Statistics 222, Spatial Statistics.

Outline for the day:

- 1. Purely spatial processes, Papangelou intensity and Georgii Zessin Nguyen.
- 2. Kernel smoothing.
- 3. F, G, J, K, and L functions.
- 4. Exercises.

1. Purely spatial processes, Papangelou intensity and the Georgii-Zessin Nguyen formula.

For point processes in R^2 , there is no natural ordering as there is in time. One could just use the x-coordinate in place of time and define a conditional intensity, but most models for spatial processes would be very awkward to define this way.

Instead, a more natural and useful tool is the Papangelou intensity, $\lambda(x,y)$, which is the conditional rate of points around location (x,y), given information on everywhere else. Letting

 $l(\theta) = \sum \log(\lambda(\tau_i)) - \int \lambda(x,y) \, dx \, dy,$

where $\lambda(x,y)$ is the Papangelou intensity,

 $l(\theta)$ is called the *pseudo-loglikelihood*.

A key formula for space-time point processes is called the *martingale formula*: for any predictable function f(t,x,y),

 $E \int f(t,x,y) dN = E \int f(t,x,y) \lambda(t,x,y) d\mu.$

= E
$$\sum_{i} f(t_i, x_i, y_i) = E \int f(t, x, y) \lambda(t, x, y) dt dx dy$$

For spatial point processes the corresponding formula,

 $E \int f(x,y) dN = E \int f(x,y) \lambda(x,y) dx dy$

is called the Georgii-Zessin-Nguyen formula.

When f = 1, this means $EN(B) = E \int \lambda d\mu$.

2. Kernel smoothing.

A simple way to start summarizing a spatial point process is by kernel smoothing.

Suppose your observation region is B.

Let k(x,y) be a spatial density function, called a kernel, and construct, for each location (x,y),

 $\lambda^{\hat{}}(x,y) = \int_{B} k((x',y') - (x,y)) dN(x',y') / \rho(x,y),$ where $\rho(x,y) = \int_{B} k((x',y') - (x,y)) dx' dy'$ is an edge correction term.

The resulting function $\lambda^{(x,y)}$ is a natural estimator of $\lambda(x,y)$ and, when N is a Poisson process, can be an asymptotically unbiased estimator of $\lambda(x,y)$.

3. F, G, J, K, and L functions.

Let F(r) be the probability that the distance from a randomly chosen location to its nearest *point* of the process is $\leq r$.

Let G(r) be the probability that the distance from a randomly chosen *point* to its nearest neighbor is $\leq r$. F is the empty space function and G is the nearest neighbor distribution function.

Matern (1971) showed that for a homogeneous Poisson process, $F(r) = G(r) = 1 - \exp(-\lambda \pi r^2)$.

eighbor

Marie-Collette van Lieshout

Let J(r) = (1-G(r)) / (1-F(r)), for any r such that F(r) < 1. J > 1 indicates inhibition, and J < 1 indicates clustering. For a stationary Poisson process with rate μ , let $K(r) = 1/\mu E(\# \text{ of other points within distance } r \text{ of a randomly chosen point}).$ K is the reduced 2^{nd} moment measure or *Ripley*'s K-function (Ripley, 1976). van Lieshout, M.C. (2010). A *J*-function for inhomogeneous point processes. *Statistica Neerlandica*, 65(2), 183-201. and references therein gives extensions to the inhomogeneous Poisson process and

to marked point processes.

F, G, J, K, and L functions, continued.

ſ

ľ

F, G, J, K, and L functions, continued.

 $K(r) = 1/\mu E(\# of other points within distance r of a randomly chosen point).$

K is estimated in the obvious way using data, but various edge correction ideas are available.

For a stationary Poisson process in R², $K(r) = \pi r^2$, so one may consider $L(r) = \sqrt{(K(r)/\pi)}$.

For a stationary Poisson process in R^2 , L(r) - r = 0 and $L^{(r)}$ -r should be approx. 0.

4. Exercises.

Suppose N is a spatial point process with clustering for distances $\leq d$. Let F(r) be the empty space function and let G(r) be the nearest neighbor distribution function.

Which of the following is true.

a. F(d) = G(d).
b. F(d) < G(d).
c. F(d) > G(d)

4. Exercises.

Suppose N is a spatial point process with clustering for distances \leq d. Let F(r) be the empty space function and let G(r) be the nearest neighbor distribution function.

Which of the following is true.

a. F(d) = G(d).
b. F(d) < G(d).
c. F(d) > G(d)

Entering data and kernel smoothing example.

```
## First, input 54 points using the mouse.
n = 54
plot(c(0,1),c(0,1),type="n",xlab="longitude",ylab="latitude",
                   main="locations")
 x_1 = rep(0,n)
 y_1 = rep(0,n)
 for(i in 1:n){
 z_1 = locator(1)
 x1[i] = z1$x
 y_1[i] = z_1 y_1
 points(x1[i],y1[i])
```

PLOT THE POINTS WITH A 2D KERNEL SMOOTHING IN GREYSCALE PLUS A LEGEND

library(splancs)

 $bdw = sqrt(bw.nrd0(x1)^2+bw.nrd0(y1)^2)$ ## possible default bandwidth

```
b1 = as.points(x1,y1)
```

```
bdry = matrix(c(0,0,1,0,1,1,0,1,0,0),ncol=2,byrow=T)
```

```
z = kernel2d(b1,bdry,bdw)
```

attributes(z)

```
par(mfrow=c(1,2))
```

points(b1)

```
x4 = seq(min(z$z),max(z$z),length=100)
```

```
plot(c(0,10),c(.8*min(x4),1.2*max(x4)),type="n",
axes=F,xlab="",ylab="")
image(c(-1:1),x4,matrix(rep(x4,2),ncol=100,byrow=T),
add=T,col=gray((64:20)/64))
text(2,min(x4),as.character(signif(min(x4),2)),cex=1)
text(2,(max(x4)+min(x4))/2,
as.character(signif((max(x4)+min(x4))/2,2)),cex=1)
text(2,max(x4),as.character(signif(max(x4),2)),cex=1)
text(2,max(x4),as.character(signif(max(x4),2)),cex=1)
mtext(s=3,l=-3,at=1,"density (pts/km^2)")
```

```
library(spatstat)
b2 = as.ppp(b1,c(0,1,0,1))
k = Kest(b2,correction="border")
plot(k, main="K function")
plot(k, sqrt(./pi)-r ~ r, ylab="L(r)-r", main="L function",legend=F)
```

par(mfrow=c(1,3))
plot(Fest(b2,correction="border"),main="")
plot(Gest(b2,correction="border"),main="")
plot(Jest(b2,correction="border"),main="")