Statistics 222, Spatial Statistics.

Outline for the day:

1. Integrals for the exam.
2. Purely spatial processes, Papangelou intensity, and the Georgii-Zessin-Nguyen formula.
3. Exercises and code.
4. Discuss Van Lieshout pp 11-15, 23-26.

OH Wed 10/18 from 12-12:25pm.

1. Integrals for the exam.

For the exam, you need to know the very basics of integrals, like $\int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x$, and be able to compute the integral of $f(x) d x$, where $f(x)$ is $f(x)=c$, $\mathrm{f}(\mathrm{x})=\log (\mathrm{x})$,
$f(x)=x^{a}$ where a is any real number,
$f(x)=e^{a x}$.
What is $\int_{1}^{3} \int_{1}^{3}(4+3 / x) d x d y$?
$\left.2(4 \mathrm{x}+3 \log (\mathrm{x})]_{1}{ }^{3}\right)=2(12+3 \log (3)-4-3 \log (1))=2(8+3 \log (3))$.
2. Purely spatial processes, Papangelou intensity and the Georgii-Zessin Nguyen formula.
For point processes in R^{2}, there is no natural ordering as there is in time. One could just use the x -coordinate in place of time and define a conditional intensity, but most models for spatial processes would be very awkward to define this way.
Instead, a more natural and useful tool is the Papangelou intensity, $\lambda(\mathrm{x}, \mathrm{y})$, which is the conditional rate of points around location (x, y), given information on everywhere else. Letting
$L(\theta)=\sum \log \left(\lambda\left(\tau_{\mathrm{i}}\right)\right)-\int \lambda(\mathrm{x}, \mathrm{y}) \mathrm{dx} d \mathrm{y}$,
where $\lambda(\mathrm{x}, \mathrm{y})$ is the Papangelou intensity,
$\mathrm{L}(\theta)$ is called the pseudo-loglikelihood.
A key formula for space-time point processes is called the martingale formula: for any predictable function $f(t, x, y)$,
$E \int f(t, x, y) d N=E \int f(t, x, y) \lambda(t, x, y) d \mu$.
$=E \sum_{i} f\left(\mathrm{t}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)=\mathrm{E} \int \mathrm{f}(\mathrm{t}, \mathrm{x}, \mathrm{y}) \lambda(\mathrm{t}, \mathrm{x}, \mathrm{y}) \mathrm{dt} \mathrm{dx} d \mathrm{~d}$
For spatial point processes the corresponding formula,
$E \int f(x, y) d N=E \int f(x, y) \lambda(x, y) d x d y$
is called the Georgii-Zessin-Nguyen formula.
When $\mathrm{f}=1$, this means $\operatorname{EN}(\mathrm{B})=\mathrm{E} \int \lambda \mathrm{d} \mu$.
3. exercises.
a. Suppose N is a Poisson process with intensity $\lambda(\mathrm{t}, \mathrm{x}, \mathrm{y})=\exp (-3 \mathrm{t})$ over t in $[0,10]$, x in $[0,1], \mathrm{y}$ in $[0,5]$.
N happens to have points at $(1.5, .4,2.7)$
(2, .52, 4.1)
(4, .1, 2.9)
(5, .71, 0.5).
What is the log-likelihood of this realization?
3. exercises.
a. Suppose N is a Poisson process with intensity $\lambda(\mathrm{t}, \mathrm{x}, \mathrm{y})=\exp (-3 \mathrm{t})$ over t in $[0,10], x$ in $[0,1], y$ in $[0,5]$.
N happens to have points at $(1.5, .4,2.7)$
(2, .52, 4.1)
(4, .1, 2.9)
(5, .71, 0.5).
What is the log-likelihood of this realization?
-4.5-6-12-15 - $\iiint \exp (-3 t) d t d x d y$
$=-37.5-5 \int_{0}{ }^{10} \exp (-3 \mathrm{t}) \mathrm{dt}$, because x goes from 0 to 1 and y goes from 0 to 5 ,
$=-37.5-5 \exp (-3 \mathrm{t}) /(-3)]_{0}{ }^{10}$
$=-37.5+5 \exp (-30) / 3-5 \exp (0) / 3$
$=-37.5+5 \exp (-30) / 3-5 / 3$
~ -39.2.
exercises.

Which of the following is not typically true of the MLE of a spatial-temporal point process?
a. It is unbiased.
b. It is consistent.
c. It is asymptotically normal.
d. It is asymptotically efficient.
exercises.

Which of the following is not typically true of the MLE of a spatial-temporal point process?
a. It is unbiased.
b. It is consistent.
c. It is asymptotically normal.
d. It is asymptotically efficient.

