
Statistics 222, Spatial Statistics. 

  Outline for the day:
1. irregular boundaries, fithawkes.r . 
2. Exponential density in the plane. 
3. Deviance residuals and Voronoi residuals. 

Modifying F,G,J,K,L functions to deal with irregular boundaries is in 
the file custom_obs_window_jkl thanks to Michael Tzen. It is on 
the course site. 



2. Exponential density in the plane. 

I originally was going to have this. 

### Fitting a Pseudo-Likelihood model. 
## I'm using the model lambda_p ( z | z_1, ..., z_k) = 
## mu + alpha x + beta y + gamma SUM_{i = 1 to k} a1 exp{-a1 D(z_i,z)} 
## where z = (x,y), and where D means distance. 
## So, if gamma is positive, then there is clustering; otherwise inhibition. 

But g(r) = a1 exp(-a1 r) is actually not a density. 
g(t) = a1 exp(-a1 t) is a density, because ∫ 0∞ a1 exp(-a1 t) dt = 1, for a1 > 0, 
but not ∫ ∫ a1 exp(-a1 r) dx dy. 

a1 exp(-a1 r) / (2π r) is a spatial density, because 
∫∫ a1 exp(-a1 r) / (2π r) dx dy = ∫ 02π ∫ 0∞ a1 exp(-a1 r) / (2π r) r dr dø
= ∫ 0∞ a1 exp(-a1 r) dr 
= 1. 

So I should fit lambda_p ( z | z_1, ..., z_k) = 
## mu + alpha x + beta y + gamma SUM_{i = 1 to k} a1/2π exp{-a1 D(z_i,z)}/D(z_i,z). 
This is in day07.r. 



-- Given two competing models, can consider the difference between residuals,      
number of observed points – number expected, over each pixel.  

 Divide by the estimated SE to get Pearson residuals (Baddeley et al. 2005). 
 Problem:  Hard to interpret. If difference = 3, is this because model A overestimated by 

3? Or because model B underestimated by 3? Or because model A overestimated 
by 1 and model B underestimated by 2? 

-- Also, the results are rarely visually appealing or useful. 

Recent methods for point process models for occurrences.
 1. Deviance residuals
 2. Voronoi residuals
 3. Superthinned residuals.  



Pearson residuals tend to look just like a map of the points, unless pixels are very 
large. 



With two competing models, it is better to consider the difference between log-
likelihoods, in each pixel. The result may be called deviance residuals 

 (Clements et al. 2011), ~ resids from gen. linear models.



Voronoi residuals (Bray et al. 2013)

  A Voronoi tessellation divides a space into cells Ci, where Ci contains all locations 
closer to event i than any other observed event.

 Within each cell, calculate residuals

                     (  (Tanemura 2003)

 

spatially adaptive and nonparametric. 







With 2 models, can compare loglikelihoods across pixels or Voronoi cells. 

 


