, main="Earthquake", ylab="Data")
ts.plot(eq.smo, ylab="Signal")
ts.plot(eq-eq.smo, ylab="Resid")











