
Statistics 222, Spatial Statistics. 

Outline for the day:
1. Correction on day08.r. 
2. Problems. 
3. Application of nonparametric estimates to earthquakes and plague.  
4. Simulating Hawkes processes. 
5. Estimating Hawkes processes. 



1. Correction in day08.r. 

I had this. 

### Fitting a Pseudo-Likelihood model. 
## I'm using the model lambda_p ( z | z_1, ..., z_k) = 
## mu + alpha x + beta y + gamma SUM_{i = 1 to k} a1 exp{-a1 D(z_i,z)} 
## where z = (x,y), and where D means distance. 
## So, if gamma is positive, then there is clustering; otherwise inhibition. 

But g(r) = a1 exp(-a1 r) is actually not a density. 
g(t) = a1 exp(-a1 t) is a density, because ∫ 0∞ a1 exp(-a1 t) dt = 1, for a1 > 0, 
but not ∫ ∫ a1 exp(-a1 r) dx dy. 

a1 exp(-a1 r) / (2π r) is a spatial density, because 
∫∫ a1 exp(-a1 r) / (2π r) dx dy = ∫ 02π ∫ 0∞ a1 exp(-a1 r) / (2π r) r dr dø
= ∫ 0∞ a1 exp(-a1 r) dr 
= 1. 

So I should have fit lambda_p ( z | z_1, ..., z_k) = 
## mu + alpha x + beta y + gamma SUM_{i = 1 to k} a1/2π exp{-a1 D(z_i,z)}/D(z_i,z). 
I corrected this in the current version of day08.r. 



2. Problems. 

Suppose you observe a Poisson process with rate µ on the space-time window 
[0,1]x[0,1] x [0,10], and it happens to have 5 points. 

S T. 
What is the log-likelihood, l(µ)?

a) 5 µ + 10 exp(µ). 
b) 5 log(µ) - 10 µ. 
c) 5 + 10 log(µ). 
d) 5 exp(µ) + 5 log(µ). 



Problems. 

Suppose you observe a Poisson process with rate µ on the space-time window 
[0,1]x[0,1] x [0,10], and it happens to have 5 points. 

S T. 
What is the log-likelihood, l(µ)?

a) 5 µ + 10 exp(µ). 
b) 5 log(µ) - 10 µ. 
c) 5 + 10 log(µ). 
d) 5 exp(µ) + 5 log(µ). 



Problems. 

Suppose you observe a Poisson process with rate 3t on the space-time window 
[0,1]x[0,1] x [0,10]. 

S T. 
How many points do you expect to observe? 

a) 50. 
b) 100. 
c) 150. 
d) 200. 



Problems. 

Suppose you observe a Poisson process with rate 3t on the space-time window 
[0,1]x[0,1] x [0,10]. 

S T. 
How many points do you expect to observe? 

a) 50. 
b) 100. 
c) 150. 
d) 200. 

∫ ∫ ∫ 3t dx dy dt = ∫ 3t dt = 3t2/2 ]010 = 300/2 – 0 = 150. 



Problems. 

Suppose you observe a Hawkes process with conditional intensity 
l(t,x,y) = 2 + 0.6 ∫ f(t-t') g(x-x',y-y') dN(t',x',y'), on the space-time window 
[0,1]x[0,1] x [0,10], 

S T, 
where f(t) is a density like f(t) = 4exp(-4t), and g(x,y) is a planar density like 
g(x,y) = 3 exp(-3r) / (2π r), where r = √(x2+y2). 

How many points do you expect to observe? 

a) 50. 
b) 100. 
c) 150. 
d) 200. 



Problems. 

Suppose you observe a Hawkes process with conditional intensity 
l(t,x,y) = 2 + 0.6 ∫ f(t-t') g(x-x',y-y') dN(t',x',y'), on the space-time window 
[0,1]x[0,1] x [0,10], 

S T, 
where f(t) is a density like f(t) = 4exp(-4t), and g(x,y) is a planar density like 
g(x,y) = 3 exp(-3r) / (2π r), where r = √(x2+y2). 

How many points do you expect to observe? 

a) 50. 
b) 100. 
c) 150. 
d) 200. 

20 + 20 x .6 + 20 x .62 + 20 x .63 + ... = 20/(1-.6) = 20/.4 = 50. 



Problems. 

Suppose you observe a Hawkes process with conditional intensity 
l(t,x,y) = 2 + 0.6 ∫ f(t-t') g(x-x',y-y') dN(t',x',y'), on the space-time window 
[0,1]x[0,1] x [0,10], 

S T, 
where f(t) = 4exp(-4t), and
g(x,y) = 3 exp(-3r) / (2π r), where r = √(x2+y2). 

You observe 2 points, at (t,x,y) = (1,.5,.5) and (3,.5,.6). What is the log-likelihood?  

a) log(2) + log(2 + 36 exp(-8.3)/π) – 21.2.
b) log(3.2) + log(2 + 36 exp(-8.3)/π) – 20.  
c) log(3.2) + log(2 + 36 exp(-8.3)/π) – 20. 
d) 2log(2) – 20. 



Problems. 

Suppose you observe a Hawkes process with conditional intensity 
l(t,x,y) = 2 + 0.6 ∫ f(t-t') g(x-x',y-y') dN(t',x',y'), on the space-time window 
[0,1]x[0,1] x [0,10], 

S T, 
where f(t) = 4exp(-4t), and
g(x,y) = 3 exp(-3r) / (2π r), where r = √(x2+y2). 

You observe 2 points, at (t,x,y) = (1,.5,.5) and (3,.5,.6). What is the log-likelihood?  

a) log(2) + log(2 + 36 exp(-8.3)/π) – 21.2.
b) log(3.2) + log(2 + 36 exp(-8.3)/π) – 20.  
c) log(3.2) + log(2 + 36 exp(-8.3)/π) – 20. 
d) 2log(2) – 20. 
∑log(l) - ∫ ldµ = log(2) + log{2 + .6(4exp(-8))(3exp(-.3)/(.2π))} - 20 - .6 - .6 
= log(2) + log(2 + 36 exp(-8.3)/π) – 21.2. 



3. Nonparametric Marsan and Lengliné (2008) estimator.

Marsan and Lengliné (2008) assume g is a step function, and estimate steps bk as parameters.

Setting the partial derivatives of this loglikelihood with respect to the steps bk to zero yields

where |Uk| is the width of step k, for k = 1,2,..., p. This is a system of p equations in p unknowns. 

However, the equations are nonlinear. They depend on 1/l(ti). 

Gradient descent methods: way too slow for large p. 

Marsan and Lengliné (2008) find approximate maximum likelihood estimates using the E-M

method for point processes. You pick initial values of the parameters, then given those, you

know the probability event i triggered event j. Using these, you can weight each pair of points

by its probability and re-estimate the parameters, and repeat until convergence. 

This method works well but is iterative and time-consuming.



Nonparametric Marsan and Lengliné (2008) estimator.

The last step of Marsan and Lengliné uses essentially a histogram estimator.

Others have used slightly different approaches for smoothing.

Lewis and Mohler (2011) use maximum penalized likelihood.

Bacry et al. (2012) use the Laplace transform of the covariance function. 

Adelfio and Chiodi (2015) use a semi-parametric method where the background rate 

l is estimated nonparametrically and the triggering function g parametrically.

There are also standard non-parametric methods for smoothing points generally, using 

splines, kernels, or wavelets. (Brillinger 1997).

Marsan and Lengliné's method is different. It estimates g, not the overall rate.



Applications to earthquakes and US plague. 
USGS Getty Images



Application to Loma Prieta earthquake data.

Loma Prieta earthquake was Mw 6.9 on Oct 17, 1989.

As an illustration, we will estimate g on its 5566 aftershocks M ≥ 3 within 15 months.

(Google images)



Application to Loma Prieta earthquake data. (SCEC.ORG)

Estimated triggering function for 5567 Loma Prieta M ≥ 3 events, 10/16/1989 to 1/17/1990.

Solid curve is the analytic method and dashed curve is Marsan and Lengliné (2008). 

Dotted curves are estimates based on analytic method +/- 1 or 2 SEs, respectively, for light 
grey and dark grey. 

SEs were computed using the SD of analytic estimates in 100 simulations of Hawkes 
processes with triggering functions sampled from the solid curve.



Application to Loma Prieta earthquake data.

Estimated triggering function for Loma Prieta seismicity M ≥ 3, 10/16/1989 to 1/17/1990.

Solid curve is the analytic method and dashed curve is Marsan and Lengliné (2008). 

Dotted curves are estimates based on analytic method +/- 1 or 2 SEs, respectively, for light 
grey and dark grey. 

SEs were computed using the SD of analytic estimates in 100 simulations of Hawkes 
processes with triggering functions sampled from the solid curve.



Application to US plague data. 


