
Week 3.

Stat 222, Spatial Statistics. Lecture MWF 9am, Math-Sci 5203.

Professor: Rick Paik Schoenberg, frederic@ucla.edu, www.stat.ucla.edu/∼frederic

DAY SIX. Monday, 4/16/01.

1) Misc.

a) SEL/EMS library.

b) Read up to page 75 in Cressie.

c) Remember, no class Friday 4/20/01.

2) Nuggets and Sills

Recall that the “nugget effect” = c0 = limh→0 γ(h), where γ(h) is the semivariogram. A
related quantity is the “sill” = C(0), where C(h) is the covariogram.

[Question: Suppose a process Z(s) is 2nd order stationary. Does the sill equal the
nuggest effect? If not, think of an example of a process where c0 6= C(0).]

Answer: 2γ(h) = V [Z(s + h) − Z(s)] = 2C(0) − 2C(h) [see top of p5 of week 1 notes],
so 2c0 = 2C(0)− 2 limh→0 C(h), so c0 = C(0) iff. limh→0 C(h) = 0. Thus any function C(h)
without this property will do, e.g. C(h) = exp(−|h|). Note that C(h) need not be continuous
at h = 0 and indeed is very often not continuous at zero in practice. Also note that if Z
is white noise, then C(h) = 0 for all h 6= 0, so in this case the nugget effect and sill are
equivalent.

3) Separable covariograms.

Cressie (p68) says a process Z in Rd has a separable covariogram if, for any vector h,

C(h) = C1(h1)× C2(h2)× . . .× Cd(hd) =
d∏

i=1
Ci(hi).

What does this mean? I’d prefer to express this as: C(h) =
d∏

i=1
Ci(Pih), where Pih means

the projection of h onto axis i.

For example, suppose Z is a process in the plane, R2. By P1 we mean projection onto the
x-axis, and by P2 we mean projection onto the y-axis. Suppose h = (x, y). If Z is separable,
then we can write C(h) = f(x) × g(y). Then instead of estimating the 2-d function C, we
can estimate the 1-d functions f and g, separately, which is often much easier.
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DAY SEVEN. Wednesday, 4/18/01.

1) Misc.

a) No class Friday 4/20. On Monday, bring book or reader to class, and have read (and
understand, or be ready to ask questions about) Cressie’s coal-ash data analysis example,
especially the figures on pages 32, 34, 37, 39, 41.

b) Question about rescaling by xλ.

On the bottom of p65 of Cressie, he notes that if the region D can be divided into pieces
Di so that Z is intrinsically stationary on each Di, and further if on region i, Z has variogram
2γ

(i)
Z (h) such that 2γ

(i)
Z (h)× [µλ−1

i ]2 is independent of i, then one can rescale the process Z
by letting Y (s) = g[Z(s)], where instead of g(x) = log(x), now let g(x) = xλ. Then Y is
“approximately” intrinsically stationary.

What does Cressie mean by saying “2γ
(i)
Z (h)× [µλ−1

i ]2 is independent of i”? This means

that 2γ
(i)
Z (h) = φ(h)/[µλ−1

i ]2, where φ(h) is some function of h, which is the same no matter
what i is, i.e. no matter what portion of the space D we’re in.

From our previous formula (see Rescaled Processes, page 2 of week 2 notes), the variogram
of the rescaled process Y on the subspace Di is given by

2γ
(i)
Y (h) = [g′(µi)]

22γ(i)
z (h),

and now g′(x) = λxλ−1, so [g′(µi)]
2 = λ2[µλ−1

i ]2.

Therefore 2γ
(i)
Y (h) = λ2[µλ−1

i ]2φ(h)/[µλ−1
i ]2 = λ2φ(h), which does not depend on i.

Since the variogram of Y does not depend on i, it would seem that Y is intrinsically
stationary. Howevere, to be intrinsically stationary, Y must also have constant (and finite)
mean. Although E{Z(s)} = µi < ∞, where s is in Di, E{Y (s)} = E{[Z(s)]λ}, which
we cannot guarantee is finite and which will likely depend on i. That is why we say Y is
“approximately” intrinsically stationary.

2) More about separability.

In the plane, separable covariogram means C(h) = C1(h1) × C2(h2). That is, C(3, 5) =
C1(3)× C2(5). Why is this useful? If the process is isotropic, then C(h) = C(|h|), which is
nice because that means one can get a handle on the covariogram simply by looking at the
plot of C(h) versus |h|. Even if the process is NOT isotropic, one can examine the covari-
ogram by looking at simple plots like this, provided the process has a separable covariogram:
one simply looks at plots of C1(h1) versus h1 and C2(h2) versus h2. C1(h) indicates how
values are correlated as you move h units in the horizontal direction, and C2(h) indicates
how values are correlated as you move h units in the vertical direction.

3) Non-parametric estimation of the variogram.

a) Method of moments (classical).

Use 2γ̂(h) = mean squared difference between Z(si) and Z(sj), over all pairs of locations
(si, sj) such that |si − sj| = h.

γ̂ has the nice feature that γ̂(−h) = γ̂(h).
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Two problems with γ̂:

(*) What if there are no (or few) pairs of observations exactly h apart?

(**) Not robust to outliers. If one value happens to be very large and another very
small, the difference between them will get squared and have an inordinate influence on the
estimated variance.

b) Smoothed estimate [to solve problem (*)]. Two types.

(i) Take the mean squared difference not just over pairs of locations that are exactly h
apart, but over all pairs of locations that are approximately h apart. That is, let 2γ+(h) =
mean of [Z(si)−Z(sj)]

2 over a “tolerance region” T (h) = {(si, sj) : h−ε < |si−sj| < h+ε}.
May want to take a weighted mean, weighting pairs where |si−sj| is very close to h more than
those where the difference is further from h. The value of ε must be selected to determine
the size of the tolerance region T (h). Rule of thumb suggested in Cressie is to ensure that
T (h) contains at least 30 pairs of locations.

(ii) Kernel smoothing.

Let 2γ̂K(h) =
∑
i,j

[Z(si) − Z(sj)]
2K(|si − sj| − h), where K(x) is some kernel function,

typically a function that is symmetric around x = 0, e.g. the normal density function.

c) Robust estimate [to solve problem (**)]. Again, two types.

(i) Instead of taking the mean of [Z(si) − Z(sj)]
2, as in a), take the median. This

estimate is denoted 2γ̃(h).

Equivalently, could write 2γ̃(h) as [median
√
|Z(si)− Z(sj)|]4/B(h), where B(h) is simply

some correction so that the estimate is unbiased. This suggests the following alternative
estimate:

(ii) 2γ̄(h) = [mean
√
|Z(si)− Z(sj)|]4/B(h), where now B(h) is simply .457+ .494/N(h),

where N(h) is the number of pairs you’re taking the mean over.

Somehow taking square roots of absolute values of differences results in a more stable
estimator when compared to squared differences. We’ll see this later in the context of vari-
ogram clouds and square root differences clouds.
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4) Proof of (and intuition about) the formula for the variance of Y (B1) − Y (B2). (Cressie
p66, or bottom of p2 of week 2 notes.)

The formula was:

V [Y (B1)− Y (B2)] =

−
∫
B1

∫
B1

γ(s− u)dsdu/|B1|2 −
∫
B2

∫
B2

γ(s− u)dsdu/|B2|2 +
∫
B1

∫
B2

γ(s− u)dsdu/[|B1| × |B2|], (1)

where Y (B) is the integral of Z over the region B, and Z is any intrinsically stationary
process.

The intuition: the last term on the right hand side of equation (1) is like the whole
integrated variation across B1 and B2. This is the SUM of the variation within B1 and
within B2 (the first two terms on the right hand side) plus the overall variation between B1

and B2, which is V [Y (B1)− Y (B2)].

Proof.

Since the mean of Z is constant, E[
∫
B1

Z(s)ds/|B1| −
∫
B2

Z(s)ds/|B2|] = 0. Thus

V [Y (B1)− Y (B2)] = V [
∫

B1

Z(s)ds/|B1| −
∫

B2

Z(s)ds/|B2|]

= E[
∫

B1

Z(s)ds/|B1| −
∫

B2

Z(s)ds/|B2|]2

= E[
∫

B1

Z(s)ds]2/|B1|2 + E[
∫

B2

Z(s)ds]2/|B2|2

− 2E[
∫

B1

∫
B2

Z(s)Z(u)dsdu]/|B1||B2|. (2)

Similarly, writing out
∫

B1

∫
B2

γ(s− u)dsdu/[|B1| × |B2|] we get that it is equal to

E[
∫
B1

Z(s)2ds]/|B1|+ E[
∫
B2

Z(u)2ds]/|B2| − 2E[
∫
B1

∫
B2

Z(s)Z(u)dsdu]/|B1||B2|.
And,∫

B1

∫
B1

γ(s− u)dsdu/|B1|2 = E[
∫

B1

Z(s)2ds]/|B1| − E[
∫

B1

Z(s)ds]2/|B1|2.

Similarly,∫
B2

∫
B2

γ(s− u)dsdu/|B2|2 = E[
∫

B2

Z(s)2ds]/|B2| − E[
∫

B2

Z(s)ds]2/|B2|2.

Combining these with (1) and (2), and cancelling a bit, gives the desired result.

(Note that some of the steps in this proof are condensed a bit; see or email me if you’d
like further explanation.)
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