Statistics 222, Spatial Statistics.

Outline for the day:

- 1. Variance of compound Poisson.
- 2. Gibbs process.
- 3. Strauss process.
- 4. Matern process.
- 5. Hawkes process.
- 6. ETAS.
- 7. Likelihood.

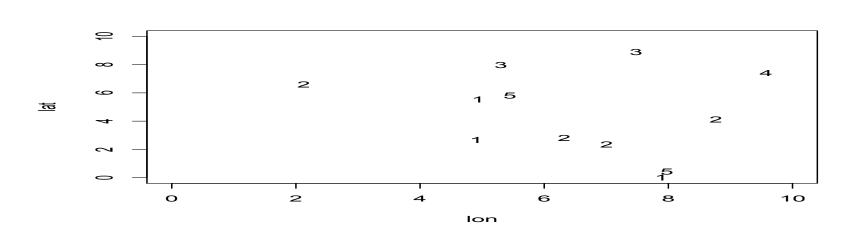
1. Variance of the compound Poisson processes, from last time.

Suppose N is not simple, and instead, it is generated as follows. You first generate a stationary Poisson process M with intensity c, and then for each point τ_i of M, N will have some non-negative number Z_i of points right at τ_i , where Z_i are all iid and independent of M. Then N is a compound Poisson process.

For a compound Poisson process, again the variance \geq the mean.

$$EN(B) = c|B|E(Z)$$
, and

 $V(N(B)) = c|B|V(Z) + c|B|(E(Z))^2 = c|B|E(Z^2) \ge EN(B)$, because, for a non-negative integer-valued random variable $Z, E(Z^2) \ge E(Z)$ with equality iff. Z can only be 0 or 1.



1. Variance of the compound Poisson processes, from last time.

Fix B. Let M denote M(B). For a compound Poisson process,

EN(B) =
$$\sum E(N(B)|m) f(m)$$
, where the sum is from m = 0, 1, 2, ...,
= $\sum E(Z1 + Z2 + ... + Zm) f(m)$
= $\sum (m E(Z)) f(m)$
= $E(Z) \sum m f(m)$
= $E(Z) E(M) = c|B| E(Z)$.

$$\begin{split} E(N(B)^2) &= \sum E(N(B)^2|m) \ f(m) \\ &= \sum E(Z1 + Z2 + ... + Zm)^2 \ f(m) \\ &= \sum (mE(Z^2) + (m^2 - m) \ E(Z)^2) f(m) \\ &= E(Z^2) \sum m f(m) - E(Z)^2 \sum m \ f(m) + E(Z)^2 \sum m^2 \ f(m) \\ &= E(Z^2) \ E(M) - E(Z)^2 \ E(M) + E(Z)^2 \ E(M^2) \\ &= V(Z) E(M) + E(Z)^2 \ E(M^2). \end{split}$$

So
$$V(N(B)) = E(N(B)^2) - (E(N(B)))^2$$

= $V(Z)E(M) + E(Z)^2 E(M^2) - E(M)^2 E(Z)^2$
= $V(Z) E(M) + E(Z)^2 (E(M^2) - E(M)^2)$
= $V(Z) E(M) + E(Z)^2 V(M)$.

M is Poisson, so E(M) = V(M) = c|B|, so $V(N(B)) = c|B| (V(Z) + E(Z)^2) = c|B| E(Z^2) \ge EN(B)$, since $E(Z^2) \ge E(Z)$.

2. Gibbs process.

For any finite collection $(\tau_1, \tau_2, ..., \tau_n)$ of points in space-time, if the joint density is $C(\theta) \exp[-\theta \{\sum_i \psi_1(\tau_i) + \sum_{i,j} \psi_2(\tau_i, \tau_j)\}]$, then N is a Gibbs process.

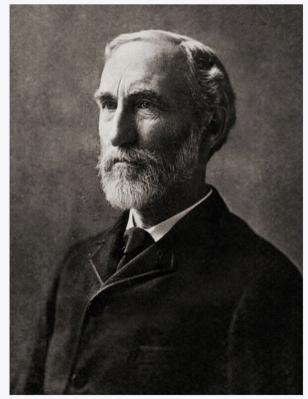
Often $\psi_2(x_i, x_j)$ can be written $\psi(r)$, where r = |x-y|.

Some special cases are important.

a. When $\psi(r) = 0$, there are no interactions and the process is an inhomogeneous Poisson process with intensity $\psi_1(x)$.

b. $\psi(r) = -\log[1-e^{-(r/\sigma)^2}]$ defines a *soft-core* model. Weak repulsion.

Josiah Willard Gibbs



Josiah Willard Gibbs

Born February 11, 1839

New Haven, Connecticut, U.S.

Died April 28, 1903 (aged 64)

New Haven, Connecticut, U.S.

2. Gibbs process, continued.

 $\psi_2(r)$ is called the *interaction potential*.

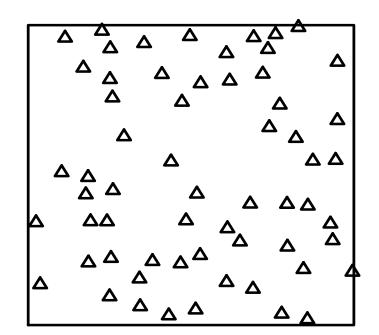
c.
$$\psi(r) = \infty$$
 for $r \le \sigma$
= 0 for $r > \sigma$

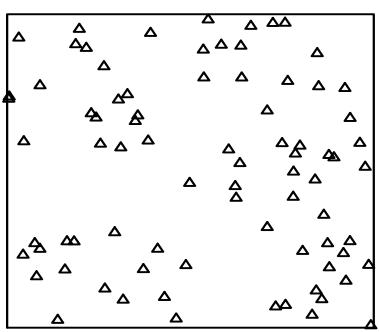
defines a hard-core process.

d. $\psi(r) = (\sigma/r)^n$ is an intermediate choice between the soft-core and hard-core models.

3. Strauss process.

$$\psi_1(x) = \alpha$$
, and $\psi_2(r) = \beta$, for $r \le R$, $\psi_2(r) = 0$, for $r > R$.

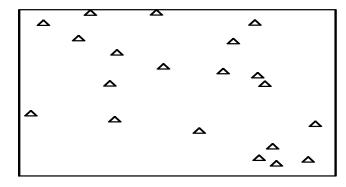


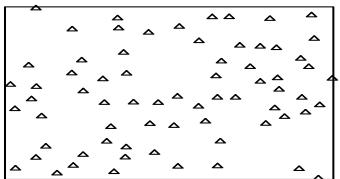


- 4. Matern process.
- The Matern(I) process is generated as follows.
- a) Generate M according to a stationary Poisson process.
- b) Let N be all points of M that are not within some fixed distance r of any other point of M.

The Matern(II) process is generated a bit differently.

- a) Generate points τ_1 , τ_2 , ... according to a stationary Poisson process.
- b) For i=1,2,..., keep point i if there is no *previous* kept point τ_j with $|\tau_i \tau_j| \le r$.





5. Hawkes process.

A Hawkes process or self-exciting process has conditional intensity

$$\lambda(t,x,y) = \mu(x,y) + \kappa \int_{t' < t} g(t-t',x-x',y-y') dN(t',x',y')$$

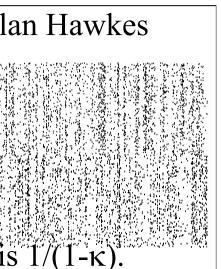
 $= \mu(x,y) + \kappa \sum_{\{t',x',v':\ t' < t\}} g(t-t',x-x',y-y').$

g is called the *triggering function* or triggering density and k is the productivity.

If g is a density function, then κ is the expected

number of points triggered directly by each point.

Each background point, associated with $\mu(x,y)$, is expected to generate $\kappa + \kappa^2 + \kappa^3 + ... = 1/(1-\kappa) - 1$ triggered points, so the exp. fraction of background pts is $1/(1-\kappa)$.



6. ETAS process.

An *Epidemic-Type Aftershock Sequence (ETAS)* process is a marked version of the Hawkes process, where points have different productivities depending on their magnitudes. Ogata (1988, 1998) introduced

$$\lambda(t,x,y) = \mu(x,y) + \sum_{\{t',x',y':\ t' < t\}} g(t-t',x-x',y-y')h(m'),$$

where $\mu(x,y)$ is estimated by smoothing observed large earthquakes, $h(m) = \kappa e^{\alpha(m-m0)}$, where m0 is the catalog cutoff magnitude, and $g(t,x,y) = g_1(t) g_2(r^2)$, where $r^2 = ||(x,y)||^2$, and g_1 and g_2 are power-law or *Pareto* densities, $g_1(t) = (p-1) c^{p-1} (t+c)^{-p}$. $g_2(r^2) = (q-1) d^{q-1} (r^2+d)^{-q}$.

Yosihiko Ogata

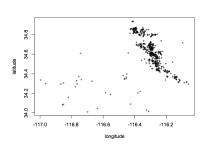


Figure 3: Recorded epicenters of Hector Mine M ≥ 3.0 earthquakes from 10/16/199 to 12/23/2000, from SCSN.

An alternative is where g2 is exponential or sum of exponentials.

7. Likelihood.

For iid draws $t_1, t_2, ..., t_n$, from some density $f(\theta)$, the likelihood is simply $L(\theta) = f(t_1; \theta)^x f(t_2; \theta)^x ...^x f(t_n; \theta) = \prod f(t_i; \theta)$.

This is the probability density of observing $\{t_1,t_2,...,t_n\}$, as a function of the parameter θ .

For a stationary Poisson process with intensity $\lambda(\theta)$, on [0,T], the likelihood of observing the points $\{\tau_1,\,\tau_2,...,\,\tau_n\}$ is simply $\lambda(\tau_1) \times \lambda(\tau_2) \times ... \times \lambda(\tau_n) \times \exp\{-A(\tau_1)\} \times \exp\{-(A(\tau_2)-A(\tau_1))\} \times ... \times \exp\{-(A(T)-A(\tau_n))\},$ $= \prod \lambda(\tau_i) \exp\{-A(T)\},$ where $A(t) = \int_0^t \lambda(t) dt$.

P{k points in (τ_1, τ_2) } is exp(-B) B^k/k! = exp(-B) for k = 0, where B = $\int_{\tau_1}^{\tau_2} \lambda(t) dt$.

7. Likelihood, continued.

For a stationary Poisson process with intensity $\lambda(\theta)$, on [0,T], the likelihood of observing the points $\{\tau_1,\,\tau_2,...,\,\tau_n\}$ is simply $\lambda(\tau_1)^x \lambda(\tau_2)^x ...^x \lambda(\tau_n)^x$ $\exp\{-A(\tau_1)\}^x \exp\{-(A(\tau_2)-A(\tau_1))\}^x ...^x \exp\{-(A(T)-A(\tau_n))\},$ $= \prod \lambda(\tau_i) \exp\{-A(T)\},$ where $A(t) = \int_0^t \lambda(t) dt.$ $P\{k \text{ points in } (\tau_1,\,\tau_2)\} \text{ is } \exp(-B) B^k/k! = \exp(-B) \text{ for } k = 0,$ where $B = \int_{\tau_1}^{\tau_2} \lambda(t) dt.$

So the log likelihood is $\sum \log(\lambda(\tau_i))$ -A(T). In the spatial-temporal case, the log likelihood is simply $\sum \log(\lambda(\tau_i)) - \int \lambda(t,x,y) dt dx dy$.

8. Questions.

The difference between ETAS and a Hawkes process is ...

- a) an ETAS process is more strongly clustered.
- b) the points of an ETAS process all occur at different locations.
- c) the points of an ETAS process all have different productivity.
- d) the points of an ETAS process all have different triggering functions.

8. Questions.

The difference between ETAS and a Hawkes process is ...

- a) an ETAS process is more strongly clustered.
- b) the points of an ETAS process all occur at different locations.
- c) the points of an ETAS process all have different productivity.
- d) the points of an ETAS process all have different triggering functions.
- Which of the following can possibly have two points within distance .01 of each other?
- a) a hardcore process with $\sigma = .01$.
- b) a Strauss process with R = .01.
- c) a Matern I process with r = .01.
- d) a Matern II process with r = .01.

8. Questions.

The difference between ETAS and a Hawkes process is ...

- a) an ETAS process is more strongly clustered.
- b) the points of an ETAS process all occur at different locations.
- c) the points of an ETAS process all have different productivity.
- d) the points of an ETAS process all have different triggering functions.
- Which of the following can possibly have two points within distance .01 of each other?
- a) a hardcore process with $\sigma = .01$.
- b) a Strauss process with R = .01.
- c) a Matern I process with r = .01.
- d) a Matern II process with r = .01.

9. Code. install.packages("spatstat") library(spatstat) ## STRAUSS process z = rStrauss(100, 0.7, 0.05)plot(z, pch=2, cex=.5)## HARDCORE process z = rHardcore(100,0.05)plot(z, pch=2, cex=.5)## MATERN(I). z = rMaternI(20,.05)plot(z, pch=2, cex=.5)

```
9. Code.
## MATERN(II)
z = rMaternII(100,.05)
plot(z,pch=2,cex=.5)
## HAWKES.
install.packages("hawkes")
library(hawkes)
lambda0 = c(0.2,0.2)
alpha = matrix(c(0.5,0,0,0.5),byrow=TRUE,nrow=2)
beta = c(0.7,0.7)
horizon = 3600
h = simulateHawkes(lambda0,alpha,beta,horizon)
plot(c(0,3600),c(0,3),type="n",xlab="t",ylab="x")
points(h[[1]],.5+runif(length(h[[1]])),pch=2,cex=.1)
points(h[[2]],1.5+runif(length(h[[2]])),pch=3,cex=.1)
```