
Week 5.

Stat 222, Spatial Statistics. Lecture MWF 9am, Math-Sci 5203.

Professor: Rick Paik Schoenberg, frederic@ucla.edu, www.stat.ucla.edu/∼frederic

DAY TEN. Monday, 4/30/01.

1) Parametric estimation of 2γ(h).

Assume we have some parametric model for 2γ(h), e.g. linear or spherical, and we want
to estimate the parameters. We will let θ denote the vector of parameters to be estimated.
For instance, in the linear variogram model θ = {c0, bl}.

a) MLE.

(Maximum Likelihood Estimation.) Assume data (or rescaled data) Z(s) are multivariate
normal, with some means and covariance matrix Σ, where Σ is some function of θ. Then you
can fit θ to the data by MLE. In practice this is done by writing the negative log-likelihood
as a function of θ (the formula is on the top of p92 of Cressie), and finding the value of θ
that minimizes this function.

(Actually the formula on p92 is a bit more general, since it includes the case where the
mean of Z(s) is a linear function of some covariates, X(s). In our scenario we have some
mean function but no covariates: to do MLE you’d simply plug in the mean wherever it says
Xβ.)

Problem: the resulting estimates will be biased. Asymptotically unbiased, but for small
samples, the bias can be substantial. Also, fitting parameters by MLE is computationally
not trivial, requiring an iterative procedure.

b) VARIATIONS ON MLE.

(i) Restricted MLE. Instead of the negative loglikelihood of the data, look at the negative
loglikelihood of the differences, e.g. Z(i, j)− Z(i− 1, j). Same problems as MLE.

(ii) MINQ. (Minimim Quadratic.) Instead of minimizing the negative loglikelihood func-
tion, minimize the quadratic norm E[(θ̂ − θ)2]. We won’t get into this, in this course.

c) OLS.

(Ordinary Least Squares.) Start with some nonparametric estimate of 2γ, like 2γ̂ or 2γ̄.
Call it 2γ#, to be general.

Given a value of θ, we know the variogram: call this 2γθ(h).

Find θ minimizing
∑
h
[2γ#(h)− 2γθ(h)]2. (Regression.)

Can sum over h’s in all different directions.

Problem: values of γ#(h) for h near 0 will tend to be less variable than those for h far
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from 0, so you might want to be sure you fit small h’s betterm and not worry as much about
how well you fit the large h’s. So. . . .

d) VARIATIONS ON OLS.

(i) GLS. (Generalize Least Squares.) You can find, for each θ, the covariance matrix V of
all the 2γ#(h)’s. The variances and covariances for the classical variogram estimator 2γ̂(h)
are given on p96, equations (2.6.10) and (2.6.11). Then you can minimize

(2γ# − 2γθ)T V −1(2γ# − 2γθ), (1)

where by 2γ# I mean the vector 2γ#(1), 2γ#(2), . . . , 2γ#(k).

The nice thing about GLS is that the resulting estimates of θ will be weighted by the
appropraite variances (and covariances) of the variogram estimates. The problem, though, is
that it is VERY difficult computationally to minimize this function in (1). For each possible
value of θ, not only does γθ depend on θ but also V −1 depends on θ!

(ii) WLS. (Weighted Least Squares.) Instead of V being the matrix with all variances
and covariances of 2γ#, just let V be the identity matrix, except instead of having 1s on
the diagonal, let V have the variances of 2γ# on the diagonal. For the classical variogram
estimator, these variances can be obtained from (2.6.11) on p96 of Cressie.

So, in WLS we ignore the covariances between our variogram estimates. This simplifies
things a bit computationally.

(iii) APPROXIMATE WLS. What simplifies things enormously is the fact that the
WLS estimates are very similar to those obtained by minimizing

∑
h

N(h)[
γ#(h)

γθ(h)
− 1]2.

Here N(h) means the number of pairs of observations that are h apart.

Approximate WLS estimates are easy to compute. If you’re worried about covariances
between variogram estimates, you can plug in θ̂ obtained by approximate WLS into the
formula for V −1, and then do GLS. This is described in in the 2nd paragraph on p97 of
Cressie. But generally speaking, approximate WLS is recommended because it performs
well and is easy to compute.
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DAY ELEVEN. Wednesday, 5/2/01.

1) Variogram estimates for coal-ash data.

p98 shows North-South variogram estimates (nonparametric and parametric) for the
coal-ash data. The parametric model is the spherical variogram model.

How many lags should be looked at? A rule of thumb is to use only up to 1/2 the maxi-
mum possible lag, and also ensure for each h that N(h) > 30. Here, this means going up to
lag 10.

2) Comparison of parametric variogram estimators.

(Read top of p100 of Cressie.)

a) WLS generally performs well.

b) Likelihood methods depend on the assumption of Gaussian data.

c) WLS does not depend highly on the Gaussian assumption.

3) Standard errors for variogram estimates.

For nonparametric variogram estimates, to approximate the variance of 2γ#(h), use

V ar[γ#(h)] ≈ 2[2γ#(h)]2

N(h)
, (2)

see (2.6.11), p96. This works for 2γ̂ and 2γ̄.

What about parametric estimates? One option is to plug in γθ(h) for γ#(h) in (2).

It has been shown that estimates of θ are asymptotically normal for GLS, WLS, and OLS
under various conditions.

Also, can use the bootstrap. Difficult for spatial data, because the data aren’t indepen-
dent, but sometimes you can take sub-regions that are thought to be far enough away from
one another that they might be independent of each other, and re-sample these sub-regions
to obtain simulated datasets. Then you can re-estimate the variogram using the simulated
datasets and look at the sample variance of your estimates. Problems with this method:
simulated data will have unrealistic edges where the sub-regions meet, and the small-scale
variances for the simulated data will be identical to those for the original data.

4) Cross-validation.

To check the fit of the model for 2γ(h).

a) Delete one of your observations.

b) Calculate your estimate of θ, compute 2γθ(h), and use this to predict the missing
observation. (This prediction step is called Kriging; we’ll learn how to do this later.) When
you predict your missing observation, you obtain an estimate of σ2, the prediction error
assuming the model is correct.
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c) Repeat a) and b), and at the end see how far off your predictions are, and compare
with σ2.

That is, look at the collection of standardized prediction errors {Z(s)− ˆZ(s)
σ(s)

}, and examine

the mean, RMS, and histogram (or stem-leaf plot) of these values. If the model fits well,
the mean should be close to 0, the RMS should be close to 1, and the histogram should be
roughly symmetric around 0. The results for the spherical N-S variogram for the coal-ash
data are on p103. When the observation of 17.61 is omitted, the spherical model seems to
fit well: the mean decreases from .147 to .081 and the RMS goes down from 1.167 to .957.

Note p104, 2nd paragraph: “[Cross-validation] cannot prove that the fitted model is
correct, merely that it is not grossly incorrect.”
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