Statistics 222, Spatial Statistics.

Outline for the day:

1. Continue with day08.r.
2. Nonparametric estimation of Hawkes processes using MISD.
3. Analytic nonparametric estimates.

4. Application to earthquakes and DRC Monkeypox.



Background and motivation.

* History of numerous models for earthquake forecasting, with mostly failures.
(elastic rebound, water levels, radon levels, animal signals, quiescence, electro-magnetic
signals, characteristic earthquakes, AMR, Coulomb stress change, etc.)

* Skepticism among many in seismological community toward all probabilistic forecasts.

* Different models can have similar fit and very different implications for forecasts.
(e.g. Pareto vs. tapered Pareto for seismic moments. Fitting these by MLE to 3765
shallow worldwide events with M=>5.8 from 1977-2000,
the Pareto says there should be an event of M = 10.0 every 102 years,

the tapered Pareto every 10436 years.
The fitted Pareto predicts an event with M=12 every 10,500 years,
the tapered Pareto every 1043400 years.)

* Model evaluation techniques and forecasting experiments to discriminate among
competing models and improve them are very important.

* We also need non-parametric alternatives to these models.
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* We also need non-parametric alternatives to these models.
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Nonparametric estimation of Hawkes and ETAS processes.

Let x mean spatial coordinates = (X,y).
Hawkes processes have A(t,x) = u(x) + K ). g(t-t;, x-x,).

e An ETAS model may be written

A(t,x|He) = pu(x) + K Z g(t — ti, x — xj, m;),

iti<t

with triggering function

g(t—t;,x—x;, m;) = exp{a(m;—Mo)}(t—ti+c) ~P(|[x—xi|[*+d) 9.

with e.g. g(u, x ; m;) = (ute)® exp{a(m;-M)} (|)x[|* + d).

These ETAS models were introduced by Ogata (1998).

Instead of estimating g parametrically, one can estimate g nonparametrically,
using the method of Marsan and Lengline (2008), which they call
Model Independent Stochastic Declustering (MISD).
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Nonparametric estimation of Hawkes and ETAS processes.

Model Independent Stochastic Declustering

e The method of Marsan and Lengliné (2008):
At myx, y[He) = plx,y) + Y k(m)g(t — 5)f(x — X,y — ),
Jji<t

e Maximizes the expectation of the complete data log-likelihood
and assigns probabilities that a child event / is caused by an

ancestor event j.

Expectation Step

o — g(u)f(x,y)
T ulx,y) + Y g(u)f(x,y)’
b — pu(x, y) |
Cou(x,y) + Y g(u)f(x,y)




Nonparametric estimation of Hawkes and ETAS processes.

Gordon et al. (2017) let the triggering function, g,

depend on magnitude, sub-region, distance, and angular
separation from the location (x, y) in question to the
triggering event.

At m, x, y[He) = plx,y) + Y (m))g(t — 6)f(x — x5,y — yji &5, m)),

Jiti<t

Josh Gordon



Nonparametric estimation of Hawkes and ETAS processes.

Expectation Step
g(u)f(x, y, ¢, m)
6 V) + Y gW)f(x,y, ¢, m)’

p(x, y) .
pO%Y) + Y g(u)f(x,y, ¢, m)

Pij =

Maximization Step

p-.
ch 2.q u
ArABy;Amg E E Pij

i=1 j=1
28
# of Aftershocks

h(r,0,m)g p q =

Sric < rj < Onev1, 80y < 05 < 86441, dmg < mj < dmg.1,i > j p IS the

® Ciioq= {('31')
set of indices of all pairs of events that fall within the bins specified
by the multidimensional histogram density estimator for magnitude,
distance, and angular separation h(r,6, m).

e k and g are maximized similarly



Nonparametric Marsan and Lengliné (2008) estimator.

Marsan and Lengliné (2008) assume g is a step function, and estimate steps [ as parameters.

£(0) = Zlog (A7, x3|H 7)) — /UT/;A(L,X H,) dxdt

Setting the partial derivatives of this loglikelihood with respect to the steps f; to zero yields

0=000)/08:= ) K/Xm)—Kn|Uy|,
(1.9)imi—7;€U}

where [U,l is the width of step k, for k = 1,2,..., p. This is a system of p equations in p unknowns.
However, the equations are nonlinear. They depend on 1/A(7;).

Gradient descent methods: way too slow for large p.

Marsan and Lengliné (2008) find approximate maximum likelihood estimates using the E-M
method for point processes. You pick initial values of the parameters, then given those, you
know the probability event i triggered event j. Using these, you can weight each pair of points
by its probability and re-estimate the parameters, and repeat until convergence.

This method works well but is iterative and time-consuming.



Nonparametric Marsan and Lengliné (2008) estimator.

The last step of Marsan and Lenglin€ uses essentially a histogram estimator.

Others have used slightly different approaches for smoothing.
Lewis and Mohler (2011) use maximum penalized likelihood.
Bacry et al. (2012) use the Laplace transform of the covariance function.
Adelfio and Chiodi (2015) use a semi-parametric method where the background rate
A 1s estimated nonparametrically and the triggering function g parametrically.

There are also standard non-parametric methods for smoothing points generally, using
splines, kernels, or wavelets. (Brillinger 1997).

Marsan and Lengliné's method is different. It estimates g, not the overall rate.



Analytic solution.
Set p = n. (p = number of steps in the step function, g, and n = # of observed points.)

Setting the derivatives of the loglikelihood to zero we have the p equations

0=0L0)/08= Y K/Nn)-Kn|Uy,
(1,g):mi—1;€U%
which are p linear equations in terms of 1/A(t;), fori = 1,2, ..., n. (!)
So, if p=n, then we can use these equations to solve for 1/A(t;),
and if we know 1/A(t;), then we know A(T;),

and if we know A(t;), then we can solve for ; because the def. of a Hawkes process is

A7) =p+K) g(rj—m),
i<

which results in n linear equations in the p unknowns f3;, £, ..., B,, when g 1s a step function.



Analytic solution.
We can write the resulting estimator in very condensed form.
Let A = {A(1;),A(12),..., A(Ty)}
Suppose the steps of g have equal widths, [U;l = 1U,l, etc. Call this width U.
Let A;; = the number points 7; such that 7; — 7 is in U;, for i,jin {1,2,...,p}.
Then the loglikelihood derivatives equalling zero can be rewritten
0 = KA(1/A) — Kb,
where b=nU1, with1={1,1,...,1}.
This has solution /A = A1 b, if A is invertible.

Similarly, the Hawkes equation can be rewritten A = u + KA’ 3, whose solution is

A

b = (KAT)(A-).

Combining these two underlined formulas yields the estimates

B=(KA") '[1/(A"b) — p]

This is very simple, trivial to program, and rapid to compute.



Analytic solution.
There are problems, however.
1. Estimating n=p steps. High variance.
However, if we can assume g is smooth, then we can smooth our estimates for stability.
2. Need to estimate K and u too.
We can use Marsan or take derivatives for these as well.
3. What about spatially-varying steps and unequally sized steps for g?
No problem. The estimation generalizes in a completely obvious way.

4. A can be singular.
We may need better solutions for this.
I let u; = 1j-1; , sorted the u; values, and then used [uy;), u)), etc. as my binwidths, so
each row and column of A would have at least one non-zero entry. If it still isn't singular,
adding in a few random 1's into A often helps.
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4. A can be singular.
We may need better solutions for this.
I let u; = 1j-1; , sorted the u; values, and then used [uy;), u)), etc. as my binwidths, so
each row and column of A would have at least one non-zero entry. If it still isn't singular,
adding in a few random 1's into A often helps.

B=(KA") '[1/(A"b) — p]



Note: take the simple case of a dataset where point 1 is only influenced by point i-1. This is
basically a renewal process, and we are just estimating a renewal density.

Here A=1,K =1, and we get the density estimator 1/{n(x; — x;.1)}.
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Note: take the simple case of a dataset where point 1 is only influenced by point i-1. This is
basically a renewal process, and we are just estimating a renewal density.

Here A=1,K =1, and we get the density estimator 1/{n(x; — x;.1)}.
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Computation time and performance comparison.

Test of concept. Examples of exponential, truncated normal, uniform, and Pareto g.
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Computation time and performance comparison.

Triangles = Marsan and Lengliné (2008) method. Circles = analytic method.
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Applications to earthquakes and DRC Monkeypox

USGS Getty Images




Application to Loma Prieta earthquake data.

Loma Prieta earthquake was Mw 6.9 on Oct 17, 1989.

As an illustration, we will estimate g on its 5566 aftershocks M = 3 within 15 months.
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Application to Loma Prieta earthquake data. (SCEC.ORQG)
Estimated triggering function for 5567 Loma Prieta M = 3 events, 10/16/1989 to 1/17/1990.
Solid curve is the analytic method and dashed curve is Marsan and Lengliné (2008).

Dotted curves are estimates based on analytic method +/- 1 or 2 SEs, respectively, for light
grey and dark grey.

SEs were computed using the SD of analytic estimates in 100 simulations of Hawkes
processes with triggering functions sampled from the solid curve.
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a(u)

Application to Loma Prieta earthquake data.
Estimated triggering function for Loma Prieta seismicity M = 3, 10/16/1989 to 1/17/1990.
Solid curve is the analytic method and dashed curve is Marsan and Lengliné (2008).

Dotted curves are estimates based on analytic method +/- 1 or 2 SEs, respectively, for light
grey and dark grey.

SEs were computed using the SD of analytic estimates in 100 simulations of Hawkes
processes with triggering functions sampled from the solid curve.
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Application to DRC Monkeypox data.

566 investigated cases reported by WHO
with incident date in 2005 or 2006.

Times within each day randomized uniformly.
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Application to DRC Monkeypox data.




Application to DRC Monkeypox data.
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Concluding remarks.
The idea is to
let p=n,
let the derivatives of the log-likelihood be zero,
solve for 1/4; and therefore get A;,
and solve for B.
a. One can have major computation time savings from this method.
For datasets of only 100-300 points the savings are negligible.

However, for 5,000 points, the Marsan and Lengliné (2008) algorithm with 100 iterations
takes about 7 hours, whereas the analytic method here takes 1.3 min.

This speed facilitates computations like simulation based confidence intervals.
b. How far can this go?

It extends very readily to space-time-magnitude and estimation of u .

Would this work for other types of models too? What are the limits on this method?
c. What about when A is singular? More work is needed.

d. Meaning of ClIs in this context?
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