Statistics 222, Spatial Statistics.

Outline for the day:

- 1. Variance of compound Poisson.
- 2. Gibbs process.
- 3. Strauss process.
- 4. Matern process.
- 5. Hawkes process.
- 6. ETAS.
- 7. Likelihood.

- 1. Variance of the compound Poisson processes, from last time.
- Suppose *N* is not simple, and instead, it is generated as follows. You first generate a stationary Poisson process *M* with intensity c, and then for each point τ_i of *M*, *N* will have some non-negative number Z_i of points right at τ_i , where Z_i are all iid and independent of *M*. Then *N* is a compound Poisson process.
- For a compound Poisson process, again the variance \geq the mean. EN(B) = c|B|E(Z), and
- $V(N(B)) = c|B|V(Z) + c|B|(E(Z))^2 = c|B|E(Z^2) \ge EN(B)$, because, for a non-negative integer-valued random variable Z, $E(Z^2) \ge E(Z)$ with equality iff. Z can only be 0 or 1.

1. Variance of the compound Poisson processes, from last time. Fix B. Let M denote M(B). For a compound Poisson process, $EN(B) = \sum E(N(B)|m) f(m)$, where the sum is from m = 0, 1, 2, ..., $= \sum E(Z1 + Z2 + ... + Zm) f(m)$

- $= \sum (m E(Z)) f(m)$
- $= E(Z) \sum m f(m)$

$$= E(Z) E(M) = c|B| E(Z).$$

$$\begin{split} \mathrm{E}(\mathrm{N}(\mathrm{B})^2) &= \sum \mathrm{E}(\mathrm{N}(\mathrm{B})^2 | \mathrm{m}) \, \mathrm{f}(\mathrm{m}) \\ &= \sum \mathrm{E}(\mathrm{Z}1 + \mathrm{Z}2 + ... + \mathrm{Z}\mathrm{m})^2 \, \mathrm{f}(\mathrm{m}) \\ &= \sum (\mathrm{m}\mathrm{E}(\mathrm{Z}^2) + (\mathrm{m}^2 \text{-}\mathrm{m}) \, \mathrm{E}(\mathrm{Z})^2) \mathrm{f}(\mathrm{m}) \\ &= \mathrm{E}(\mathrm{Z}^2) \sum \mathrm{m}\mathrm{f}(\mathrm{m}) - \mathrm{E}(\mathrm{Z})^2 \sum \mathrm{m}\mathrm{f}(\mathrm{m}) + \mathrm{E}(\mathrm{Z})^2 \sum \mathrm{m}^2 \mathrm{f}(\mathrm{m}) \\ &= \mathrm{E}(\mathrm{Z}^2) \, \mathrm{E}(\mathrm{M}) - \mathrm{E}(\mathrm{Z})^2 \, \mathrm{E}(\mathrm{M}) + \mathrm{E}(\mathrm{Z})^2 \, \mathrm{E}(\mathrm{M}^2) \\ &= \mathrm{V}(\mathrm{Z}) \mathrm{E}(\mathrm{M}) + \mathrm{E}(\mathrm{Z})^2 \, \mathrm{E}(\mathrm{M}^2). \end{split}$$

2. Gibbs process. For any finite collection $\{\tau_1, \tau_2, ..., \tau_n\}$ of points in space-time, suppose the joint density is

$$C(\theta) \exp[-\theta(\sum_{i=1}^{n} \psi_1(x_i) + \sum_{i\neq j} \psi_2(x_i, x_j)].$$

Then N is a Gibbs process.

Often $\psi_2(x_i, x_j)$ can be written $\psi(r)$, where r = |x-y|.

Some special cases are important. a. When $\psi(r) = 0$, there are no interactions, and the process is an inhomogeneous Poisson process with intensity $\psi_1(x)$.

b. $\psi(\mathbf{r}) = -\log[1 - e^{-(\mathbf{r}/\sigma)^2}]$ defines a *soft-core* model. Weak repulsion.

Josiah Willard Gibbs

Born	February 11, 1839 New Haven, Connecticut, U.S.
Died	April 28, 1903 (aged 64) New Haven, Connecticut, U.S.

2. Gibbs process, continued.

 $\psi_2(\mathbf{r})$ is called the *interaction potential*.

c. $\psi(r) = \infty$ for $r \le \sigma$ = 0 for $r > \sigma$ defines a *hard-core* process.

d. $\psi(r) = (\sigma/r)^n$ is an intermediate choice between the soft-core and hard-core models.

3. Strauss process. $\psi_1(x) = \alpha$, and $\psi_2(r) = \beta$, for $r \le R$, $\psi_2(r) = 0$, for r > R.

4. Matern process.

The Matern(I) process is generated as follows.

- a) Generate M according to a stationary Poisson process.
- b) Let N be all points of M that are not within some fixed distance r of any other point of M.

The Matern(II) process is generated a bit differently.

a) Generate points $\tau_1, \tau_2, ...$ according to a stationary Poisson process. b) For i = 1, 2, ..., keep point i if there is no *previous* kept point τ_j with $|\tau_i - \tau_j| \le r$.

5. Hawkes process.

A Hawkes process or *self-exciting* process has conditional intensity

$$\lambda(t,x,y) = \mu(x,y) + \kappa \int_{t' < t} g(t-t',x-x',y-y') \, dN(t',x',y')$$

$$= \mu(x,y) + \kappa \sum_{\{t',x',y': t' < t\}} g(t-t',x-x',y-y').$$

g is called the *triggering function* or *triggering density* and κ is the *productivity*.

If g is a density function, then κ is the expected number of points triggered directly by each point.

Each background point, associated with $\mu(x,y)$, is expected to generate $\kappa + \kappa^2 + \kappa^3 + ... = 1/(1-\kappa) - 1$ triggered points, so the exp. fraction of background pts is $1/(1-\kappa)$.

6. ETAS process.

An Epidemic-Type Aftershock Sequence (ETAS) process is a marked version of the Hawkes process, where points have different triggering functions depending on their magnitudes. Ogata (1988, 1998) introduced

$$\lambda(t,x,y) = \mu(x,y) + \sum_{\{t',x',y': t' < t\}} g(t-t',x-x',y-y')h(m'),$$

where $\mu(x,y)$ is estimated by smoothing observed large earthquakes,

 $h(m) = \kappa e^{\alpha(m-m0)}$,

where m0 is the catalog cutoff magnitude, and $g(t,x,y) = g_1(t) g_2(r^2)$, where $r^2 = ||(x,y)||^2$, and g_1 and g_2 are power-law or *Pareto* densities, $g_1(t) = (p-1) c^{p-1} (t+c)^{-p}$. $g_2(r^2) = (q-1) d^{q-1} (r^2+d)^{-q}$. An alternative is where g2 is exponential or sum of exponentials.

Yosihiko Ogata

Recorded epicenters of Hector Mine M > 3.0 earthquakes from 1

7. Likelihood.

For iid draws $t_1, t_2, ..., t_n$, from some density $f(\theta)$, the likelihood is simply $L(\theta) = f(t_1; \theta) \propto f(t_2; \theta) \propto ... \propto f(t_n; \theta)$ $= \prod f(t_i; \theta).$

This is the probability density of observing $\{t_1, t_2, ..., t_n\}$, as a function of the parameter θ .

For a stationary Poisson process with intensity $\lambda(\theta)$, on [0,T], the likelihood of observing the points { τ_1 , τ_2 ,..., τ_n } is simply $\lambda(\tau_1) \stackrel{x}{} \lambda(\tau_2) \stackrel{x}{} \dots \stackrel{x}{} \lambda(\tau_n) \stackrel{x}{} \exp\{-A(\tau_1)\} \stackrel{x}{} \exp\{-(A(\tau_2)-A(\tau_1))\} \stackrel{x}{} \dots \stackrel{x}{} \exp\{-(A(T)-A(\tau_n))\},\$ $= \prod \lambda(\tau_i) \exp\{-A(T)\},\$ where $A(t) = \int_0^t \lambda(t) dt$. $P\{k \text{ points in } (\tau_1, \tau_2)\} \text{ is } \exp(-B) B^k/k! = \exp(-B) \text{ for } k = 0,\$ where $B = \int_{\tau_1}^{\tau_2} \lambda(t) dt$.

7. Likelihood, continued.

For a stationary Poisson process with intensity $\lambda(\theta)$, on [0,T], the likelihood of observing the points { τ_1 , τ_2 ,..., τ_n } is simply $\lambda(\tau_1) \times \lambda(\tau_2) \times ... \times \lambda(\tau_n) \times \exp\{-A(\tau_1)\} \times \exp\{-A(\tau_1)\} \times \exp\{-(A(\tau_2)-A(\tau_1))\} \times ... \times \exp\{-(A(T)-A(\tau_n))\},\$ = $\prod \lambda(\tau_i) \exp\{-A(T)\},\$ where $A(t) = \int_0^t \lambda(t) dt$. P{k points in (τ_1 , τ_2)} is exp(-B) B^k/k! = exp(-B) for k = 0, where $B = \int_{\tau_1}^{\tau_2} \lambda(t) dt$.

So the log likelihood is $\sum \log(\lambda(\tau_i)) - A(T)$. In the spatial-temporal case, the log likelihood is simply $\sum \log(\lambda(\tau_i)) - \int \lambda(t,x,y) dt dx dy$. 8. Questions.

The difference between ETAS and a Hawkes process is ...

- a) an ETAS process is more strongly clustered.
- b) the points of an ETAS process all occur at different locations.
- c) the points of an ETAS process all have different productivity.
- d) the points of an ETAS process all have different triggering functions.

8. Questions.

The difference between ETAS and a Hawkes process is ...

- a) an ETAS process is more strongly clustered.
- b) the points of an ETAS process all occur at different locations.
- c) the points of an ETAS process all have different productivity.
- d) the points of an ETAS process all have different triggering functions.
- Which of the following can possibly have two points within distance .01 of each other?
- a) a hardcore process with $\sigma = .01$.
- b) a Strauss process with R = .01.
- c) a Matern I process with r = .01.
- d) a Matern II process with r = .01.

8. Questions.

The difference between ETAS and a Hawkes process is ...

- a) an ETAS process is more strongly clustered.
- b) the points of an ETAS process all occur at different locations.
- c) the points of an ETAS process all have different productivity.
- d) the points of an ETAS process all have different triggering functions.
- Which of the following can possibly have two points within distance .01 of each other?
- a) a hardcore process with r = .01.
- b) a Strauss process with R = .01.
- c) a Matern I process with r = .01.
- d) a Matern II process with r = .01.

9. Code.

install.packages("spatstat")
library(spatstat)

STRAUSS process
z = rStrauss(100,0.7,0.05)
plot(z, pch=2,cex=.5)

HARDCORE process
z = rHardcore(100,0.05)
plot(z, pch=2,cex=.5)

MATERN(I).
z = rMaternI(20,.05)
plot(z, pch=2,cex=.5)

9. Code.

MATERN(II)
z = rMaternII(100,.05)
plot(z,pch=2,cex=.5)

HAWKES.
install.packages("hawkes")
library(hawkes)

```
lambda0 = c(0.2, 0.2)
```

```
alpha = matrix(c(0.5,0,0,0.5),byrow=TRUE,nrow=2)
```

beta = c(0.7, 0.7)

horizon = 3600

h = simulateHawkes(lambda0,alpha,beta,horizon) plot(c(0,3600),c(0,3),type="n",xlab="t",ylab="x") points(h[[1]],.5+runif(length(h[[1]])),pch=2,cex=.1)points(h[[2]],1.5+runif(length(h[[2]])),pch=3,cex=.1)