Statistics 222, Spatial Statistics.

Outline for the day:

1. Integral term in loglikelihood for Hawkes processes.
2. Estimating Hawkes processes using MLE.
3. Nonparametric estimation.
4. The integral term in the loglikelihood for Hawkes processes.
\log likelihood $=\sum_{\mathrm{i}} \log \left(\lambda\left(\mathrm{t}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)\right)-\iiint \lambda(\mathrm{t}, \mathrm{x}, \mathrm{y}) \mathrm{dxdydt}$.
The space-time region is $\mathrm{B}=[0, \mathrm{~T}] \times \mathrm{S}$.
For a Hawkes process, $\lambda(\mathrm{t}, \mathrm{x}, \mathrm{y})=\mu \rho(\mathrm{x}, \mathrm{y})+\mathrm{K} \sum_{\mathrm{i}: \mathrm{ti}<\mathrm{t}} \mathrm{g}\left(\mathrm{t}-\mathrm{t}_{\mathrm{i}}, \mathrm{x}-\mathrm{x}_{\mathrm{i}}, \mathrm{y}-\mathrm{y}_{\mathrm{i}}\right)$, where ρ and g are densities.
$\int_{0}^{T} \iint \lambda(t, x, y) d x d y d t=\int_{0}^{T} \iint \mu \rho(x, y) d x d y d t+\int_{0}^{T} \iint K \sum_{i: t i<t} g\left(t-t_{i}, x-x_{i}, y-y_{i}\right) d x d y d t$

$$
=\mu \mathrm{T}+\int_{0}^{\mathrm{T}} \iint \mathrm{~K} \int_{\mathrm{B}} 1_{\left\{\mathrm{t}^{\prime}<t\right\}} \mathrm{g}\left(\mathrm{t}-\mathrm{t}^{\prime}, \mathrm{x}-\mathrm{x}^{\prime}, \mathrm{y}-\mathrm{y}^{\prime}\right) \mathrm{dN}\left(\mathrm{t}^{\prime}, \mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right) \mathrm{dxdydt}
$$

interchanging the integrals

$$
=\mu \mathrm{T}+\mathrm{K} \int_{\mathrm{B}} \int_{0}^{\mathrm{T}} \iint 1_{\left\{\mathrm{t}^{\prime}<\mathrm{t}\right\}} \mathrm{g}\left(\mathrm{t}-\mathrm{t}^{\prime}, \mathrm{x}-\mathrm{x}^{\prime}, \mathrm{y}-\mathrm{y}^{\prime}\right) \mathrm{dxdydt} \mathrm{dN}\left(\mathrm{t}^{\prime}, \mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)
$$

$$
\text { changing coordinates, letting } u=t-t^{\prime}, v=x-x^{\prime}, w=y-y^{\prime}
$$

$$
=\mu \mathrm{T}+\mathrm{K} \int_{\mathrm{B}} \int_{0}^{\mathrm{T}-\mathrm{t}^{\prime}} \iint_{S-\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)} \mathrm{g}(\mathrm{u}, \mathrm{v}, \mathrm{w}) \operatorname{dudvdw} \mathrm{dN}\left(\mathrm{t}^{\prime}, \mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)
$$

$$
\sim \mu \mathrm{T}+\mathrm{K} \int_{\mathrm{B}}(1) \mathrm{dN}\left(\mathrm{t}^{\prime}, \mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)
$$

$$
=\mu \mathrm{T}+\mathrm{KN}(\mathrm{~B})
$$

This is approximate because typically $\int_{0}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty} \mathrm{g}(\mathrm{u}, \mathrm{v}, \mathrm{w})$ dudvdw $=1$, but instead, we have $\int_{0}^{T-t^{\prime}} \iint_{S-\left(x^{\prime}, y^{\prime}\right)} g(u, v, w)$ dudvdw which is often close to 1 .

Nonparametric Marsan and Lengliné (2008) estimator.

Marsan and Lengliné (2008) assume g is a step function, and estimate steps β_{k} as parameters.

$$
\ell(\theta)=\sum_{i} \log \left(\lambda\left(\tau_{i}, \mathbf{x}_{\mathbf{i}} \mid \mathcal{H}_{\tau_{i}}\right)\right)-\int_{0}^{T} \int_{S} \lambda\left(t, \mathbf{x} \mid \mathcal{H}_{t}\right) d \mathbf{x} d t
$$

Setting the partial derivatives of this loglikelihood with respect to the steps β_{k} to zero yields

$$
0=\partial \ell(\theta) / \partial \beta_{k}=\sum_{(i, j): \tau_{i}-\tau_{j} \in U_{k}} K / \lambda\left(\tau_{i}\right)-K n\left|U_{k}\right|,
$$

where $\left|U_{k}\right|$ is the width of step k , for $k=1,2, \ldots, p$. This is a system of p equations in p unknowns. However, the equations are nonlinear. They depend on $1 / \lambda\left(\tau_{i}\right)$.

Gradient descent methods: way too slow for large p.
Marsan and Lengliné (2008) find approximate maximum likelihood estimates using the E-M method for point processes. You pick initial values of the parameters, then given those, you know the probability event i triggered event j. Using these, you can weight each pair of points by its probability and re-estimate the parameters, and repeat until convergence.

This method works well but is iterative and time-consuming.

Analytic solution.

Set $p=n .(p=$ number of steps in the step function, g, and $n=\#$ of observed points.)
Setting the derivatives of the loglikelihood to zero we have the p equations

$$
0=\partial \ell(\theta) / \partial \beta_{k}=\sum_{(i, j): \tau_{i}-\tau_{j} \in U_{k}} K / \lambda\left(\tau_{i}\right)-K n\left|U_{k}\right|,
$$

So, if $p=n$, then we can use these equations to solve for $1 / \lambda\left(\tau_{\mathrm{i}}\right)$, and if we know $1 / \lambda\left(\tau_{\mathrm{i}}\right)$, then we know $\lambda\left(\tau_{\mathrm{i}}\right)$, and if we know $\lambda\left(\tau_{\mathrm{i}}\right)$, then we can solve for β_{i} because the def. of a Hawkes process is

$$
\lambda\left(\tau_{j}\right)=\mu+K \sum_{i<j} g\left(\tau_{j}-\tau_{i}\right)
$$

which results in n linear equations in the p unknowns $\beta_{1}, \beta_{2}, \ldots, \beta_{p}$, when g is a step function.

Analytic solution.

We can write the resulting estimator in very condensed form.
Let $\lambda=\left\{\lambda\left(\tau_{1}\right), \lambda\left(\tau_{2}\right), \ldots, \lambda\left(\tau_{n}\right)\right\}$.
Suppose the steps of g have equal widths, $\left|\mathrm{U}_{I}\right|=\left|\mathrm{U}_{2}\right|$, etc. Call this width U .
Let $A_{i j}=$ the number points τ_{k} such that $\tau_{j}-\tau_{k}$ is in U_{i}, for i, j in $\{1,2, \ldots, p\}$.
Then the loglikelihood derivatives equalling zero can be rewritten

$$
0=K A(1 / \lambda)-K b,
$$

where $\mathbf{b}=\mathrm{nU1}$, with $\mathbf{1}=\{1,1, \ldots, 1\}$.
This has solution $\underline{1 / \lambda=A^{-1} b}$, if A is invertible.
Similarly, the Hawkes equation can be rewritten $\lambda=\mu+K A^{T} \boldsymbol{\beta}$, whose solution is

$$
\hat{b}=\left(K A^{T}\right)^{-1}(\lambda-\mu) .
$$

Combining these two underlined formulas yields the estimates

$$
\hat{\beta}=\left(K A^{T}\right)^{-1}\left[1 /\left(A^{-1} b\right)-\mu\right]
$$

This is very simple, trivial to program, and rapid to compute.

Analytic solution.

There are problems, however.

1. Estimating $n=p$ steps. High variance.

However, if we can assume g is smooth, then we can smooth our estimates for stability.
2. Need to estimate K and μ too.

We can use Marsan and Lengliné's method or take derivatives for these as well.
3. What about spatially-varying steps and unequally sized steps for g ?

No problem. The estimation generalizes in a completely obvious way.
4. A can be singular.

We may need better solutions for this.
I let $u_{j}=\tau_{j}-\tau_{j-1}$, sorted the u_{j} values, and then used $\left[u_{(1)}, u_{(2)}\right)$, etc. as my binwidths, so each row and column of A would have at least one non-zero entry. If it still isn't singular, adding in a few random 1's into A often helps.

$$
\hat{\beta}=\left(K A^{T}\right)^{-1}\left[1 /\left(A^{-1} b\right)-\mu\right]
$$

4. A can be singular.

We may need better solutions for this.
I let $\mathrm{u}_{\mathrm{j}}=\tau_{\mathrm{j}}-\tau_{\mathrm{j}-1}$, sorted the u_{j} values, and then used $\left[\mathrm{u}_{(1)}, \mathrm{u}_{(2)}\right)$, etc. as my binwidths, so each row and column of A would have at least one non-zero entry. If it still isn't singular, adding in a few random 1's into A often helps.

$$
\hat{\beta}=\left(K A^{T}\right)^{-1}\left[1 /\left(A^{-1} b\right)-\mu\right]
$$

Note: take the simple case of a dataset where point i is only influenced by point $i-1$. This is basically a renewal process, and we are just estimating a renewal density.

Here $\mathrm{A}=\mathrm{I}, \mathrm{K}=1$, and we get the density estimator $1 /\left\{\mathrm{n}\left(\mathrm{x}_{\mathrm{i}}-\mathrm{X}_{\mathrm{i}-1}\right)\right\}$.

$$
\hat{\beta}=\left(K A^{T}\right)^{-1}\left[1 /\left(A^{-1} b\right)-\mu\right]
$$

Note: take the simple case of a dataset where point i is only influenced by point $i-1$. This is basically a renewal process, and we are just estimating a renewal density.

Here $\mathrm{A}=\mathrm{I}, \mathrm{K}=1$, and we get the density estimator $1 /\left\{\mathrm{n}\left(\mathrm{x}_{\mathrm{i}}-\mathrm{X}_{\mathrm{i}-1}\right)\right\}$.

$$
\hat{\beta}=\left(K A^{T}\right)^{-1}\left[1 /\left(A^{-1} b\right)-\mu\right]
$$

Computation time and performance comparison.

Test of concept. Examples of exponential, truncated normal, uniform, and Pareto g.

u

Computation time and performance comparison.

Triangles $=$ Marsan and Lengliné (2008) method. Circles $=$ analytic method.

The idea is to
let $\mathrm{p}=\mathrm{n}$,
let the derivatives of the log-likelihood be zero,
solve for $1 / \lambda_{\mathrm{i}}$ and therefore get λ_{i},
and solve for β.
a. One can have major computation time savings from this method.

For datasets of only 100-300 points the savings are negligible.
However, for 5,000 points, the Marsan and Lengliné (2008) algorithm with 100 iterations takes about 7 hours, whereas the analytic method takes 1.3 min .

This speed facilitates computations like simulation based confidence intervals.
b. How far can this go?

It extends very readily to space-time-magnitude and estimation of μ.
Would this work for other types of models too? What are the limits on this method?
c. What about when A is singular? More work is needed.

