
Statistics 222, Spatial Statistics. 

Outline for the day:
1. Simulation. 
2. Purely spatial processes, Papangelou intensity and 

Georgii Zessin Nguyen. 
3. Kernel smoothing. 
4. F, G, J, K, and L functions. 
5. Exercises. 



1. Simulation. 

One can simulate spatial-temporal point processes by thinning.
Lewis, P. and Shedler, G. (1979). Simulation of nonhomogeneous 
poisson processes by thinning. Naval Research Logistics
Quarterly, 26:403–413, 1979.

Jesper Møller
Suppose l has some upper bound, B. l(t,x,y) ≤ B everywhere. 
First, simulate a stationary Poisson process N with intensity B. 
For i = 1,2, ... keep point ti with probability l(ti)/B. We saw this in day 4 for 
simulating inhomogeneous Poisson processes, but it works for other processes too. 

Boundary issues can be important in simulation. For Gibbs processes, for instance, 
the simulation can be biased because of missing points outside the observation 
region. For Hawkes processes, the simulation will tend to be biased by having too 
few points at the beginning of the simulation. One can have burn-in, by simulating 
points outside the observation region or before time 0, or in some cases some fancy 
weighting schemes can be done to achieve perfect simulation without burn-in. See 
Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for 
Spatial Point Processes. Chapman and Hall, Boca Raton. 



2. Purely spatial processes, Papangelou intensity and the Georgii-Zessin Nguyen 
formula. 
For point processes in R2, there is no natural ordering as there is in time. One could 
just use the x-coordinate in place of time and define a conditional intensity, but most 
models for spatial processes would be very awkward to define this way. 
Instead, a more natural and useful tool is the Papangelou intensity, l(x,y), which is 
the conditional rate of points around location (x,y), given information on everywhere 
else. Letting 
l(q) = ∑ log(l(ti)) - ∫ l(x,y) dx dy, 
where l(x,y) is the Papangelou intensity, 
l(q) is called the pseudo-loglikelihood. 

A key formula for space-time point processes is called the martingale formula:
for any predictable function f(t,x,y), 
E ∫ f(t,x,y) dN = E ∫ f(t,x,y) l(t,x,y) dµ. 
= E ∑i f(t i,x i,y i) = E ∫ f(t,x,y) l(t,x,y) dt dx dy
For spatial point processes the corresponding formula, 
E ∫ f(x,y) dN = E ∫ f(x,y) l(x,y) dx dy
is called the Georgii-Zessin-Nguyen formula. 
When f = 1, this means EN(B) = E ∫ l dµ. 



3. Kernel smoothing. 
A simple way to start summarizing a spatial point process is by kernel smoothing. 

Suppose your observation region is B. 
Let k(x,y) be a spatial density function, called a kernel, and construct, for each 
location (x,y), 
l^(x,y) =  ∫B k((x',y') – (x,y)) dN(x',y') / r(x,y), 
where r(x,y) = ∫B k((x',y') – (x,y)) dx' dy' is an edge correction term. 

The resulting function l^(x,y) is a natural estimator of l(x,y) and, if N is a Poisson 
process, is an unbiased estimator of l(x,y). 
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4. F, G, J, K, and L functions. 
Let F(r) be the probability that the distance from a 
randomly chosen location to its nearest point of the 
process is ≤ r. 
Let G(r) be the probability that the distance from a 
randomly chosen point to its nearest neighbor is ≤ r. 
F is the empty space function and G is the nearest neighbor
distribution function. 
Matern (1971) showed that for a homogeneous 
Poisson process, F(r) = G(r) = 1 – exp(-l π r2). Marie-Collette van Lieshout

Let J(r) = (1-G(r)) / (1-F(r)), for r such that F(r)<1. 
J > 1 indicates inhibition, and J < 1 indicates clustering. 
For a stationary Poisson process with rate µ, let 
K(r) = 1/µ E(# of other points within distance r of a randomly chosen point). 
K is the reduced 2nd moment measure or Ripley's K-function (Ripley, 1976). 
van Lieshout, M.C. (2010). A J–function for inhomogeneous point processes. 
Statistica Neerlandica, 65(2), 183-201. 
and references therein gives extensions to the inhomogeneous Poisson process and 
to marked point processes. 



4. F, G, J, K, and L functions, continued. 
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4. F, G, J, K, and L functions, continued. 

K(r) = 1/µ E(# of other points within distance r of a randomly chosen point). 

K is estimated in the obvious way using data, but various edge correction ideas are 
available. 

For a stationary Poisson process, K(r) = πr2, so one may consider
L(r) = √ (K(r)/π) . 
For a stationary Poisson process, L(r) – r = 0 and L^(r)-r should be approximately 0. 
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5. More exercises. 

Which of the following is not typically true of the MLE of a spatial-temporal point 
process? 

a. It is unbiased. 
b. It is consistent. 
c. It is asymptotically normal.
d. It is asymptotically efficient. 
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5. More exercises. 

Suppose N is a spatial point process with clustering for distances ≤ d.  
Let F(r) be the empty space function and let G(r) be the nearest neighbor distribution 
function. 
Which of the following is true. 

a. F(d) = G(d). 
b. F(d) < G(d). 
c. F(d) > G(d)



5. More exercises. 

Suppose N is a spatial point process with clustering for distances ≤ d.  
Let F(r) be the empty space function and let G(r) be the nearest neighbor distribution 
function. 
Which of the following is true. 

a. F(d) = G(d). 
b. F(d) < G(d). 
c. F(d) > G(d)



Entering data and kernel smoothing example. 

## First, input 54 points using the mouse.
n = 54
plot(c(0,1),c(0,1),type="n",xlab="longitude",ylab="latitude",

main="locations")
x1 = rep(0,n)
y1 = rep(0,n)
for(i in 1:n){
z1 = locator(1)
x1[i] = z1$x
y1[i] = z1$y
points(x1[i],y1[i])
}



##### PLOT THE POINTS WITH A 2D KERNEL SMOOTHING IN 
GREYSCALE PLUS A LEGEND

library(splancs)
bdw = sqrt(bw.nrd0(x1)^2+bw.nrd0(y1)^2)  ## possible default bandwidth
b1 = as.points(x1,y1)
bdry = matrix(c(0,0,1,0,1,1,0,1,0,0),ncol=2,byrow=T)
z = kernel2d(b1,bdry,bdw)
attributes(z)
par(mfrow=c(1,2))
image(z,col=gray((64:20)/64),xlab="km E of origin",ylab="km N of 

origin")
points(b1)
x4 = seq(min(z$z),max(z$z),length=100)



plot(c(0,10),c(.8*min(x4),1.2*max(x4)),type="n",
axes=F,xlab="",ylab="")

image(c(-1:1),x4,matrix(rep(x4,2),ncol=100,byrow=T),
add=T,col=gray((64:20)/64)) 
text(2,min(x4),as.character(signif(min(x4),2)),cex=1)
text(2,(max(x4)+min(x4))/2,

as.character(signif((max(x4)+min(x4))/2,2)),cex=1)
text(2,max(x4),as.character(signif(max(x4),2)),cex=1)
mtext(s=3,l=-3,at=1,"density (pts/km^2)")

library(spatstat)
b2 = as.ppp(b1,c(0,1,0,1))
k = Kest(b2,correction="border")
plot(k, main="K function")
plot(k, sqrt(./pi)-r ~ r, ylab="L(r)-r", main="L function",legend=F) 



plot(Fest(b2,correction="border"),main="")
plot(Gest(b2,correction="border"),main="") 
plot(Jest(b2,correction="border"),main="") 


