
Statistics 222, Spatial Statistics. 

Outline for the day:
1. Integral term in loglikelihood for Hawkes processes. 
2. Estimating Hawkes processes using MLE. 
3. Nonparametric estimation. 



1. The integral term in the loglikelihood for Hawkes processes. 

loglikelihood = ∑i log(l(ti,xi,yi)) - ∫∫∫ l(t,x,y) dxdydt. 

The space-time region is B = [0,T] x S. 

For a Hawkes process, l(t,x,y) = µ r(x,y) + K∑i:ti<t g(t-ti, x-xi, y-yi), where r and g are densities.  

∫0T ∫∫ l(t,x,y) dxdydt = ∫0T ∫∫ µ r(x,y) dxdydt + ∫0T ∫∫ K∑i:ti<t g(t-ti, x-xi, y-yi) dxdydt

= µ T + ∫0T ∫∫  K∫B 1{t'<t} g(t-t', x-x', y-y') dN(t',x',y') dxdydt

interchanging the integrals

= µ T + K∫B ∫0T ∫∫ 1{t'<t} g(t-t', x-x', y-y') dxdydt dN(t',x',y') 

changing coordinates, letting u = t-t', v = x-x', w = y-y', 

= µ T + K∫B ∫0T-t' ∫∫S-(x',y') g(u, v, w) dudvdw dN(t',x',y') 

~ µ T + K ∫B(1) dN(t',x',y')

= µ T + KN(B). 

This is approximate because typically ∫0∞ ∫-∞∞ ∫-∞∞ g(u,v,w) dudvdw = 1, but instead, we have 

∫0T-t' ∫ ∫S-(x',y') g(u,v,w) dudvdw which is often close to 1. 



Nonparametric Marsan and Lengliné (2008) estimator.

Marsan and Lengliné (2008) assume g is a step function, and estimate steps bk as parameters.

Setting the partial derivatives of this loglikelihood with respect to the steps bk to zero yields

where |Uk| is the width of step k, for k = 1,2,..., p. This is a system of p equations in p unknowns. 

However, the equations are nonlinear. They depend on 1/l(ti). 

Gradient descent methods: way too slow for large p. 

Marsan and Lengliné (2008) find approximate maximum likelihood estimates using the E-M

method for point processes. You pick initial values of the parameters, then given those, you

know the probability event i triggered event j. Using these, you can weight each pair of points

by its probability and re-estimate the parameters, and repeat until convergence. 

This method works well but is iterative and time-consuming.



Analytic solution.

Set p = n.  (p = number of steps in the step function, g, and n = # of observed points.)

Setting the derivatives of the loglikelihood to zero we have the p equations

which are p linear equations in terms of 1/l(ti), for i = 1,2, ..., n. (!)

So, if p=n, then we can use these equations to solve for 1/l(ti),

and if we know 1/l(ti), then we know l(ti),

and if we know l(ti), then we can solve for bi because the def. of a Hawkes process is

which results in n linear equations in the p unknowns b1, b2, ..., bp, when g is a step function.   



Analytic solution. 

We can write the resulting estimator in very condensed form.

Let l = {l(t1),l(t2),..., l(tn)}.

Suppose the steps of g have equal widths, |U1| = |U2|, etc. Call this width U.

Let Aij = the number points tk such that tj – tk is in Ui, for i,j in {1,2,...,p}.

Then the loglikelihood derivatives equalling zero can be rewritten

0 = KA(1/l) – Kb,

where b = nU1, with 1 = {1,1,...,1}.

This has solution 1/l = A-1 b, if A is invertible.

Similarly, the Hawkes equation can be rewritten l = µ + KATb, whose solution is

= (KAT)-1(l-µ).

Combining these two underlined formulas yields the estimates

. 

This is very simple, trivial to program, and rapid to compute.



Analytic solution. 

There are problems, however. 

1. Estimating n=p steps. High variance. 

However, if we can assume g is smooth, then we can smooth our estimates for stability.

2. Need to estimate K and µ too. 

We can use Marsan and Lengliné's method or take derivatives for these as well.

3. What about spatially-varying steps and unequally sized steps for g? 

No problem. The estimation generalizes in a completely obvious way.

4. A can be singular. 
We may need better solutions for this.
I let uj = tj-tj-1 , sorted the uj values, and then used [u(1), u(2)), etc. as my binwidths, so 
each row and column of A would have at least one non-zero entry. If it still isn't singular,  
adding in a few random 1's into A often helps.
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Note: take the simple case of a dataset where point i is only influenced by point i-1. This is 
basically a renewal process, and we are just estimating a renewal density. 

Here A = I, K = 1, and we get the density estimator 1/{n(xi – xi-1)}.
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Computation time and performance comparison.

Test of concept. Examples of exponential, truncated normal, uniform, and Pareto g.



Computation time and performance comparison.

Triangles = Marsan and Lengliné (2008) method. Circles = analytic method.



The idea is to 

let p=n, 

let the derivatives of the log-likelihood be zero, 

solve for 1/li and therefore get li, 

and solve for b. 

a. One can have major computation time savings from this method. 

For datasets of only 100-300 points the savings are negligible. 

However, for 5,000 points, the Marsan and Lengliné (2008) algorithm with 100 iterations 
takes about 7 hours, whereas the analytic method takes 1.3 min.

This speed facilitates computations like simulation based confidence intervals.

b. How far can this go?

It extends very readily to space-time-magnitude and estimation of µ .

Would this work for other types of models too? What are the limits on this method? 

c. What about when A is singular? More work is needed.


