Statistics 222, Spatial Statistics.

Outline for the day:

- 1. Marked G and J functions.
- 2. Weighted K function.
- 3. van Lieshout p26, 37-38.
- 4. Project order.
- 5. Kernel smoothing, summary functions, model fitting, and weighted K function for spatial point processes, unmarked and marked, in R. day07.r.

1. Marked G and J functions.

 $G(r) = P_0$ (point within r), where P_0 means given a pt. at 0. It is estimated with $G^{\hat{}}(r) = 1/n \sum_i 1$ (there is j: $|\tau_i - \tau_j| \le r$). $= 1/n \sum_i 1 (\min_{i \ne j} |\tau_i - \tau_j| \le r)$

One could alternatively compute a *marked* G-function $1/n_1 \sum_i 1(\min_j |\tau_i - \tau_j| \le r)$ where the sum is over the n_1 points τ_i with mark in some range M_1 , and the minimum is over the points τ_j with mark in some range M_2 .

This is the *marked* or *cross* G-function.

One can similarly define a marked or cross J-function as J(r) = (1-G(r)) / (1-F(r)) accordingly, plugging in the corresponding G function.

Marie-Collette van Lieshout

van Lieshout, M.N.M. (2006). A J-function for marked point patterns. AISM 58, 235-259.

2. Weighted K function.

For a stationary Poisson process with rate μ , $K(r) = 1/\mu E(\# \text{ of other points within distance } r \text{ of a randomly chosen point)}.$

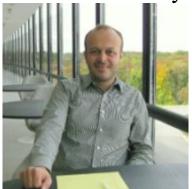
Estimated via $K_4(r) = 1/(\lambda^{\wedge} n)$ $\sum_{i \neq j} (|\tau_i - \tau_j| \leq r) w(\tau_i, \tau_j)$, where $\lambda^{\wedge} = n/|S|$, and $w(\tau_i, \tau_j) = 1$ /proportion of circle centered at i going through j that is in S = border correction term. If N is inhomogeneous, can instead weight each point by $1/\lambda$, obtaining $K_w(r) = 1/n$ $\sum_{i \neq j} (|\tau_i - \tau_j| \leq r) w(\tau_i, \tau_j) / \lambda(\tau_i) / \lambda(\tau_j)$. $K_w(r) \sim N(\pi r^2, 2\pi r^2 |S| / E(n)^2)$, if inf $\lambda = 1$.

Baddeley, A., Møller, J., Waagepetersen, R. (2000). Non and semi-parametric estimation of interaction in inhomogeneous point patterns. *Statistica Neerlandica*, 54(3), 329-350.

Veen, A. and Schoenberg, F.P. (2006). Assessing spatial point process models for California earthquakes using weighted K-functions: analysis of California earthquakes, in *Case Studies in Spatial Point Process Models*, Baddeley, A., Gregori, P., Mateu, J., Stoica, R., and Stoyan, D. (eds.), Springer, NY, pp. 293-306.

Adelfio, G. and Schoenberg, F.P. (2009). Point process diagnostics based on weighted second-order statistics and their asymptotic properties. *Annals of the Institute of Statistical Mathematics*, 61(4), 929-948.

Adrian Baddeley



Alejandro Veen

Giada Adelfio

3. $\gamma(t) = \rho(0) - \rho(t)$, for 2^{nd} order stationary processes, from van Lieshout p23. Why? 2^{nd} order stationary = weakly stationary and means $E(X_t^2) < \infty$, $E(X_0) = E(X_1) = ... = E(X_t)$ for all t, and $Cov(X_0, X_t) = Cov(X_1, X_{t+1}) = Cov(X_2, X_{t+2})$, etc., for any t. If 2^{nd} order stat., then letting t = 0, $Var(X_0) = Var(X_1) = ... = Var(X_t)$ for all t.

The semivariogram $\gamma(t) = \text{Var}(X_t - X_0)/2$. The covariogram $\rho(t) = \text{Cov}(X_0, X_t)$.

So
$$\rho(0) - \rho(t) = Cov(X_0, X_0) - Cov(X_0, X_t) = Var(X_0) - Cov(X_0, X_t)$$
.

$$\begin{split} \gamma(t) &= Var(X_t - X_0)/2 \\ &= Cov(X_t - X_0, X_t - X_0)/2 \\ &= \{Cov(X_t, X_t) + Cov(X_0, X_0) - 2Cov(X_0, X_t)\}/2 \\ &= Var(X_t)/2 + Var(X_0)/2 - Cov(X_0, X_t) \\ &= Var(X_0) - Cov(X_0, X_t) \\ &= \rho(0) - \rho(t). \end{split}$$

- 4. Presentation times?
- 5. Kernel smoothing, summary functions, model fitting, and weighted K function for spatial point processes, unmarked and marked, in R. day07.r.