Statistics 222, Spatial Statistics.

Outline for the day:

1. Integral term 1n loglikelihood for Hawkes processes.
2. Estimating Hawkes processes using MLE.

3. Nonparametric estimation.



1. The integral term in the loglikelihood for Hawkes processes.
loglikelihood = ¥; log(A(t; ,x;,y1)) - [JJ A(t,x,y) dxdydt.
The space-time region is B =[0,T] x S.
For a Hawkes process, A(t,x,y) =y p(X,y) + KX i« g(t-t;, X-X;, y-y;), Where p and g are densities.
b IAtxy) dxdydt = [T [ p(x,y) dxdydt + T [JKY ;e g(t-ti, X-X;, y-yi) dxdydt
=p T+ "] Kfp Trag g(t-t', x-x', y-y') dN(t' x",y") dxdydt
interchanging the integrals
=pu T+KE LT [[1pa gt-t', x-x', y-y') dxdydt dN(t' x",y")
changing coordinates, letting u = t-t', v = x-x', w = y-y',
=u T+Kf p™ [5wy) g, v, w) dudvdw dN(t' x',y")
~uT+K [(1) dN(t' x',y")
=u T + KN(B).
This is approximate because typically f* [ [.* g(u,v,w) dudvdw = 1, but instead, we have

b [k oy g(u,v,w) dudvdw which is often close to 1.



Nonparametric Marsan and Lengliné (2008) estimator.

Marsan and Lengliné (2008) assume g is a step function, and estimate steps [ as parameters.

£(0) = Zlog (A7, x3|H 7)) — /UT/;A(L,X H,) dxdt

Setting the partial derivatives of this loglikelihood with respect to the steps f; to zero yields

0=000)/08:= ) K/Xm)—Kn|Uy|,
(1.9)imi—7;€U}

where [U,l is the width of step k, for k = 1,2,..., p. This is a system of p equations in p unknowns.
However, the equations are nonlinear. They depend on 1/A(7;).

Gradient descent methods: way too slow for large p.

Marsan and Lengliné (2008) find approximate maximum likelihood estimates using the E-M
method for point processes. You pick initial values of the parameters, then given those, you
know the probability event i triggered event j. Using these, you can weight each pair of points
by its probability and re-estimate the parameters, and repeat until convergence.

This method works well but is iterative and time-consuming.



Analytic solution.
Set p = n. (p = number of steps in the step function, g, and n = # of observed points.)

Setting the derivatives of the loglikelihood to zero we have the p equations

0=0L0)/08= Y K/Nn)-Kn|Uy,
(1,g):mi—1;€U%
which are p linear equations in terms of 1/A(t;), fori = 1,2, ..., n. (!)
So, if p=n, then we can use these equations to solve for 1/A(t;),
and if we know 1/A(t;), then we know A(T;),

and if we know A(t;), then we can solve for ; because the def. of a Hawkes process is

A7) =p+K) g(rj—m),
i<

which results in n linear equations in the p unknowns f3;, £, ..., B,, when g 1s a step function.



Analytic solution.
We can write the resulting estimator in very condensed form.
Let A = {A(1;),A(12),..., A(Ty)}
Suppose the steps of g have equal widths, [U;l = 1U,l, etc. Call this width U.
Let A;; = the number points 7; such that 7; — 7 is in U;, for i,jin {1,2,...,p}.
Then the loglikelihood derivatives equalling zero can be rewritten
0 = KA(1/A) — Kb,
where b=nU1, with1={1,1,...,1}.
This has solution /A = A1 b, if A is invertible.

Similarly, the Hawkes equation can be rewritten A = u + KA’ B, whose solution is

A

b = (KAT)(A-).

Combining these two underlined formulas yields the estimates

B=(KA") '[1/(A"b) — p]

This is very simple, trivial to program, and rapid to compute.



Analytic solution.
There are problems, however.
1. Estimating n=p steps. High variance.
However, if we can assume g is smooth, then we can smooth our estimates for stability.
2. Need to estimate K and u too.
We can use Marsan and Lengliné's method or take derivatives for these as well.
3. What about spatially-varying steps and unequally sized steps for g?
No problem. The estimation generalizes in a completely obvious way.

4. A can be singular.
We may need better solutions for this.
I let u; = 1j-1; , sorted the u; values, and then used [uy;), u)), etc. as my binwidths, so
each row and column of A would have at least one non-zero entry. If it still isn't singular,
adding in a few random 1's into A often helps.
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B=(KA") '[1/(A"b) — p]



Note: take the simple case of a dataset where point 1 is only influenced by point i-1. This is
basically a renewal process, and we are just estimating a renewal density.

Here A=1,K =1, and we get the density estimator 1/{n(x; — x;.1)}.
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Note: take the simple case of a dataset where point 1 is only influenced by point i-1. This is
basically a renewal process, and we are just estimating a renewal density.
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Computation time and performance comparison.

Test of concept. Examples of exponential, truncated normal, uniform, and Pareto g.
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Computation time and performance comparison.

Triangles = Marsan and Lengliné (2008) method. Circles = analytic method.
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The 1dea is to
let p=n,
let the derivatives of the log-likelihood be zero,
solve for 1/4; and therefore get A;,
and solve for p.
a. One can have major computation time savings from this method.
For datasets of only 100-300 points the savings are negligible.

However, for 5,000 points, the Marsan and Lengliné (2008) algorithm with 100 iterations
takes about 7 hours, whereas the analytic method takes 1.3 min.

This speed facilitates computations like simulation based confidence intervals.
b. How far can this go?
It extends very readily to space-time-magnitude and estimation of p .
Would this work for other types of models too? What are the limits on this method?

c. What about when A is singular? More work is needed.



