Statistics 222, Spatial Statistics.

Outline for the day:

1. Purely spatial processes, Papangelou intensity and Georgii Zessin Nguyen.
2. Kernel smoothing.
3. F, G, J, K, and L functions.
4. Exercises.
5. Purely spatial processes, Papangelou intensity and the Georgii-Zessin Nguyen formula.
For point processes in R^{2}, there is no natural ordering as there is in time. One could just use the x -coordinate in place of time and define a conditional intensity, but most models for spatial processes would be very awkward to define this way.
Instead, a more natural and useful tool is the Papangelou intensity, $\lambda(\mathrm{x}, \mathrm{y})$, which is the conditional rate of points around location (x, y), given information on everywhere else. Letting
$1(\theta)=\sum \log \left(\lambda\left(\tau_{\mathrm{i}}\right)\right)-\int \lambda(\mathrm{x}, \mathrm{y}) \mathrm{dx} \mathrm{dy}$,
where $\lambda(\mathrm{x}, \mathrm{y})$ is the Papangelou intensity,
$1(\theta)$ is called the pseudo-loglikelihood.
A key formula for space-time point processes is called the martingale formula: for any predictable function $f(t, x, y)$,
$E \int f(t, x, y) d N=E \int f(t, x, y) \lambda(t, x, y) d \mu$.
$=E \sum_{i} f\left(\mathrm{t}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)=\mathrm{E} \int \mathrm{f}(\mathrm{t}, \mathrm{x}, \mathrm{y}) \lambda(\mathrm{t}, \mathrm{x}, \mathrm{y}) \mathrm{dt} \mathrm{dx} d \mathrm{~d}$
For spatial point processes the corresponding formula,
$E \int f(x, y) d N=E \int f(x, y) \lambda(x, y) d x d y$
is called the Georgii-Zessin-Nguyen formula.
When $\mathrm{f}=1$, this means $\operatorname{EN}(\mathrm{B})=\mathrm{E} \int \lambda d \mu$.
6. Kernel smoothing.

A simple way to start summarizing a spatial point process is by kernel smoothing.
Suppose your observation region is B.
Let $\mathrm{k}(\mathrm{x}, \mathrm{y})$ be a spatial density function, called a kernel, and construct, for each location (x,y),
$\lambda^{\prime}(\mathrm{x}, \mathrm{y})=\int_{\mathrm{B}} \mathrm{k}\left(\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)-(\mathrm{x}, \mathrm{y})\right) \mathrm{dN}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right) / \rho(\mathrm{x}, \mathrm{y})$, where $\rho(\mathrm{x}, \mathrm{y})=\int_{\mathrm{B}} \mathrm{k}\left(\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)-(\mathrm{x}, \mathrm{y})\right) d \mathrm{x}^{\prime}$ dy' is an edge correction term.

The resulting function $\lambda^{\wedge}(\mathrm{x}, \mathrm{y})$ is a natural estimator of $\lambda(\mathrm{x}, \mathrm{y})$ and, when N is a Poisson process, can be an asymptotically unbiased estimator of $\lambda(\mathrm{x}, \mathrm{y})$.

3. F, G, J, K, and L functions.

Let $\mathrm{F}(\mathrm{r})$ be the probability that the distance from a randomly chosen location to its nearest point of the process is $\leq \mathrm{r}$.
Let $\mathrm{G}(\mathrm{r})$ be the probability that the distance from a randomly chosen point to its nearest neighbor is $\leq \mathrm{r}$.
F is the empty space function and G is the nearest neighbor distribution function.
Matern (1971) showed that for a homogeneous Poisson process, $\mathrm{F}(\mathrm{r})=\mathrm{G}(\mathrm{r})=1-\exp \left(-\lambda \pi \mathrm{r}^{2}\right)$.

Marie-Collette van Lieshout
Let $\mathrm{J}(\mathrm{r})=(1-\mathrm{G}(\mathrm{r})) /(1-\mathrm{F}(\mathrm{r}))$, for any r such that $\mathrm{F}(\mathrm{r})<1$.
$\mathrm{J}>1$ indicates inhibition, and $\mathrm{J}<1$ indicates clustering.
For a stationary Poisson process with rate μ, let
$\mathrm{K}(\mathrm{r})=1 / \mu \mathrm{E}(\#$ of other points within distance r of a randomly chosen point).
K is the reduced $2^{\text {nd }}$ moment measure or Ripley's K-function (Ripley, 1976).
van Lieshout, M.C. (2010). A J-function for inhomogeneous point processes.
Statistica Neerlandica, 65(2), 183-201.
and references therein gives extensions to the inhomogeneous Poisson process and to marked point processes.

F, G, J, K, and L functions, continued.

F, G, J, K, and L functions, continued.
$\mathrm{K}(\mathrm{r})=1 / \mu \mathrm{E}(\#$ of other points within distance r of a randomly chosen point $)$.
K is estimated in the obvious way using data, but various edge correction ideas are available.

For a stationary Poisson process in $\mathrm{R}^{2}, \mathrm{~K}(\mathrm{r})=\pi \mathrm{r}^{2}$, so one may consider $\mathrm{L}(\mathrm{r})=\sqrt{ }(\mathrm{K}(\mathrm{r}) / \pi)$.
For a stationary Poisson process in $R^{2}, L(r)-r=0$ and $L^{\wedge}(r)-r$ should be approx. 0 .

4. Exercises.

Suppose N is a spatial point process with clustering for distances $\leq \mathrm{d}$. Let $\mathrm{F}(\mathrm{r})$ be the empty space function and let $\mathrm{G}(\mathrm{r})$ be the nearest neighbor distribution function.
Which of the following is true.
a. $F(d)=G(d)$.
b. $F(d)<G(d)$.
c. $F(d)>G(d)$
4. Exercises.

Suppose N is a spatial point process with clustering for distances $\leq \mathrm{d}$. Let $\mathrm{F}(\mathrm{r})$ be the empty space function and let $\mathrm{G}(\mathrm{r})$ be the nearest neighbor distribution function.
Which of the following is true.
a. $F(d)=G(d)$.
b. $F(d)<G(d)$.
c. $F(d)>G(d)$

Entering data and kernel smoothing example.
\#\# First, input 54 points using the mouse.
$\mathrm{n}=54$
$\operatorname{plot}(c(0,1), c(0,1)$, type="n",xlab="longitude",ylab="latitude", main="locations")
$\mathrm{x} 1=\operatorname{rep}(0, \mathrm{n})$
$y 1=\operatorname{rep}(0, n)$
for(i in $1: n$) $\{$
$\mathrm{z} 1=$ locator (1)
$\mathrm{x} 1[\mathrm{i}]=\mathrm{z} 1 \$ \mathrm{x}$
$y 1[i]=z 1 \$ y$ points(x1[i],yl[i])
\}

\#\#\#\#\# PLOT THE POINTS WITH A 2D KERNEL SMOOTHING IN

 GREYSCALE PLUS A LEGENDlibrary(splancs)
bdw $=\operatorname{sqrt}\left(\mathrm{bw} . \operatorname{nrd} 0(\mathrm{x} 1)^{\wedge} 2+\mathrm{bw} . \operatorname{nrd} 0(\mathrm{y} 1)^{\wedge} 2\right)$ \#\# possible default bandwidth $\mathrm{b} 1=$ as.points $(\mathrm{x} 1, \mathrm{y} 1)$
bdry $=\operatorname{matrix}(c(0,0,1,0,1,1,0,1,0,0)$, ncol $=2$, byrow $=T)$
$\mathrm{z}=$ kernel2d(b1,bdry,bdw)
attributes(z)
$\operatorname{par}(\mathrm{mfrow}=\mathrm{c}(1,2))$
image $(z, c o l=\operatorname{gray}((64: 20) / 64), x l a b=" k m$ E of origin",ylab="km N of origin")
points(bl)
$x 4=\operatorname{seq}(\min (z \$ z), \max (z \$ z)$, length $=100)$
$\operatorname{plot}(c(0,10), c(.8 * \min (x 4), 1.2 * \max (x 4))$, type="n", axes=F,xlab="",ylab="")
image(c(-1:1),x4,matrix(rep(x4,2),ncol=100,byrow=T), add=T,col=gray $((64: 20) / 64))$
$\operatorname{text}(2, \min (x 4)$, as.character(signif(min(x4),2)), cex=1)
text(2,(max $(x 4)+\min (x 4)) / 2$,
as.character $(\operatorname{signif}((\max (x 4)+\min (x 4)) / 2,2))$, cex $=1)$
$\operatorname{text}(2, \max (x 4)$, as.character(signif(max$(x 4), 2)), \operatorname{cex}=1)$
$\operatorname{mtext}(\mathrm{s}=3, \mathrm{l}=-3, \mathrm{at}=1$,"density $(\mathrm{pts} / \mathrm{km} \wedge 2)$ ")
library(spatstat)
$\mathrm{b} 2=\operatorname{as} . p p p(\mathrm{~b} 1, \mathrm{c}(0,1,0,1))$
$\mathrm{k}=\operatorname{Kest}(\mathrm{b} 2$, correction="border")
plot(k, main="K function")
plot(k, sqrt(./pi)-r ~r, ylab="L(r)-r", main="L function",legend=F)
$\operatorname{par}(m f r o w=c(1,3))$
plot(Fest(b2,correction="border"),main="") plot(Gest(b2,correction="border"),main="") plot(Jest(b2,correction="border"),main="")

