
Statistics 222, Spatial Statistics. 

  Outline for the day:
1. Info about the exam. 
2. Stoyan-Grabarnik statistic. 
3. fitpoisstoyan.r 
4. fitpoiscubicstoyan.r 
5. fitpoisstoyancovariates.r 
6. fithawkesstoyan.r 



1. Info about the exam. 
The exam on Nov20 will be from 12:30pm to 1:45pm Pacific Time, 

but it will be ONLINE. 
I will post the exam on the course website, 
http://www.stat.ucla.edu/~frederic/222/F23 
 at 12:30pm. 
It will have 13 questions, all multiple choice. 
Email me your answers to frederic@stat.ucla.edu by 1:45pm. Include 

your name. You do not need to write anything else aside from 
your name and your answers. You can just say, for instance 

  Rick Schoenberg 
  AFE CCB DEA HBG E. 
Make sure your answers are in the correct order! 



2. Stoyan-Grabarnik statistic. Baddeley et al., 2005. 

E ∑ 1/li = E ∫ 1/l l dµ = E ∫ dµ = |B|. 

So, ∑ 1/li - |B| should be close to zero. 



Stoyan-Grabarnik statistic (SG). 
--	Stoyan	and	Grabarnik	(1991)	introduced	the	statistic	∑1/li	÷n	
in	the	context	of	marked	Gibbs	processes.	

--	Baddeley	et	al.	(2005)	proposed	using	the	SG	statistic	∑ 1/ li		as	
a	goodness-of-fit	diagnostic	for	a	point	process	on	observation	
region	B,	since	E[∑ 1/ li	]	=	E	∫ 1/ l	dN	=	E	∫ dµ	=	|B|.	

--	Cronie	and	van	Lieshout	(2018)	use	the	SG	statistic	as	a	way	to	
choose	the	bandwidth	when	kernel	smoothing	an	inhomogeneous	
Poisson	process.	

--	Kresin	et	al.	(2022)	proposed,	for	a	general	spatial-temporal	
point	process,	estimating	the	parameters	q	by	minimizing	the	
squared	difference	between	∑ 1/ li		and	|B|	.	 4



Stoyan-Grabarnik statistic. Baddeley et al., 2005. 

E ∑ 1/li = E ∫ 1/l l dµ = E ∫ dµ = |B|. 

So, ∑ 1/li - |B| should be close to zero. 
What if we fit parameters by minimizing (∑ 1/li - |B|)2? 
More specifically, imagine dividing up B into little grid cells, and 

within each cell, calculate this difference, (∑ 1/li - |B|), 
 and find the parameters minimizing the sum of squares? 



Stoyan-Grabarnik statistic (SG). 
Estimating	the	parameters	q	by	minimizing
	 	 	 ∑j	 (∑ 1/ li		-	|Bj|)2

Advantages:		
--	No	integral	term.	
--	Extremely	easy	to	program.	
--	Very	fast	to	compute,	even	for	relatively	large	datasets.	
--	Only	the	conditional	intensities	at	the	observed	points	need	to	
be	specified.	
--	Consistent	estimates.	
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Simulated examples. 

l(x,y,t)	=	eax	+	bey	+	gxy	+	dx2	+	ey2	+	W(x,y),	
where	W(x,y)	=	Brownian	bridge.		
(a, b, g, d, e) = (-2,3,4,5,-6). 

70.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

true	intensity	 	 			simulated	points											estimated	intensity

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8



8

True l     Estimated l 
Hawkes model, 
l(t,x,y) = µ + k ∑ g(t-ti)h(x-xi,y-yi),  
g(t) = 1/a on [0, a],   h(x,y) = 1/(πr2) for r in [0, b], 
     t = 1000. 
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True l      Estimated l 
     Hawkes model, 
l(t,x,y) = µ + k ∑ g(t-ti)h(x-xi,y-yi),  
g(t) = 1/a on [0, a],   h(x,y) = 1/(πr2) for r in [0, b], 
     t = 100. 


