
Statistics 222, Spatial Statistics. 

Outline for the day:
1. MLE. 
2. Simulation. 

3. Purely spatial processes, Papangelou intensity, 

and the Georgii-Zessin-Nguyen formula. 

4. Kernel smoothing. 

5. Exercises and code. 



1. Maximum likelihood estimation. 

Find      (= qˆ) maximizing l(q) = ∑ log(l(ti)) - ∫ l(t,x,y) dt dx dy.  

Ogata (1978) showed that the resulting estimate,
qˆ, is, under standard conditions, 
asymptotically unbiased, E(qˆ) à q, 
consistent, P(|qˆ - q| > e) à 0 as T à ∞, for any e > 0,  
asymptotically normal, qˆ àD Normal as T à ∞, 
and asymptotically efficient, min. variance anong
asymptotically unbiased estimators.  

Further, he showed standard errors for qˆ can be 
constructed using the diagonal elements of the 
inverse of the Hessian of L evaluated at qˆ . 
sqrt(diag(solve(loglikelihood$hess)))

Ogata, Y. (1978). The asymptotic behaviour of maximum likelihood 
estimators for stationary point processes. Ann. Inst. Statist. Math. 30, 
243-261.



Maximum likelihood estimation continued.  
The conditions of Ogata (1978) can be relaxed a bit for Poisson processes [1], and 
for certain spatial-temporal process in general [2]. 
Even if the process is not Poisson, under some circumstances [3] the parameters 
governing the unconditional intensity, El, can be consistently estimated by 
maximizing LP(q) = ∑ log(El(ti)) - ∫ El(t,x,y) dt dx dy. Basically pretend the process 
is Poisson. 
Suppose you are missing some covariate that might affect l. Under general 
conditions, the MLE will nevertheless be consistent, provided the effect of the 
missing covariate is small [4]. 

[1] Rathbun, S.L., and Cressie, N. (1994). Asymptotic properties of estimators for 
the parameters of spatial inhomogeneous Poisson point processes. Adv. Appl. 
Probab. 26, 122–154. 
[2] Rathbun, S.L., (1996). Asymptotic properties of the maximum likelihood 
estimator for spatio-temporal point processes. JSPI 51, 55–74.
[3] Schoenberg, F.P. (2004). Consistent parametric estimation of the intensity of a 
spatial-temporal point process. JSPI 128(1), 79--93.
[4] Schoenberg, F.P. (2016). A note on the consistent estimation of spatial-temporal 
point process parameters. Statistica Sinica, 26, 861-879.



Maximum likelihood estimation continued.  

λ is completely separable if l(t,x,y; θ) = θ3 λ0(t; θ0) λ1(t, x; θ1) λ2 (t, y; θ2).
Suppose N has marks too. λ is separable in mark (or coordinate) i if 
l(t, x, y, m1, m2, ..., mk ; θ) = θ2 λi(t, mi; θi) λ-i(t, x, y, m-i ; θ-i).

Suppose you are neglecting some mark or coordinate of the process. Under some 
conditions, the MLE of the other parameters will nevertheless be consistent [1]. 

In maximizing L(q) = ∑ log(l(ti)) - ∫ l(t,x,y) dt dx dy, 
it is typically straightforward to compute the sum, but the integral can be tricky esp.
when the conditional intensity is very volatile. One trick noted in [2] is that, for a
Hawkes process where l(t,x,y) = µ(x,y) + k ∑{t',x',y': t' < t} g(t-t',x-x',y-y'), where g is a 
density, and ∫µ(x,y)dxdy = µ, 
∫ l(t,x,y) dt dx dy = µT + k ∫ ∑ g(t-t',x-x',y-y') dt dx dy

= µT + k ∑ ∫ g(t-t',x-x',y-y') dt dx dy
~ µT + k N. 

[1] Schoenberg, F.P. (2016). A note on the consistent estimation of spatial-temporal 
point process parameters. Statistica Sinica, 26, 861-879.
[2] Schoenberg, F.P. (2013). Facilitated estimation of ETAS. Bulletin of the 
Seismological Society of America, 103(1), 601-605.



2. Simulation. 

One can simulate spatial-temporal point processes by thinning.
Lewis, P. and Shedler, G. (1979). Simulation of nonhomogeneous 
poisson processes by thinning. Naval Research Logistics
Quarterly, 26:403–413, 1979.

Jesper Møller
Suppose l has some upper bound, B. l(t,x,y) ≤ B everywhere. 
First, simulate a stationary Poisson process N with intensity B. 
For i = 1,2, ... keep point ti with probability l(ti)/B. We saw this in the code for Day 3 
for simulating inhomogeneous Poisson processes and it works for other processes too. 

Boundary issues can be important in simulation. For Gibbs processes, for instance, the 
simulation can be biased because of missing points outside the observation region. For 
Hawkes processes, the simulation will tend to be biased by having too few points at the 
beginning of the simulation. One can have burn-in, by simulating points outside the 
observation region or before time 0, or in some cases some fancy weighting schemes 
can be done to achieve perfect simulation without burn-in. 
Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for 
Spatial Point Processes. Chapman and Hall, Boca Raton. 



3. Purely spatial processes, Papangelou intensity and the Georgii-Zessin Nguyen 
formula. 
For point processes in R2, there is no natural ordering as there is in time. One could 
just use the x-coordinate in place of time and define a conditional intensity, but most 
models for spatial processes would be very awkward to define this way. 
Instead, a more natural and useful tool is the Papangelou intensity, l(x,y), which is 
the conditional rate of points around location (x,y), given information on everywhere 
else. Letting 
l(q) = ∑ log(l(ti)) - ∫ l(x,y) dx dy, 
where l(x,y) is the Papangelou intensity, 
l(q) is called the pseudo-loglikelihood. 

A key formula for space-time point processes is called the martingale formula:
for any predictable function f(t,x,y), 
E ∫ f(t,x,y) dN = E ∫ f(t,x,y) l(t,x,y) dµ. 
= E ∑i f(t i,x i,y i) = E ∫ f(t,x,y) l(t,x,y) dt dx dy
For spatial point processes the corresponding formula, 
E ∫ f(x,y) dN = E ∫ f(x,y) l(x,y) dx dy
is called the Georgii-Zessin-Nguyen formula. 
When f = 1, this means EN(B) = E ∫ l dµ. 



4. Kernel smoothing. 
A simple way to start summarizing a spatial point process is by kernel smoothing. 

Suppose your observation region is B. 
Let k(x,y) be a spatial density function, called a kernel, and construct, for each 
location (x,y), 
l^(x,y) =  ∫B k((x',y') – (x,y)) dN(x',y') / r(x,y), 
where r(x,y) = ∫B k((x',y') – (x,y)) dx' dy' is an edge correction term. 

The resulting function l^(x,y) is a natural estimator of l(x,y) and, when N is a 
Poisson process, can be an asymptotically unbiased estimator of l(x,y). 
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5. Exercises. 

a. Suppose N is a Poisson process with intensity l(t,x,y) = exp(3t) over 
t in [0,10], x in [0,1], y in [0,1]. 
N happens to have points at (1.5,  .4,    .2)

(2,   .52, .31)
(4,   .1,  .33)
(5,    .71, .29).

What is the log-likelihood of this realization?



5. exercises. 

a. Suppose N is a Poisson process with intensity l(t,x,y) = exp(-3t) over 
t in [0,10], x in [0,1], y in [0,1]. 
N happens to have points at (1.5,  .4,    .2)

(2,   .52, .31)
(4,   .1,  .33)
(5,    .71, .29).

What is the log-likelihood of this realization?

-4.5-6-12-15 - ∫∫∫ exp(-3t) dt dx dy
= -37.5 - ∫0 10 exp(-3t) dt, because x and y go from 0 to 1, 
= -37.5 - exp(-3t) / (-3)] 0

10

= -37.5 + exp(-30)/3 - exp(0)/3
= -37.5 + exp(-30)/3 – 1/3 
~ -37.83. 



5. exercises. 

Which of the following is not typically true of the MLE of a spatial-temporal point 
process? 

a. It is unbiased. 
b. It is consistent. 
c. It is asymptotically normal.
d. It is asymptotically efficient. 
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Entering data example. 

## First, input 54 points using the mouse.
n = 54
plot(c(0,1),c(0,1),type="n",xlab="longitude",ylab="latitude",

main="locations")
x1 = rep(0,n)
y1 = rep(0,n)
for(i in 1:n){
z1 = locator(1)
x1[i] = z1$x
y1[i] = z1$y
points(x1[i],y1[i])
}



##### PLOT THE POINTS WITH A 2D KERNEL SMOOTHING IN 
GREYSCALE PLUS A LEGEND

library(splancs)
bdw = sqrt(bw.nrd0(x1)^2+bw.nrd0(y1)^2)  ## possible default bandwidth
b1 = as.points(x1,y1)
bdry = matrix(c(0,0,1,0,1,1,0,1,0,0),ncol=2,byrow=T)
z = kernel2d(b1,bdry,bdw)
attributes(z)
par(mfrow=c(1,2))
image(z,col=gray((64:20)/64),xlab="km E of origin",ylab="km N of 

origin")
points(b1)
x4 = seq(min(z$z),max(z$z),length=100)



plot(c(0,10),c(.8*min(x4),1.2*max(x4)),type="n",
axes=F,xlab="",ylab="")

image(c(1,1.5),x4,matrix(rep(x4,2),ncol=100,byrow=T),
add=T,col=gray((64:20)/64))

text(2,min(x4),as.character(signif(min(x4),2)),cex=1)
text(2,(max(x4)+min(x4))/2,

as.character(signif((max(x4)+min(x4))/2,2)),cex=1)
text(2,max(x4),as.character(signif(max(x4),2)),cex=1)
mtext(s=3,l=-3,at=1,"density (pts/km^2)")

We will continue this next time, fitting models to this by MLE. 


