
Week 4.

Stat 222, Spatial Statistics. Lecture MWF 9am, Math-Sci 5203.

Professor: Rick Paik Schoenberg, frederic@ucla.edu, www.stat.ucla.edu/∼frederic

DAY EIGHT. Monday, 4/23/01.

1) Examination of plots for coal-ash data, Cressie chapter 2.

• p32: Grid of observation locations.

• p34: Observations, on transformed locations.

North, South, East, West from now on mean transformed coordinates. The space has
been rotated clockwise about 150 degrees. Easier to see rotated coordinates in top-left of
p37. Compare with p32.

• p37: row and column means and medians.

Shows trends. Places where mean > median (like row 6 or column 12) are because of a
few large outliers. Right-skew. Notice not much NS trend, but there is WE trend. Values
get LOWER as you go East (the y-axis on bottom-left of p37 is weird). This cannot simply
be explained by the fact that as you go East, there are more Northern observations, because
there’s not much a North-South trend.

• p39: Z(s + e) vs Z(s).

For the top, e is a unit vector to the East. For the bottom, e is a unit vector going North.
Outliers are obvious. For both directions, for the most part large values are near large val-
ues. One expects the points to fall near the line Y = X. More scatter in the vertical direction.

• p41: Boxplot of variogram cloud.

The variogram cloud can be defined as the set of triplets {s1, s2, [Z(s1) − Z(s2)]
2}. You

can then imagine indexing the locations and making a 3-d plot, where you put s1 on the
x-axis, s2 on the y-axis, and the squared difference on the Z-axis. Such a plot may be called a
variogram cloud. Alternatively, if you’re interested in the variogram along a certain direction
only, you can just fix some vector e. (Here e is a unit vector pointing East.) Then you could
look at triplets {h, s, [Z(s + he)−Z(s)]2}. Again, you can imagine a variogram cloud: a 3-d
plot where h is on the x-axis, s is on the y-axis, and the squared difference is on the z-axis.

Notice that for each h, you have a bunch of values of the squared difference [Z(s + he)−
Z(s)]2}: practically one for each observation, s. So for each h, you could take all those
squared differences and make a boxplot of them. That is what is shown on p41.
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DAY NINE. Wednesday, 4/25/01.

1) Continuing with the plots for coal-ash data.

• p41-42: Boxplot of variogram cloud and sqrt differences cloud.

p42 shows boxplots of squared differences [Z(s + he) − Z(s)]2} versus h.

p43 shows boxplots of square-root differences [Z(s + he) − Z(s)]1/2} versus h. Taking
square roots seems to have a stabilizing effect; the distributions are less skewed to the right,
since the few very large values are now not so prominent, since they are getting square-rooted,
rather than squared.

Usually such a boxplot of the variogram cloud will be steadily increasing. It is important
to look for departures from this: for example if the variogram seems constant everywhere,
that suggests white noise (WN), and if the variogram suddenly increases or tapers off at
some points, those are usually worth noticing.

Note how we’re adding levels of complexity with each plot: first we just looked at the
data on p37, then looked at one-unit differences on p39, and now h-unit differences on p41-
42. Next, we’ll look at how the variogram can be broken down by row or column, with the
pocket plot.

• p44: Pocket plot.

Fix e = a unit vector pointing North. While the variogram cloud shows all contributions
to the estimate of γ(h) as h varies, now we’ll see which rows contribute more to γ̂(h) and
which contribute less. (If e were a unit vector pointing East or West, we’d be breaking it
down by columns instead of rows.)

How does the pocket-plot work? Fix h. For the purpose of explanation, say h = 3. So
for instance row 1 and row 4 are h units apart. Same with row 2 and row 5. Take any such
pair of rows and call them j and k. So for instance, j might be 1 and k might be 4.

Let ¯Yj,k = the mean of the square root of the absolute values of the differences between
observations in row j and row k that are in the same column. For instance, on p34 we see

that for j = 1 and k = 4 we have the differences
√
|10.59 − 10.94|,

√
|10.43 − 9.53|, and√

|9.32 − 10.61|. Average these three square roots, and you get ¯Y1,4.

Generally, one expects ¯Y1,4 to be greater than ¯Y1,3 and less than ¯Y1,5. We want to
investigate not just how big ¯Y1,4 is, but how it compares to, say, ¯Y2,5, ¯Y3,6, ¯Y4,7, etc. So

let ¯̄Y3 denote the weighted average of all of these Ȳ ’s, weighted by the number of pairs of
differences in each Ȳ . (i.e. we’d give ¯Y1,4 a weight of 3.) Then subtract ¯̄Y3 from each of the

Ȳ ’s. That is, take ¯Y1,4 − ¯̄Y3.

Let p1,4 denote ¯Y1,4 − ¯̄Y3. p1,4 indicates how much more (or less) rows 1 and 4 contribute
to γ̂(3) than the typical pair of rows that are 3 units apart.

Now, consider p1,2, p1,3, p1,4, p1,5, . . .

If there is something unusual about row 1, i.e. if row 1 is strangely different from all its
neighboring rows, then these values p1,2, p1,3,. . . will tend to be positive. A pocket plot shows
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a boxplot of the pj,k’s, for each j. That is, on the x-axis of p44 is the “row number”, which
is j. On the y-axis is a box-plot. Corresponding to row 1, we have a boxplot of p1,2, p1,3,
p1,4, . . .

[Question: What does it mean if for some j, the pj,k’s are very negative? That means
that row j is unusually similar to its nearby rows. ]

From the figure on p44, we see that rows 2, 6, and 8 have mostly positive pj,k’s. For rows
6 and 8 this is probably because of individual outliers (see p34). For row 2, there are lots of
strangely low values in this row. So in the case of row 2, the pocket plot is not indicating
an outlier, but rather a whole unusual row, which we might call a “pocket” of nonstationarity.

• p47: Median polished data.

Median polishing is a simple way of fitting the model:

Z(j, k) = f0 + f1(j) + f2(k) + WN(j, k),

where j is the row, k is the column, and by f0 we just mean some number indicating an
overall center of the data, f1(j) is a row effect, f2(k) is a column effect, and WN(j, k) is
white noise, i.e. values that are independent and identically distributed with mean 0.

How does it work? a) First you take each row of the data, compute its median, and
subtract the row median from each observation. Do this for each row. Then b) you take
each column of the resulting differences and find its median, and subtract it from each
observation. Do this for each column. c) Repeat, until convergence (i.e. until each row and
column has median 0).

(I expanded on this a bit in class, showing some of the initial computations.)

After median polishing, one may look at the residuals (these are the entries in the middle
of the table). See if they look like WN, and look for strangely large or small terms. Some
jump out on p47, such as 6.66 at column 5, row 6. Also note that some rows and columns
have unusually large or small median effects: for instance row 2 has a value of −1.52 and
column 15 has −1.69.

Why median polish instead of mean polishing? Median polishing is resistant to outliers,
in the sense that one outlier can do weird things to the mean polish, and also, it can be
shown that estimates of the covariogram C(h) are less biased when estimating it based on
the residuals of median polishing than the residuals of mean polishing.

Also, note that for each observation on p34, its value corresponds to the overall effect
(9.82, seen in the bottom-right corner of the table on p47) + row effect + column effect
+ residual. For instance, take column 5, row 2. The value is 8.75 on p34. From p47, we
decompose this as

(9.82) + (0.35) + (−1.52) + (0.10),

which is indeed equal to 8.75.

• p51: Variogram estimates of Z and of residuals.

On p51, robust means the mean-sqrt-difference to the fourth power. We can see how
the classical estimator compares to the robust one. Top of p51 is the East-West variogram;
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the North-South one is on p79. For the East-West direction, there is a row trend (see p37),
causing the variogram to steadily increase.

The bottom of p51 shows the variogram of the residuals after median polishing. The
variogram looks pretty flat, suggesting that the residuals don’t look too different from white
noise. This means that the model

Z(j, k) = f0 + f1(j) + f2(k) + WN(j, k),

might not be unreasonable, in which case the only main features of the data are the row and
column trends. This is why Cressie says on the bottom of page p50: “most of the correlation
present in Figure 2.11 seems to be due to the trend”.
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