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Lecture MWF 9am, Math-Sci 5203.

Professor: Rick Paik Schoenberg, frederic@ucla.edu, www.stat.ucla.edu/∼frederic

DAY FOUR. Monday, 4/9/01.

1) Translations and ergodicity.

Motivation behind ergodicity: want Ȳ to converge to E(Y ), and the sample covariances
to converge to the true covariances C(h).

Sometimes given as convergence to a stationary distribution.

Let Th be a translation (or shift) operator by the vector h. So given a set A like {ω :
Z(s) > 0}, Th(A) = {ω : Z(s + h) > 0}.

And T−1
h (A) is the set {ω : Z(s− h) > 0}.

Z is stationary if P{T−1
h (A)} = P (A), for any h and any measurable set A.

If Z is stationary and also,

whenever T−1
h (A) = A, P (A) = 0 or 1,

then Z is ergodic.

[Question: Suppose Z is any stationary process in the plane R2. Think of a set A such
that T−1(A) = A.]

Why this definition?

Suppose all the Z’s are guaranteed to be the same, as in the 100%-correlation process.
Let A = the event that all the Z’s are positive. Then T−1

h (A) = A for any h, but P (A)
might not be 0 or 1, so this type of process is not ergodic.

The basic reason for the definition is that we want to know that values of the process
at far-away locations are getting close to independent. That way, as the domain of our
observations expands, our sample values will get closer and closer to the true values. For a
stationary Gaussian process, if C(h) → 0 as |h| → ∞, then the process is ergodic.

Note that sets like {Z > 0 infinitely often } or {Z > 0 eventually (i.e. outside of some
sphere) } satisfy T−1

h (A) = A, so for ergodic processes these types of events must have prob-
ability 0 or 1. This shows the essential feature of ergodic processes: they cannot have their
limiting behavior be sometimes one way and sometimes another way. Note that for WN,
these probabilities must be 0 or 1 (Kolmogorov’s 0-1 law).

Note that in 2-d, it is not so easy to define things like tail events, or random walks, etc.
because of the lack of a natural ordering. To make this point:

[Question: Suppose Gn is the n×n grid or lattice in R2. That is, Gn = the set of points
{(x, y) : x = 0, 1, 2, . . . , n; y = 0, 1, 2, . . . , n}. Ordinarily we define the distance d between

two points as the Euclidean distance: d[(x1, y1), (x2, y2)] =
√

(x2 − x1)2 + (y2 − y1)2. Think

of a non-Euclidean distance d on Gn such that d[s, t] = 0 iff. s = t.]
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DAY FIVE. Wednesday, 4/11/01.

1) Miscellaneous announcements.

a) Reader is ready at Course Reader Materials (1141 Westwood). 60-something dollars.
Be pushy – they didn’t see it on the list at first.

b) No class Friday 4/13/01 – Good Friday. Also no class Friday 4/20/01.

2) Rescaled processes.

Suppose Z(s) is intrinsically stationary, and let Y (s) be some rescaled version of Z, i.e.
Y (s) = g[Z(s)], where g(x) is some function with at least two continuous derivatives. Then
(see Cressie, p65) the variogram of Y can be expressed in terms of the variogram of Z:

2γY (h) = [g′(µ)]22γz(h), where µ = E[Z(s)].

3) Relative variogram.

Now, suppose that Z is NOT intrinsically stationary. Instead, suppose that the space
D on which Z is defined can be broken up into disjoint subspaces Di, and suppose that Z
is intrinsically stationary on each subspace. That is, on Di, Z has mean µi and variogram
2γi(h).

Further, suppose the variograms 2γi(h) all have the same basic shape, but they depend
in some way on the mean µi. In other words, suppose that there’s some positive function f
such that 2γi(h)/f(µi) doesn’t depend on i.

The relative variogram is then defined as 2γi(h)/f(µi).

A common example is when f(x) = x2. In this case, if we let g(x) = log(x), then
[g′(µi)]

2 = 1/µ2
i , so the formula for the variogram for rescaled processes above tells us that if

we let Y = g[Z(s)], then Y is approximately intrinsically stationary; that is, the variogram of
Y is the same everywhere in D. (Why approximately? The mean of Y also must be constant.)
This suggests a log transformation as a way of obtaining an intrinsically stationary process
from a non-intrinsically stationary process Z.

Also, if f(x) = x2−2λ, for some λ > 0, then the transformation Y = g[Z(s)] with
g(x) = xλ makes Y approximately intrinsically stationary.

4) Aggregation.

Often one is interested in looking at the average value of Z over different regions B1, B2,
etc. One may thus define, for measurable subsets B of the space D, the process Y (B) =∫
B Z(s)/|B|. (Cressie calls this Z(B) instead of Y (B), but I’d prefer to keep Z as a process

defined on locations, rather than sets.)

The question then is: what is the variogram of Y ? Turns out that

V ar[Y (B1)−Y (B2)] = −
∫
B1

∫
B1

γ(s−u)dsdu/|B1|2−
∫
B2

∫
B2

γ(s−u)dsdu/|B2|2+
∫
B1

∫
B2

γ(s−
u)dsdu/[|B1| × |B2|].

And, the covariogram of Y is given by
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Cov[Y (B1), Y (B2)] =
∫
B1

∫
B2

C(s− u)dsdu/[|B1| × |B2|],
where C is the covariogram of Z.

5) Correlogram.

As in time series analysis, the correlogram is very useful in spatial data analysis. The
correlogram ρ(h) is defined as

ρ(h) = C(h)/C(0), where C(h) is the covariogram.

The correlogram tells you how much a value Z(s) is correlated with a value h away (i.e.
Z(s+h)). The correlogram has the usual properties one expects of correlations: for example
0 ≤ ρ(h) ≤ 1, ρ(0) = 1, and ρ(−h) = ρ(h).
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