Statistics 222, Spatial Statistics.

Outline for the day:

1. Irregular boundaries.

2. Exponential density in the plane.

3. Review exercises.

4. Nonparametric estimation of Hawkes models.

5. Application of nonparametric estimates to earthquakes and plague.

1. Modifying F,G,J,K,L functions to deal with irregular boundaries 1s
in the file custom obs window jkl thanks to Michael Tzen. It 1s
on the course site.



2. Exponential density in the plane.
I originally had this.

### Fitting a Pseudo-Likelihood model.

## I'm using the model lambda_p (zlz_1,...,z_k) =

## mu + alpha x + beta y + gamma SUM_{i =1 to k} al exp{-al D(z_i,z)}
## where z = (x,y), and where D means distance.

## So, if gamma is positive, then there is clustering; otherwise inhibition.

But g(r) = a; exp(-a; r) is actually not a density.
g(t) = a; exp(-a, t) is a density, because [, a; exp(-a; t) dt =1, for a; > 0,
but not [ [a, exp(-a, r) dx dy.

a; exp(-a; r) / (27w r) is a spatial density, because

ffa, exp(-a; 1)/ (2mr) dx dy = [y¥* [o* a; exp(-a; r) / (27 r) r dr dg
= [o* a; exp(-a; r) dr

=1.

So I should fit lambda_p (zlz_1, ...,z_Kk) =
## mu + alpha x + beta y + gamma SUM_{i =1 to k} al/2x exp{-al D(z_i,z)}/D(z_i,z).
This is in the current version of day08.r.



2. Problems.

Suppose you observe a Poisson process with rate u on the space-time window
[0,1]x[0,1] x [0,10], and it happens to have 5 points.

S T.
What is the log-likelihood, 1(z)?

a)Su+ 10 exp(n).
b) 5log(u) - 10 u.
c) 5+ 10 log(n).

d) S exp(u) + 5 log(n).
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Suppose you observe a Poisson process with rate u on the space-time window
[0,1]x[0,1] x [0,10], and it happens to have 5 points.
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Problems.

Suppose you observe a Poisson process with rate 3t on the space-time window
[0,1]x[0,1] x [0,10].

S T.
How many points do you expect to observe?

a) 50.

b) 100.
c) 150.
d) 200.



Problems.

Suppose you observe a Poisson process with rate 3t on the space-time window
[0,1]x[0,1] x [0,10].

S T.
How many points do you expect to observe?

a) 50.

b) 100.
¢) 150.
d) 200.

J/[3tdx dy dt = [3t dt = 3t%/2 ],'°=300/2 — 0 = 150.



Problems.

Suppose you observe a Hawkes process with conditional intensity
Mtxy) =2+ 0.6 [f(t-t") g(x-x'",y-y") AN(t' x',y"), on the space-time window
[0,1]x[0,1] x [0,10],

S T,
where f(t) is a density like f(t) = 4exp(-4t), and g(x,y) is a planar density like
g(x,y) =3 exp(-3r) / (2 r), where r = \/(X2+y2).

How many points do you expect to observe?

a) 50.

b) 100.
c) 150.
d) 200.



Problems.

Suppose you observe a Hawkes process with conditional intensity
Mtxy) =2+ 0.6 [f(t-t") g(x-x'",y-y") AN(t' x',y"), on the space-time window
[0,1]x[0,1] x [0,10],

S T,
where f(t) is a density like f(t) = 4exp(-4t), and g(x,y) is a planar density like
g(x,y) =3 exp(-3r) / (2 r), where r = \/(X2+y2).

How many points do you expect to observe?

a) 50.

b) 100.
c) 150.
d) 200.

20+20+.6 +20 x.62+20*.6°+ ... = 20/(1-.6) = 20/.4 = 50.



Problems.

Suppose you observe a Hawkes process with conditional intensity
Mtxy) =2+ 0.6 [f(t-t") g(x-x'",y-y") AN(t' x',y"), on the space-time window
[0,1]x[0,1] x [0,10],
S T,
where f(t) = 4exp(-4t), and
g(x,y) =3 exp(-3r) / (2 r), where r = \/(X2+y2).

You observe 2 points, at (t,x,y) = (1,.5,.5) and (3,.5,.6). What is the log-likelihood?

a) log(2) + log(2 + 36 exp(-8.3)/m) — 21.2.
b) log(3.2) + log(2 + 36 exp(-8.3)/m) — 20.
c) log(3.2) + log(2 + 36 exp(-8.3)/m) — 20.
d) 2log(2) — 20.



Problems.

Suppose you observe a Hawkes process with conditional intensity
Mtxy) =2+ 0.6 [f(t-t") g(x-x'",y-y") AN(t' x',y"), on the space-time window
[0,1]x[0,1] x [0,10],
S T,
where f(t) = 4exp(-4t), and
g(x,y) =3 exp(-3r) / (2 r), where r = \/(X2+y2).

You observe 2 points, at (t,x,y) = (1,.5,.5) and (3,.5,.6). What is the log-likelihood?

a) log(2) + log(2 + 36 exp(-8.3)/m) — 21.2.

b) log(3.2) + log(2 + 36 exp(-8.3)/m) — 20.

c) log(3.2) + log(2 + 36 exp(-8.3)/m) — 20.

d) 2log(2) — 20.

Ylog(X) - [Adu =1og(2) + log{2 + .6(4exp(-8))(3exp(-.3)/(2m)} -20- .6 - .6
= log(2) + log(2 + 36 exp(-8.3)/m) — 21.2.



Nonparametric estimation of Hawkes and ETAS processes.

Let x mean spatial coordinates = (X,y).
Hawkes processes have A(t,x) = u(x) + K ). g(t-t;, x-x,).

e An ETAS model may be written

A(t,x|He) = pu(x) + K Z g(t — ti, x — xj, m;),

iti<t

with triggering function

g(t—t;,x—x;, m;) = exp{a(m;—Mo)}(t—ti+c) ~P(|[x—xi|[*+d) 9.

with e.g. g(u, x ; m;) = (ute)® exp{a(m;-M)} (|)x[|* + d).

These ETAS models were introduced by Ogata (1998).

Instead of estimating g parametrically, one can estimate g nonparametrically,
using the method of Marsan and Lengline (2008), which they call
Model Independent Stochastic Declustering (MISD).
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Nonparametric estimation of Hawkes and ETAS processes.

Model Independent Stochastic Declustering

e The method of Marsan and Lengliné (2008):
At myx, y[He) = plx,y) + Y k(m)g(t — 5)f(x — X,y — ),
Jji<t

e Maximizes the expectation of the complete data log-likelihood
and assigns probabilities that a child event / is caused by an

ancestor event j.

Expectation Step

o — g(u)f(x,y)
T ulx,y) + Y g(u)f(x,y)’
b — pu(x, y) |
Cou(x,y) + Y g(u)f(x,y)




Nonparametric estimation of Hawkes and ETAS processes.

Gordon et al. (2017) let the triggering function, g,

depend on magnitude, sub-region, distance, and angular
separation from the location (x, y) in question to the
triggering event.

At m, x, y[He) = plx,y) + Y (m))g(t — 6)f(x — x5,y — yji &5, m)),

Jiti<t

Josh Gordon



Nonparametric Marsan and Lengliné (2008) estimator.

Marsan and Lengliné (2008) assume g is a step function, and estimate steps [ as parameters.

£(0) = Zlog (A7, x3|H 7)) — /UT/;A(L,X H,) dxdt

Setting the partial derivatives of this loglikelihood with respect to the steps f; to zero yields

0=000)/08:= ) K/Xm)—Kn|Uy|,
(1.9)imi—7;€U}

where [U,l is the width of step k, for k = 1,2,..., p. This is a system of p equations in p unknowns.
However, the equations are nonlinear. They depend on 1/A(7;).

Gradient descent methods: way too slow for large p.

Marsan and Lengliné (2008) find approximate maximum likelihood estimates using the E-M
method for point processes. You pick initial values of the parameters, then given those, you
know the probability event i triggered event j. Using these, you can weight each pair of points
by its probability and re-estimate the parameters, and repeat until convergence.

This method works well but is iterative and time-consuming.



Nonparametric Marsan and Lengliné (2008) estimator.

The last step of Marsan and Lenglin€ uses essentially a histogram estimator.

Others have used slightly different approaches for smoothing.
Lewis and Mohler (2011) use maximum penalized likelihood.
Bacry et al. (2012) use the Laplace transform of the covariance function.
Adelfio and Chiodi (2015) use a semi-parametric method where the background rate
A 1s estimated nonparametrically and the triggering function g parametrically.

There are also standard non-parametric methods for smoothing points generally, using
splines, kernels, or wavelets. (Brillinger 1997).

Marsan and Lengliné's method is different. It estimates g, not the overall rate.



Applications to earthquakes and US plague.

USGS Getty Images




Application to Loma Prieta earthquake data.

Loma Prieta earthquake was Mw 6.9 on Oct 17, 1989.

As an illustration, we will estimate g on its 5566 aftershocks M = 3 within 15 months.
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Application to Loma Prieta earthquake data. (SCEC.ORQG)
Estimated triggering function for 5567 Loma Prieta M = 3 events, 10/16/1989 to 1/17/1990.
Solid curve is the analytic method and dashed curve is Marsan and Lengliné (2008).

Dotted curves are estimates based on analytic method +/- 1 or 2 SEs, respectively, for light
grey and dark grey.

SEs were computed using the SD of analytic estimates in 100 simulations of Hawkes
processes with triggering functions sampled from the solid curve.
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Application to Loma Prieta earthquake data.
Estimated triggering function for Loma Prieta seismicity M = 3, 10/16/1989 to 1/17/1990.
Solid curve is the analytic method and dashed curve is Marsan and Lengliné (2008).

Dotted curves are estimates based on analytic method +/- 1 or 2 SEs, respectively, for light
grey and dark grey.

SEs were computed using the SD of analytic estimates in 100 simulations of Hawkes
processes with triggering functions sampled from the solid curve.
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Application to US plague data.
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Figure 4: (a) Onset dates of reported and confirmed occurrences of plague in the United States from
1900-2012, according to data from the CDC. The y-coordinates are scattered uniformly at random
on the y-axis for ease of visualization. (b) Estimated triggering function, g, for the reported onset
times of U.S. plague cases. (c) Estimated triggering function g, for U.S. plague data, for intervals
up to 20 days. In (b) and (c), the solid curves correspond to equation (9), the dashed curves result
from the method of Marsan and Lengliné (2008), and the dotted curves are the middle 95% range
for g from equation (9) resulting from simulating Hawkes models where the true triggering function

is that estimated from the data using equation (9).



