Point patterns

e Consider the point process {Z(s) : s € D C R*}. A realization
of this process consists of a pattern (arrangement) of points in
D. (D is a random set.) These points are called the events of
the point process. If we only partially observed these events then
we have a sampled point pattern. When all events are observed
we have a mapped point pattern.

e A point pattern is called completely random pattern if the fol-
lowing criteria hold:

— The average number of events (the intensity, A(s)) is homo-
geneous throughout D.

— The number of events in two non-overlapping subregions A;
and A, are independent.

— The number of events in any subregion follows the Poisson
distribution.

e With this in mind... observed point patterns are tested initially
for a complete spatial random pattern. If the hypothesis is re-
jected then further investigation is needed to explain the nature
of the spatial point pattern.

e Most processes don'’t follow a complete spatial random pattern.
Events may be independent in non-overlapping subregions, but
the intensity A(s) is not homogeneous throughout D. For exam-
ple, more events will be present in regions where the intensity is
high and less will be present where the intensity is low. The in-
tensity may be constant, but the presence of an event can attract
or drive away other events nearby.

e R packages for the analysis of spatial point patterns:



spatial
splancs
spatstat
maptools

See Chapter 7 of Bivand, R.S., Pebesma, E.J., Gémez-Rubio,
V. (2008). “Applied Spatial Data Analysis with R,” Use R/,
Springer.

Preliminary analysis of a point pattern:

It is focused on the spatial distribution of the observed events
to make inference on the process that generated them. We are
interested in (a) the distribution of the events in space and (b)
existence of possible interaction between them.

Poisson process:

There are many types of Poisson processes: Homogeneous Pois-
son process (HPP), inhomogeneous Poisson process (IPP), Pois-
son cluster process, and compound Poisson process. A process
is called homogeneous Poisson process if the two following prop-
erties hold:

— If N(A) denotes the number of events in subregion A C D,
then N(A) ~ Poisson(Av(A)), where 0 < A < oo is the

constant intensity of the process.

— If Ay and Ay are two disjoint subregions of D, then N(A;)
and N (As) are independent.

If the intensity function A(s) varies spatially then the first con-
dition does not hold, but the second condition may still hold.
In this case the process is called inhomogeneous Poisson pro-
cess. (The homogeneous Poisson process is a special case of
the inhomogeneous Poisson process.) The homogeneous Pois-
son process is also called the stationary Poisson process, while



the inhomogeneous Poisson process is called the non-stationary
Poisson process.

Testing for complete spatial randomness:

We want to test if the observed point pattern is a realization of
a homogeneous Poisson process. The statistical tests are based
on counts of events in regions (quadrats) or based on distances.
When the sampling distributions are difficult one can rely on
simulations methods. There are two methods of simulations:
The Monte Carlo test and simulation envelopes.

Test based on quadrats:

With quadrat sampling we count the number of events in subsets
of the study region A. Usually the quadrats are rectangular, but
other shapes are also possible (e.g. circular).

Example

The data set longleaf: 584 long-leaf pine trees from the Wade
Tract, a forest in Thomas County Georgia. The data consists of
the location of each tree (x,y) coordinates and its diameter at
breast height (dbh) in centimeters. Area covered 200m x 200m.
One hundred non-overlapping quadrats (each one with radius
6 meters) were randomly chosen in the area of study and the

number of trees were counted in each quadrat. (See Cressie,
“Statistics for Spatial Data,” Wiley, 1993, pp. 581-585.)

library(spatstat)
data(longleaf)



Trees per Observed Estimated
quadrat frequency frequency

0 34 23.93
1 33 34.22
2 17 24.47
3 7 11.66
4 3 4.17
5 1 1.19
6 1 0.28
7 2 0.06
8 1 0.01
9 0 0.00
10 1 0.00

34x0+33x1+...+1x10 —1.43 The

Estimate Poisson parameter A=
estimated frequencies are computed using the Poisson probabil-
ity mass function. For example, the expected number of quadrats

with zero trees will be 100 x P(Y = 0) = 1001‘430651369‘(—1.43) —

23.93. To test the hypothesis of a complete spatial randomness
(which is synonymous with the homogeneous Poisson process)

one can use the x? goodnes-of-fit test.

5 (0, — E;)? (34— 23.93)2 (6 — 1.54)2

X2 = = = 21.67.
Z E; 23.93 Tt T

Since 21.67 > X%_95;4 = 9.49 the null hypothesis of homogeneous
Poisson process is rejected.

e Other uses of quadrats:
See paper by Greig-Smith (1952). “The Use of Random and
Contiguous Quadrats in the Study of the Structure of Plant
Communities.”



The grouping of events into contiguous quadrats creates a lattice.
Lattice data is another type of spatial data where the goal is to
identify regions with high values in close proximity suggesting a
cluster. The Moran’s I and Geary’s ¢ statistics can be applied
to test for clustering.

e Once complete spatial randomness is rejected, the next step is
to see if regularity (tendency for regular spacing) or clustering is
present.

e Test based on distances:
Distance methods use the exact location of the events. They do
not dependent on the arbitrary choice of quadrat size or shape.
See Cressie (1993), p. 604 for various test statistics based on
distances along with their asymptotic distributions.

e Test based on simulations:

— Monte Carlo tests

These can be used for many statistical analysis spatial or
non-spatial. The general idea: Compute a test statistic from
the observed data, call it gy. Then simulate the random
process say, g times. For each realization compute the test
statistics g1, ..., q,. Then rank the simulated test statistics
and place the observed test statistic gy in the ordered array
and compute the p-value. For example the average nearest
neighbor distance can be used. It can be compute using sim-
ulations by generating points independently and uniformly
in the area of interest.



— Simulation envelopes:
Find the nearest neighbor distance for event ¢ = 1,...,n.
Let di,do, ..., d, be the nearest neighbor distances.

Compute the estimate of the distribution function G(d) of
nearest-neighbor event distances as follows:

Let I(d; < r) be the indicator function that takes the value
1if d; < r. Compute G(r) = Lyn  I(d; < r) for various
distance 7.

For the same distances r compute the theoretical G function
under complete spatial randomness which equal to G(r) =
1 — exp(—=A7r?).

Plot G(r) against G(r). Under complete spatial randomness
the plot should be roughly linear.

To measure the departure from linearity we should find the
sampling distribution of G(T) under complete spatial ran-
domness, which not easy, because of the dependence between
the distances (for example, if the nearest neighbor for point
1 is point 2 then the nearest neighbor for point 2 will be
point 1, and so on). We therefore assess linearity using sim-
ulations. We compute G(r) for many simulations. Each
simulation consists of n independent uniformly distributed
points in the area of interest. For each simulation we com-
pute the minimum and maximum value of G(r) to construct
the simulation envelope.



Overview of geostatistics

e Let Z(s) and Z(s + h) two random variables at locations s and s + h. Intrinsic stationarity
is defined as follows:

E(Z(s+h)—Z(s))=0
and
Var(Z(s+h) — Z(s)) = 2y(h)

The quantity 27v(h) is known as the variogram and is very crucial in geostatistics. The
variogram says that differences of variables lagged h-apart vary in a way that depends only
on h through the length of h. This is called isotropic variogram as opposed to anisotropic
variogram which depends not only on the length h but also the direction. Because of the
assumption of constant mean (no trend) we have F(Z(s)) = u and we can write

Var(Z(s + h) — Z(s)) = E(Z(s + h) — Z(s))*

Therefore we can use the method of moments estimator for the variogram (also called the
classical estimator):

29(h) = Nih> ]%)(Z(sn — Z(s7))%,

where the sum is over N (h) such that s; — s; = h.

Robust estimator:
Cressie and Hawkins (1980) proposed the following estimator for the variogram which is
robust to outliers compared to the classical estimator:

1 14
N 2N (h) 1Z(si) — Z(Sj)|2}

0.494
0.457 + NG

29(h) = {

where the sum is over N(h) such that s; — s; = h.



The idea behind the robust estimator is described below: If the process Z(s) follows the
normal distribution then

Z(s+ 1) = 2() ~ N (0. /(1))

Therefore:

2
<Z (s+ ;L) (;)Z (S)> ~ X1 (x? distribution with 1 degree of freedom).
Y

This is a highly skewed distribution. However if X ~ x7 then Y = X T has an approximately
symmetric distribution (see figure below). We would expect that the quantity (Z(s + h) —

Z(s))% will behave much better than (Z(s + h) — Z(s))?.

f(x)
f(y)




A typical semivariogram plot (classical estimator):
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The semivariogram plot (robust estimator):
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e Modeling the sample variogram
Once the sample variogram is computed, a function is fit to it. In other words, we try to
come up with what the variogram graph would look like if we had the entire population
of all possible pairs. Popular variogram models that are used are the linear, spherical, and
exponential (also see graphs on next pages).

Linear model:
This is the simplest model for the semivariogram graph. It depends on one parameter, the
slope b.

0, h=0
ﬂmm_{%+w%h¢o

0 = (co,b)’, where ¢y >0 and b > 0.

Spherical model:

This is the model that proposed by Matheron. It has two parameters: The range of influ-
ence and the sill (or plateau) which the graph reaches at distances h larger then the range.
Generally, the range of influence is the distance beyond which pairs are unrelated.

0, h=0
v(h;0) = co+er(3(L

)—3(L)%), 0<h<a
co+ec, h>a

o

0 = (co,c1,a)’, where cg >0, ¢; >0, and a > 0.

Exponential model:

This model represents an exponential decay of influence between two sample (larger distance
between two samples means larger decay). It depends on two parameters, the range and the
sill (plateau).

0, h=0
7(h;6) = { co+er(l - exp(~1)), h+#0

0 = (co,c1,a)’, where cg >0, ¢; >0, and a > 0.

Other models:
There are other models, such as, the Gaussian model, the hole effect model, the Paddington
mix model, the circular model, cubic model, Matérn function, etc.



Variogram calculations and fitting

#Example using stat:

library(gstat)

#Access the data:

a <- read.table("http://www.stat.ucla.edu/ "nchristo/statistics_c173_c273/
wolfcamp.txt", header=T)

#Create a gstat object:
g <- gstat(id="level", formula = level™1, locations = “x+y, data = a)

q <- variogram(g)
plot(q)

#0r
plot(variogram(g))

#There is a trend.
g_trend <- gstat(id="level", formula = level™x+y,
locations = “x+y, data = a)

#Plot new variogram:
q <- variogram(g_trend)

plot(q)

#Fit a noel variogram by eye:
fit_var <- vgm(30000,"Sph",70,10000)

plot(q, fit_var)

#Variogram fitting using OLS, GLS, etc.
v.fit <- fit.variogram(q, vgm(30000,"Sph",60,10000))

v.fitl <- fit.variogram(variogram(g_trend), vgm(30000,"Sph",60,10000), fit.method=1)
v.fit2 <- fit.variogram(variogram(g_trend), vgm(30000,"Sph",60,10000), fit.method=2)
v.fit6 <- fit.variogram(variogram(g_trend), vgm(30000,"Sph",60,10000), fit.method=6)
v.fit7 <- fit.variogram(variogram(g_trend), vgm(30000,"Sph",60,10000), fit.method=7)
plot(q, v.fitl)

plot(q, v.fit2)

plot(q, v.fit6)

plot(q, v.fit7)

See also

http://www.stat.ucla.edu/"nchristo/statistics_c173_c273/geoR_soil_data_fitting.txt and
http://www.stat.ucla.edu/ nchristo/statistics_c173_c273/geoR_soil_data_fitting.txt .



Ordinary kriging

Kriging (Matheron 1963) owes its name to D. G. Krige a South African mining engineer and
it was first applied in mining data. Kriging assumes a random field expressed through a vari-
ogram or covariance function. It is a very popular method to solve the spatial prediction problem.
Let Z = (Z(s1),Z(s2), .., Z(sn))" be the vector of the observed data at known spatial locations
S1, 82, ..., Sp. The objective is to estimate the unobserved value Z(sg) at location sy.

The model:
The model assumption is:

Z(s) =p+9(s)
where d(s) is a zero mean stochastic term with variogram 2+(-). The variogram was discussed in

previous handouts in detail.

The Kriging System
The predictor assumption is

n
= Z w; 4 (s
=1

i.e. it is a weighted average of the sample values, and > ;" ; w; = 1 to ensure unbiasedness. The
w;’s are the weights that will be estimated.

Kriging minimizes the mean squared error of prediction
min o2 = E[Z(so) — Z(s0)]?

or

2
mma—E E wiZ(8;)

For intrinsically stationary process the last equation can be written as:
n n n
2
or =2 wiy(so—si) — Y > waw;y(si — sj) (1)
i=1 i=1j=1

See next page for the proof:



Let’s examine (Z(sg) — > iy wiZ(Si))2:

n 2
(z(so) — Zwiz(si)> =

22 (s0) — 2z(s0 sz z(8; +Zszwj 2(s3)z(sj) =

i=17=1
Z w; 2% (s0) — 2 Z w;z(s0)z(si) + Z Z wiw;z(8;)2(s5)
i=1 i=1 i=1 j=1
7% Zl Z w;z*(s;) sz‘z2(5¢) =
i= i=1
- ;;wiwj [2(s0) = =51 + sz (5P

If we take expectations on the last expression we have

LSSy B () — () + 3 i x(s0) — () =
=1

i=1j5=1
n
—= Z Z wyw;var [z(s;) — z(s;)] + Z wyvar [z(sg) — 2(s4)]
i=17=1 =1
But var [z(s;) — 2(sj)] = 27(-) is the deﬁnition of the variogram, and therefore the previous expres-
sion is written as: 2370 5 wiy(so — i) — doilq 2oj—q wiwy(si — S5)
Therefore kriging minimizes
n
O'z = — Z w; Z(8; =
n n n
2 Zwm(so —8i) — Z Zw w;y(s; — s5)
i=1 i=1j=1
subject to

n
Zwi =1
i=1

The minimization is carried out over (wy, wa, ..., wy ), subject to the constraint > ;" ; w; = 1. There-
fore the minimization problem can be written as:

min 2 Zwi’y(so —s) — Z Zwiwj’y(si —5j) — 2)\(2 w; — 1) (2)
i=1

=1 i=1j=1

where )\ is the Lagrange multiplier. After differentiating (2) with respect to wy, wa, ..., w,, and A
and set the derivatives equal to zero we find that

_way s;i—585) +y(so—si)) —A=0, i=1,..,n

and



Using matrix notation the previous system of equations can be written as
I'W =~

Therefore the weights wi, wo, ..., w, and the Lagrange multiplier A can be obtained by
W =T"1«

where

W = (w1, w, ..., Wy, \)

Y= (7(80 - 51)77(80 - 82)7 "'7’}/(80 - Sn)7 1)/
v(si—s5), i=1,2,..,n, j=1,2,..,n,
1, t=n+1, j=1,...n,

1, j=n+1, i=1,...,n,

0, i=n+1l, j=n+l

The variance of the estimator:
So far, we found the weights and therefore we can compute the estimator: Z(so) = Y1 wi Z(s;).
How about the variance of the estimator, namely o2?

We multiply

=Y wiy(si — s5) + (50— si) —A=0
j=1

by w; and we sum over all i =1,---,n to get:
n n n n
=Y wi Y wiv(si— s5) + > wiy(so — si) — Y wid =0
i=1  j=1 i=1 i=1
Or
n n n n
= > wiwiy(si — s5) + > wiy(so — si) — > wiA =0
i=1j=1 i=1 i=1
Therefore,
n n n n
Z Z wiw;y(si — s5) = Zwm(so —8;) — ZwiA
i=1j=1 i=1 i=1

If we substitute this result into equation (1) we finally get:

ol =Y wiv(si — so) + A (3)
i=1
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A simple example:

Consider the following data
si Ty z(s;)
sy 61 139 477
sy 63 140 696
s3 64 129 227
s4 68 128 646
s5 71 140 606
sg 73 141 791
sy 75 128 783
so 65 137 777

Our goal is to estimate the unknown value at location sg. Here is the x — y plot:

y coordinate
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X coordinate

For these data, let’s assume that we use the exponential semivariogram model with parameters
co=0,c;1 =10, = 3.33.

y(h) =10(1 — e"5:5).

We need to construct the matrix I' and the vector «. First we calculate the distance matrix as
shown below:
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S0 S1 S92 S3 S4 S5 S6 S7
so 0.00 447 361 806 949 6.71 894 13.45
sp 447 0.00 224 1044 13.04 10.05 12.17 17.80
sy 3.61 224 0.00 11.05 13.00 &8.00 10.05 16.97
Distance matrix = [ s3 8.06 10.44 11.05 0.00 4.12 13.04 15.00 11.05
sg 949 13.04 13.00 4.12 0.00 12.37 13.93 7.00
s5 6.71 10.056 8.00 13.04 1237 0.00 2.24 12.65
s¢ 8.94 12.17 10.05 15.00 13.93 2.24 0.00 13.15
sy 13.45 17.80 16.90 11.056 7.00 2.65 13.15 0.00

The ij;, entry in the matrix above was computed as follows:

dij = /(i — 27)2 + (yi — ;)2

Now, we can find the entries of the matrix I" and the vector «. Each entry will be computed using

the exponential semivariogram ~y(h) = 10(1 — e‘ﬁ). Here they are:

0 4.893 9.564 9.800 9.510 9.740 9.952 1
4.893 0 9.637 9.798 9.093 9.510 9.938 1
9.564 9.637 0 7.095 9.800 9.889 9.637 1
r=| 9800 9.798 7.095 0 9.755 9.847 8.775 1
9.510 9.093 9.800 9.755 0 4.893 9.775 1
9.740 9.510 9.889 9.847 4.893 0 9.806 1
9.952 9.938 9.637 8.775 9.775 9.806 01
1 1 1 1 1 1 10
7.384
6.614
9.109
| 9.420
T 8664
9.316
9.823

11



The weights and the Lagrnange multiplier can be obtained as follows:

0 4.893 9.564 9.800 9.510 9.740 9.952 1 7.384

4.893 0 9.637 9.798 9.093 9.510 9.938 1 6.614

9.564 9.637 0 7.095 9.800 9.889 9.637 1 9.109

W =T—1ly = 9.800 9.798 7.095 0 9.755 9.847 8775 1 9.420
9.510 9.093 9.800 9.755 0 4.893 9.775 1 8.664

9.740 9.510 9.889 9.847 4.893 0 9.806 1 9.316

9.952 9.938 9.637 8.775 9.775 9.806 01 9.823

1 1 1 1 1 1 10 1

The answer is:

0.174
0.317
0.129
0.086
0.151
0.057
0.086
0.906

The last element of the W vector is the Lagrange multiplier, A = 0.906. We can verify that the
sum of the elements 1 through 7 is equal to 1, as it should be.

The predicted value at location sq is equal to:

2(s0) = Y wiz(s;) = 0.174(477) + - - - + 0.086(783) = 592.59.
=1

And the variance:

02 = wiy(si — s0) + A = 0.174(7.384) + - -- + 0.086(9.823) + 0.906 = 8.96.
=1

Under the assumption that Z(s) is Gaussian a 95% confidence interval can be computed as follows:

592.59 £1.96v8.96

577.09 < Z(s0) < 588.83

12



Ordinary kriging using geoR and gstat

We discuss next kriging using the R packages geoR and gstat. We will use the numerical example
from last lecture. Here it is:

A simple example:
Consider the following data

S X Y 2(s4)
sy 61 139 477
so 63 140 696
s3 64 129 227
s4 68 128 646
ss 71 140 606
s¢ 73 141 791
sy 75 128 783
so 65 137 777

Our goal is to predict the unknown value at location sg. Here is the  — y plot:
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For these data, let’s assume that we use the exponential semivariogram model with parameters
co=0,c; =10, = 3.33.

y(h) =co+c1(1 — e‘g) =10(1— e‘ﬁ),
which is equivalent to the covariance function

co + c1, h=0

C(h) = { h o) = {

cle” a, h>0

The predicted value at location sq is equal to:

2(s0) = > wiz(s;) = 0.174(477) + - - + 0.086(783) = 592.59.
=1

And the variance:
n
Ug = Z wiy(si —s0) + A = 0.174(7.384) + - - - + 0.086(9.823) + 0.906 = 8.96.
i=1

Kriging using geoR:
We will use now the geoR package to find the same result. First we read our data as a geodata
object:

> a <- read.table("http://www.stat.ucla.edu/"nchristo/statistics403/
kriging 11.txt", header=TRUE)
> b <- as.geodata(a)

To predict the unknown value at locaton (x = 65,y = 137) we use the following:

> prediction <- ksline(b, cov.model="exp", cov.pars=c(10,3.33), nugget=0,
locations=c(65,137))

where,
b The geodata
cov.model The model we are using
cov.pars  The parameters of the model (partial sill and range)
nugget The value of the nugget effect
locations The coordinates (z,y) of the points to be predicted

The object “prediction” contains among other things the predicted value at location x = 65,y = 137
and its variance. We can obtain them as follows:

> prediction$predict
[1] 592.7587

> prediction$krige.var
[1] 8.960294

14



Suppose now we want to predict the value at many locations. The following commands will produce
a grid whose points will be predicted using kriging:

> x.range <- as.integer(range(al,1]))

> y.range <- as.integer(range(al,2]))

> grd <- expand.grid(x=seq(from=x.range[1], to=x.range[2], by=1),
y=seq(from=y.range[1], to=y.range[2], by=1))

Vv

q <- ksline(b, cov.model="exp",cov.pars=c(10,3.33), nugget=0,
locations=grd)

In case you have a variofit output you can use it as an input of the argument krige as follows
(this is only an example):

varl <- variog(b, max.dist=1000)
fitl <- variofit(varl, cov.model="exp", ini.cov.pars=c(1000, 100),
fix.nugget=FALSE, nugget=250)

q <- krige.conv(b, locations=grd, krige=krige.control(obj.model=fit1))

We can access the predicted values and their variances using q$predict and q$krige.var.
Here are the first 5 predicted values with their variances:

> cbind(q$predict[1:5], gq$krige.var[1:5])
[,1] [,2]

[1,] 458.4491 9.245493

[2,] 413.2103 7.850838

[3,] 362.4674 5.927999

[4,] 338.9828 4.516906

[5,] 393.3933 5.280417
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To construct the raster map we type:
image(q, val=q$predict)

Or simply:

image(q)

Here is the plot:
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And here is the plot with the data points:

points(a)
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We can construct a raster map of the variances:
> image(q, val=q$krige.var)

Here is the plot:
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And also we can construct a raster map of the standard errors:
> image(q, val=sqrt(q$krige.var))

Here is the plot:
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The following command will construct a perspective plot of the predicted values:

> persp(x,y,matrix(q$predict,15,14), xlab="x coordinate",
ylab="y coordinate", zlab="Predicted values of z",

main="Perspective plot of the predicted values")

Perspective plot of the predicted values

210 senieApaRIPRId

x coordinate

And here is the perspective plot of the standard errors:

> persp(x,y,matrix(sqrt(q$krige.var),15,14), xlab="x coordinate",
ylab="ycoordinate", zlab="Predicted values of z",

main="Perspective plot of the standard errors")

Perspective plot of the standard errors

2 j0 sONRA paioipaid

x coordinate
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Kriging using gstat:
We will use now the gstat package to find the same result. First we read our data and create the
grid for prediction as follows:

> a <- read.table("http://www.stat.ucla.edu/ "nchristo/statistics403/
kriging 11.txt", header=TRUE)
> x.range <- as.integer(range(al,1]))
> y.range <- as.integer(range(al[,2]))
> grd <- expand.grid(x=seq(from=x.range[1], to=x.range[2], by=1),
y=seq(from=y.range[1], to=y.range[2], by=1))

We now define the model. Normally the model must be estimated from the sample variogram, but
for this simple example we assume that it is given as below:

> library(gstat)
> m <- vgm(10, "Exp", 3.33, 0)

There are two ways to perform ordinary kriging with gstat. The data and the grid are used as
data frames, with the extra argument locations as shown below:

> ql <- krige(id="z", formula=z~1, data=a, newdata=grd, model = m,
locations="x+y)

The other way is to convert the data and the grid as spatial data points data frame:

> coordinates(a) <- “x+y
> coordinates(grd) <- “x+y
> g2 <- krige(id="z", formula=z~1, a, newdata=grd, model = m)

Important note: If we use the second way the argument data= is not allowed. We simply use the
name of the data, here just a. Also, q1 is a data frame, while g2 is spatial data points data frame.
Using q1 we can create a 3D plot with the libraries scatterploted and rgl as follows:

> library(scatterplot3d)

> library(rgl)

> scatterplot3d(ql$x, qi1$y, ql$z.pred, xlab="x", ylab="y",
zlab="Predicted values")

> plot3d(ql$x, ql1$y, ql$z.pred, size=3)
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Here are the plots:
(a). Using the scatterplot3d command.

o
0O,
%o o
o o
0, 0
0% o 00 /%
o 0,0000 °
o]
000 © 0 o °° %5 0 0
0 0 0577 0 o
00000000 oK)
g Goo o0 0 0 0
@ o %9~q
b 5,7 o 00 %0 aden0o?
o, o o © o%}mm
o OO(S)CPDOO OOO
R ooOOoo
000 ©
Oo D S0
2 8 © 00 Too
s © [} o
© O00&2
> o]
3 8 o © 00, 142 >
ks 00 ° ®9 140
2 o
g 3 00 o A 138
<
0o 136
(e}
0 134
o
3 132
o 130
8 128
N

60 62 64 66 68 70 72 74 76

(b). Using the plot3d command.
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A complete example on kriging using gstat:

We will use again the soil data from the Maas river. Here is some background.

The actual data set contains many variables but here we will use the z,y coordinates and the con-
centration of lead and zinc in ppm at each data point. The motivation for this study is to predict
the concentration of heavy metals around the banks of the Maas river in the area west of the town
Stein in the Netherlands. These heavy metals were accumulated over the years because of river
pollution. Here is the area of study:
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You can access the data at

> a <- read.table("http://www.stat.ucla.edu/ " nchristo/statistics403/
soil.txt", header=TRUE)

# Save the original image function:

> image.orig <- image

To load the gstat package type
> library(gstat)

First, we will compute the descriptive statistics of the data set, construct the stem-and-leaf plots,
histograms, and boxplots:

stem(a$lead)
boxplot(a$lead)
hist (a$lead)
stem(a$zinc)
boxplot (a$zinc)
hist(a$zinc)
summary (a)

V V V V V VvV V

Transform the data (logarithm transformation):

log_lead <- loglO(a$lead)
log_zinc <- logl0(a$zinc)
stem(log_lead)
boxplot(log_lead)
hist(log_lead)
stem(log_zinc)
boxplot(log_zinc)
hist(log_zinc)

V V V V V V V V

#Create a gstat object;
> g <- gstat(id="log_lead", formula = log(lead)~1, locations = ~"x+y,
data = a)

#Plot the variogram:
> plot(variogram(g), main="Semivariogram of the log_lead")

#Fit a model variogram to the sample variogram:
> v.fit <- fit.variogram(variogram(g), vgm(0.5,"Sph",1000,0.1))
> plot(variogram(g),v.fit)

#Note: The values above were the initial values for the partial sill,
#range, and nugget. Then the function fit.variogram uses a minimization
#procedure to fit a model variogram to the sample variogram. Type v.fit

#to get the estimates of the model parameters.

> v.fit
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model psill range
1 Nug 0.05156252  0.0000
2 Sph 0.51530678 965.1506

#There are different weights you can use in the minimization procedure. The
#default (the one used above) is $N_h/h"2$ where $N_h$ is the number of pairs

#and $h$ the separation distance.

You can chose the type of weights by using

#the argument fit.method=integer, where integer is a number from the table

#below:

fit.method
1

2
6
7

weights
N_h

N_h/gamma (h;theta) "2 (Cressie’s weights)
OLS (no weights)
N_h/h"2 (default)

#Use kriging to estimate the value of log(lead) at the grid values.
#First we create the grid.

x.range <- as.integer(range(al,1]))

X.range

y.range <- as.integer(range(al,2]))

grd <- expand.grid(x=seq(from=x.range[1], to=x.range[2], by=50),
seq(from=y.range[1], to=y.range[2], by=50))

>
>
>
> y.range
>
y=

#We want now to use kriging to predict log(lead) at each point on the grid:
> pr_ok <- krige(id="log_lead",log(lead)”1, locations="x+y,

model=v.fit,
data=a, newdata=grd)

#To find what the object pr_ok contains type:

> names (pr_ok)
[1] Nyt ||y||

"log_lead.pred" "log_lead.var"

#To see the predicted values you type:

> pr_ok$log_lead.pred

#And the kriging variances:

> pr_ok$log_lead.var
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The plot of the sample variogram:

> plot(variogram(g), main="Semivariogram of the log_lead")

Semivariogram of the log_lead

1 1 1
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0.3 — -

semivariance
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distance

The fitted spherical variogram to the sample variogram:

> plot(variogram(g),v.fit)

Fitted spherical semivariogram

1 1 1

semivariance

500 1000 1500

distance
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Here is the grid for the kriging predictions:
> plot(grd)

Grid for the kriging predictions
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The vector of the predicted values must be collapsed into a matrix with the matrix function:

#Collapse the predicted values into a matrix:

qqq <- matrix(pr_ok$log_lead.pred,
length(seq(from=x.range[1], to=x.range[2], by=50)),
length(seq(from=y.range[1], to=y.range[2], by=50)))

And we can use the image function to create the raster map of the predicted values:

> image(seq(from=x.range[1], to=x.range[2], by=50),
seq(from=y.range[1], to=y.rangel[2], by=50), qqq,
xlab="West to East", ylab="South to North", main="Predicted values")

> points(a) #The data points can be plotted on the raster map.
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