Week 2.

Stat 222, Spatial Statistics.
Lecture MWEF 9am, Math-Sci 5203.
Professor: Rick Paik Schoenberg, frederic@Qucla.edu, www.stat.ucla.edu/~frederic

DAY FOUR. Monday, 4/9/01.
1) Translations and ergodicity.

Motivation behind ergodicity: want Y to converge to E(Y'), and the sample covariances
to converge to the true covariances C'(h).

Sometimes given as convergence to a stationary distribution.

Let T, be a translation (or shift) operator by the vector h. So given a set A like {w :
Z(s) >0}, Th(A) ={w: Z(s+ h) > 0}.

And T}, '(A) is the set {w: Z(s — h) > 0}.

7 is stationary if P{T} *(A)} = P(A), for any h and any measurable set A.

If Z is stationary and also,

whenever T}, '(A) = A, P(A) =0 or 1,

then Z is ergodic.

[Question: Suppose Z is any stationary process in the plane R?. Think of a set A such
that T71(A) = A/]

Why this definition?

Suppose all the Z’s are guaranteed to be the same, as in the 100%-correlation process.
Let A = the event that all the Z’s are positive. Then T, '(A) = A for any h, but P(A)
might not be 0 or 1, so this type of process is not ergodic.

The basic reason for the definition is that we want to know that values of the process
at far-away locations are getting close to independent. That way, as the domain of our
observations expands, our sample values will get closer and closer to the true values. For a
stationary Gaussian process, if C'(h) — 0 as |h| — oo, then the process is ergodic.

Note that sets like {Z > 0 infinitely often } or {Z > 0 eventually (i.e. outside of some
sphere) } satisfy T} *(A) = A, so for ergodic processes these types of events must have prob-
ability 0 or 1. This shows the essential feature of ergodic processes: they cannot have their
limiting behavior be sometimes one way and sometimes another way. Note that for WN;,
these probabilities must be 0 or 1 (Kolmogorov’s 0-1 law).

Note that in 2-d, it is not so easy to define things like tail events, or random walks, etc.
because of the lack of a natural ordering. To make this point:

[Question: Suppose G, is the n x n grid or lattice in R?. That is, G,, = the set of points
{(z,y) : 2 =0,1,2,...,m;y = 0,1,2,...,n}. Ordinarily we define the distance d between
two points as the Euclidean distance: d[(z1,y1), (z2,v2)] = \/(xg —x1)?+ (y2 — y1)%. Think
of a non-Euclidean distance d on G, such that d[s,t] = 0 iff. s =¢.]




DAY FIVE. Wednesday, 4/11/01.
1) Miscellaneous announcements.

a) Reader is ready at Course Reader Materials (1141 Westwood). 60-something dollars.
Be pushy — they didn’t see it on the list at first.
b) No class Friday 4/13/01 — Good Friday. Also no class Friday 4,/20/01.

2) Rescaled processes.

Suppose Z(s) is intrinsically stationary, and let Y'(s) be some rescaled version of Z, i.e.
Y (s) = g[Z(s)], where g(z) is some function with at least two continuous derivatives. Then
(see Cressie, p65) the variogram of Y can be expressed in terms of the variogram of Z:

29y (k) = ¢ (4)]27.(h), where j = E[Z(s)].
3) Relative variogram.

Now, suppose that Z is NOT intrinsically stationary. Instead, suppose that the space
D on which Z is defined can be broken up into disjoint subspaces D;, and suppose that Z
is intrinsically stationary on each subspace. That is, on D;, Z has mean pu; and variogram
27;(h).

Further, suppose the variograms 2v;(h) all have the same basic shape, but they depend
in some way on the mean ;. In other words, suppose that there’s some positive function f
such that 2v;(h)/f(u;) doesn’t depend on i.

The relative variogram is then defined as 2;(h)/ f(u;).

A common example is when f(z) = 2% In this case, if we let g(z) = log(z), then
(¢’ (113)]? = 1/p2, so the formula for the variogram for rescaled processes above tells us that if
we let Y = g[Z(s)], then Y is approximately intrinsically stationary; that is, the variogram of
Y is the same everywhere in D. (Why approximately? The mean of Y also must be constant.)
This suggests a log transformation as a way of obtaining an intrinsically stationary process
from a non-intrinsically stationary process Z.

Also, if f(z) = 2?72}, for some A\ > 0, then the transformation Y = g[Z(s)] with
g(z) = 2* makes Y approximately intrinsically stationary.

4) Aggregation.

Often one is interested in looking at the average value of Z over different regions By, Bs,
etc. One may thus define, for measurable subsets B of the space D, the process Y (B) =
J5 Z(s)/|B]|. (Cressie calls this Z(B) instead of Y (B), but I'd prefer to keep Z as a process
defined on locations, rather than sets.)

The question then is: what is the variogram of Y7 Turns out that

Varly (B)~Y (B)] = — f, [, Y(s—u)dsdu/| o[~ f, [, ¥(s—u)dscu/|Bo|*+ Jy, [, (s~
w)dsdu/[|By| x | Ba].

And, the covariogram of Y is given by



Cov[Y(B1),Y (B2)] = [, [, C(s — u)dsdu/[| Bi| x |Bsl],
where C' is the covariogram of Z.

5) Correlogram.

As in time series analysis, the correlogram is very useful in spatial data analysis. The
correlogram p(h) is defined as

p(h) = C(h)/C(0), where C'(h) is the covariogram.

The correlogram tells you how much a value Z(s) is correlated with a value h away (i.e.

Z(s+h)). The correlogram has the usual properties one expects of correlations: for example
0<p(h) <1, p(0) =1, and p(—h) = p(h).



