
Week 8.

Stat 222, Spatial Statistics. Lecture MWF 9am, Math-Sci 5203.

Professor: Rick Paik Schoenberg, frederic@ucla.edu, www.stat.ucla.edu/∼frederic

DAY EIGHTEEN. Monday, 5/21/01.

1) K function.

The theoretical K-function is defined as

K(h) = 1
h
E[# of points within h of a given point].

You can estimate this in several different ways. One example is:

K̂4(h) = 1
λ̂N

∑
i6=j

1
w(si,sj)

1{|si−sj |≤h},

where λ̂ = n
|A| , the average number of points per unit area over your whole region of

observation, A,

and w(si, sj) is the proportion of the circle with center si passing through sj that is inside
the region of observation, A.

Note that the sum in the formula above is a double-sum; i.e. you sum over all pairs of
distinct points i and j, so actually each pair of points gets counted twice.

The estimate K̂4(h) gives pairs of points more weight if they are near the boundary of
A. (Because w for such a pair of points will be small.)

K̂4 is approximately unbiased for small h, if N is isotropic.

The naive estimate K̂1(h) ignores boundary effects:

K̂1(h) = 1
λ̂N

∑
i6=j

1{|si−sj |≤h}. The problem with K̂1 is that one is counting how many

points are near a sample point s, but if s is near the boundary, then there is not as much
opportunity for another point to be near s.

One could alternatively just avoid summing over points that are near the boundary. For
instance

K̂3(h) = 1
λ̂

∑
i6=j

1{|si−sj |≤h,dj>h}/
∑
j

1dj>h},

where dj is the distance from point j to the nearest boundary of A.

Instead of summing over all (or nearly all) pairs of points, one could alternatively look at
random collections of points in A and see how many points are near them, but that usually
doesn’t save much time and the resulting estimator would have higher variance (this is what
Cressie is talking about on the bottom of p 640).

Note that for a stationary Poisson process, K(h) = πh2, so

√
K̂(h)

π
should be approxi-

mately h. To stabilize the variance, look instead at

L̂(h) =

√
K̂(h)

π
− h,

which is an estimate of the theoretical L-function

L(h) =
√

K(h)
π

− h.

So L̂(h) is centered around zero for stationary Poisson processes. If the point process
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is clustered, one expects L̂(h) > 0, and if L̂(h) < 0, that suggests repulsive (inhibitive)
behavior. See the example on top of p617 of Cressie.

Note that the edge correction in estimating the K-function matters a lot. See the bottom
of p617: the estimated K-function that becomes negative is K̂1, with no edge correction.

One typically shows the estimated L-function along with confidence bounds, so that
you can tell if the clustering or inhibitive behavior is statistically significant. See p617 for
example.

How can one construct these bounds? The key thing is that, in making these bounds,
you assume that the process is stationary Poisson, and see what the typical range of the
estimated L-function is in that case. For certain observation regions A, such as circle or
rectangle, one can apply analytic formulas to get the confidence bounds (see p642). For
instance, if A is a circle of radius a, then under the assumption that the process is stationary
Poisson,

Var(K̂4(h)) ≈ 2
λ2 (

h
a
)2[1 + .61(h

a
) + .083λh3

a
].

Instead, a procedure I recommend (because it works for more general regions A, and
because these analytic formulas are only approximate anyway) is to obtain confidence bounds
by simulation. For instance, one could simulate a stationary Poisson process on A 1000 times,
and for each simulation, estimate the L-function. Then for each h, you have 1000 values of
L̂(h); you can order these and take the 25th and 975th: these will give you the 95%-confidence
bounds for L̂(h).

Usually, instead of simulating 1000 Poisson processes on A, you contrain your simulated
processes to all have exactly n points, the same as your observed point process.
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DAY NINETEEN. Wednesday, 5/23/01.

1) Projects.

a) There is still plenty of time for the projects. Don’t worry.

b) I encourage you to WORK TOGETHER in figuring out how to do things in R.

c) R is easy to use and I will help show you how to do point process analysis in R. I thus
recommend you use R for your projects. However, if you want to use a different program
you may, but then I can’t help you.

d) If you do not have an account in the stat dept, please email or see me so I can set up
a way that you can use R. There are various options for this: I can give you an account on
our statistics UNIX server and you can remotely log in to it, or I can give you an account to
use on the mac clusters in the stat computing lab. Both of these already have R installed.
Or, I can direct you to information on installing R on your own computer.

2) Grand canyon effect with k-functions.

If you estimate the K-function for a point process that has some trend (the rate at which
points are accumulating is increasing or decreasing as you look in some direction within your
observation region A), then the estimated K-function will generally indicate clustering even
though there really may be no attractive effect. That is, the clustering may be just due to
the trend. In order to see the interesting 2nd-order properties like attraction and repulsion
between the points, one needs to remove the trend first. Analogously, one’s initial view of
the Grand Canyon is typically dominated by the main overwhelming feature which is the
canyon’s incredible size. The Colorado River at the bottom looks like a trickle. You need to
neutralize this main feature in order to see more subtle features such as Lava Falls, a large
waterfall within that portion of the Colorado River.

How can one remove the trend for a point process? Typically in statistics, the way to re-
move trend is to fit a model consisting of JUST a trend term, and then look at the residuals.
In order to do that here, we have to know how to fit a model, and we need to discuss what
residuals are for point processes. Also, in order to get confidence bounds for the resulting
plot of the L-function on the residuals, we have to know how to simulate a Poisson process.

3) Parametric estimation.

Modeling a point process usually amounts to modeling the conditional intensity, λ. For
a Poisson process, one could just write virtually any function to be the intensity, and this
specifies the process exactly. There are just a few constraints: the conditional intensity must
be non-negative everywhere, and also it must be left-continuous.

Given a model for the conditional intensity (which in the Poisson case is equivalent to
simply the intensity λ1) of a point process, one usually fits the model by choosing the param-
eters θ that maximize the likelihood of the observations. This is equivalent to maximizing
the log-likelihood. The log-likelihood function LL(θ) is given by:
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LL(θ) =
∫
A

log(λ)dN −
∫
A

λ(s)ds

=
n∑

i=1
log[λ(si)]−

∫
A

λ(s)ds,

where the sum is over all observed points si.

Under rather general conditions, the resulting maximum likelihood estimate (MLE) is
consistent, asymptotically normal, and efficient, as the observation region A ↑ R2.

However, there are exceptions. For example, if λ(s) = α + βX + γY , then if β or γ is
negative the asymptotics don’t make sense, since λ will eventually be negative. So instead
sometimes people model

λ(s) = exp{α + βX + γY }, i.e.

log{λ(s)} = α + βX + γY .

Then λ has to be non-negative everywhere. However, if β or γ is negative, the resulting
estimates will not be consistent!

In order to remove trend, you will most likely want to fit a model such as those given
above. I will leave it to you whether to fit the linear model to λ or to log{λ}. The advantage
of modeling λ as linear is that the parameters are easily interpretable and generally mean-
ingful. The advantage of log{λ} is that it guarantees that the model is admissible as the
observation size extends to the whole plane, and so the asymptotic results about the MLE
can be applied.

4) Simulation.

a) Stationary Poisson. There are at least two ways to simulate a stationary Poisson
process.

(i) First generate the random variable n, which will be the number of points in A.
Generate a Poisson random variable with mean λ|A| and let this be n. Then distribute the
n coordinates uniformly throughout the region A. For a rectangular region A, this can be
done just by drawing n iid uniform random variables and letting these be the x-coordinates
of the points, and then doing the same for the y-coordinates.

(ii) Alternatively, for a rectangular region (0, a1) × (0, a2), one may start by generating
the x-coordinates in ascending order. Generate iid exponential random variables with mean
λa2. Call these e1, e2, . . .. Let x1 = e1, x2 = e1 + e2, x3 = e1 + e2 + e3, . . . etc. until you get
an x-coordinate that is bigger than a1, i.e. that is outside of the observation region. Then
generate the y-coordinates by generating iid uniform random variables on (0, a2).

These two methods are equivalent. Either one is fine with me.

b) Inhomogeneous Poisson process.

(Inhomogeneous means non-stationary.)

Suppose you want to simulate an inhomogeneous Poisson process on A. Suppose also
that you know some number B, where λ(s) < B for all s. Simulate a stationary Poisson
process with rate B, and then go through all the points, keeping point si independently with
probability λ(si)/B. You can figure out whether to keep each point by drawing iid uniform
random variables on (0, 1), and keeping the point if the uniform number that you drew is
less than λ(si)/B.
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DAY TWENTY. Friday, 5/25/01.

1) No class Monday, 5/28/01. Memorial Day.

2) Terms. “CSR” = Complete Spatial Randomness = stationary Poisson process. Homoge-
neous = stationary; inhomogeneous = non-stationary.

3) Projects.

a) By Wednesday, 5/30/01, try to have entered your data in R and have made a plot of
your points, and compared them to the map of actual points if appropriate. EMAIL ME
(frederic@stat.ucla.edu) WITH YOUR QUESTIONS on starting to use R! I’ll be around all
weekend, so please do not hesitate to ask me any questions.

b) In your final written project, I want 3-4 pages of text, double-spaced. NO MORE
THAN 4 pages of text are allowed. See description at course website (http://www.stat.ucla.edu/courses/
, select “tests”). After the conclusion, have figures on separate pages at the end. Can have
as many figures as you’d like.

c) Put 2-4 figures on each page. The one exception is the raw data, which for some of
you is a map downloaded from the internet or obtained in hard copy; that can stand alone
on one page if you’d like.

d) Pay attention to the writing of the project. Do not keep working on the figures and
computations until the very last minute, so that the final report is sloppily written. Focus
on trying to give the reader a clear picture of your data, highlighting the important features
of the dataset.

e) Do point process analysis; avoid quadrat count analysis (see below).

4) More on simulations.

a) For confidence bounds for L-functions, constrain the simulations to have n points each.
(so just distrubute the n points uniformly on A.)

b) Simulating non-Poisson processes.

If you know some number B, where λ(s) < B for all s, then simulate a stationary Poisson
process with rate B, and then go through all the points, in the order of your conditioning,
keeping point si with probability λ(si)/B. If for example the conditioning is in terms of
everything to the left of the given point si, then move to the right, from point to point, that
is go in terms of points of increasing x-coordinates.

5) Quadrat counts.

One can analyze pps by binning up the number of points in each little portion, or pixel,
or quadrat, of the observation region. One thus ends up with ordinary spatial data, where
for each pixel, you have the number of points in that pixel. Then you can analyze these
pixels by conventional means.

Don’t do this in your projects! This is throwing away all the information on the locations
of the points within the pixels! Often such information is important.
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6) Residuals.

For an inhomogeneous Poisson process of intensity λ(s) in the region A = [0, a] × [0, b],
Cressie (p656) suggests looking at

ui =
xi∫
0

b∫
0

λ(x, y)dydx

or

vi =
a∫
0

yi∫
0

λ(x, y)dydx.

If the model λ(s) is correct, then the points ui should be like a realization of a homoge-
neous Poisson process on the line, with rate 1 point per unit line segment. Similarly, the
points vi should be like a realization of a homogeneous Poisson process on the line with rate
1.

More generally (and preferably) can get spatial residuals, as follows:

Take each point (xi, yi), keep its x-coordinate as-is, and move its y-coordinate to
yi∫
0

λ(xi, y)dy.

This results in a residual point process. Again, if the model for λ(s) is correct, then the resid-
ual process should look like a homogeneous Poisson process with rate 1 on the transformed
region (which may be irregular, not rectangular). For any x, the height of the transformed

region is
b∫
0

λ(x, y)dy.

In the above description, the residuals are obtained by stretching or compressing the
y-coordinates. One could alternatively stretch or compress the x-coordinates, and leave the
y-coordinates fixed.

The goal of making residuals is to form a process that is Poisson if and only if the model
for λ(s) is correct. Then you can inspect the residuals to see if the residuals look Poisson.
What is nice about the spatial residuals is that, if the residuals are NOT Poisson, e.g. if
they’re clustered or something, then that will show up very clearly by plotting the residuals.

An alternative way to form residuals is by thinning: Find the minimum value m of λ(si)
over all points si in the inhomogeneous point process. Then take each point si in the inhomo-
geneous point process and keep it with probability m/λ(si). The resulting residual process
will be stationary Poisson (if the model for λ(s) is correct), though not necessarily with rate
1. This thinning method of obtaining residuals is not as good as the other methods, because
you lose some information. However, one could repeat the thinning procedure over and over,
each time getting a different set of residuals, which is kind of interesting. . . .
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7) Some initial R functions.

To start R, just type R from the Unix prompt.

To quit R, type

q()

The only two weird things about R are that every function has to have parentheses (so
for example the “q” function you use to quit has to have parentheses, even though it doesn’t
take any arguments). This distinguishes the function “q” from q, which could be a variable
name if you wanted. The second weird thing is that equals ( = ) has a very special meaning
in R, so to let x = 7, you can’t just type x = 7. You have to use the < − symbols instead
of the = sign. This is the less than sign, followed by the minus sign.

I recommend that you use a text editor, to save all your commands, and cut and paste
them into R.

### INPUT DATA

x <− c(752.20, 593.40, 101.40, 357.80, 996.80, 48.05, 355.90, 710.30, 592.80, 770.10,
442.90, 371.80, 35.16, 901.10, 637.80, 158.60, 765.90, 326.20, 500.60, 812.20, 441.10, 831.50,
304.40, 743.30, 716.80, 990.70, 609.70, 825.20, 681.70, 422.40)

y <− c(860.90, 447.00, 166.50, 170.90, 730.60, 180.30, 151.10, 277.30, 514.00, 502.20,
584.80, 370.90, 833.20, 880.20, 447.40, 100.40, 44.70, 311.90, 837.70, 949.30, 89.24, 405.00,
578.40, 649.50, 27.59, 699.00, 664.30, 582.40, 590.60, 774.90)

Or make a file with x and y values and load it using ppinit (more later.)

### PLOT DATA

plot(x,y)

### TRY THESE:

plot(x,y,pch=”x”)

plot(x,y,pch=”x”,cex=.7)

plot(x,y,pch=”*”)

### MISCELLANEOUS

length(x)

y

y[7]

help(plot)

help(par)

### SAVING A PLOT

postscript(“rickplot1.ps”)

plot(x,y)

dev.off()

### VIEWING AND CONVERTING TO PDF

Quit, and in Unix do:

ghostview rickplot1.ps

ps2pdf rickplot1.ps
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