A Spatial-Temporal Analysis of Corporate Bankruptcies

1 Introductory Comments

Typically, corporations and individuals that lend money to a firm receive close to nothing back if that
firm goes bankrupt. Those who had lent out money to the investment bank Lehman Brothers, for
example, received only 17 cents for every dollar they gave to Lehman' - Lehman’s bankruptcy was
one of the largest in US history. Notice, consequently, that if a corporation lends money to another
one, and the recipient of those funds never pays back the funds it owes, that corporation (i.e., the
lender/creditor) may have difficulties in meeting its financial obligations itself, and thus may also go
bankrupt - especially if there are limited sources of funds available to such firm. Thus, one bankruptcy
can trigger another one, and so on, much like earthquakes can. And also, much like earthquakes,
bankruptcies are somewhat “rare” and unexpected. When taken together, these facts suggest that point
process models, which are commonly used as frameworks for analyzing events such as earthquakes and
wildfires, may also shed light on the occurrence of bankruptcies - in particular, they can help us in
measuring how these events can trigger others through time.

Asset managers, furthermore, frequently think about an abstract asset allocation space where they,
on a daily basis, invest the money/funds entrusted to them by investors. Instead of thinking about our
usual spatial dimensions, latitude and longitude, however, they often instead think about two other
dimensions: (i) market value and (ii) liquidation value. Market value measures how much something
costs. In the context of corporations, it measures how much one would have to pay to buy off all
of the shares of a firm (this is called market capitalization). The other dimension, liquidation value,
measures what would be left off to the owner of a firm if he or she sold off all of its assets and paid off
all of its liabilities (i.e. if the firm is liquidated) - this can be proxied through the accounting measure

book-value-of-equity that can be found in the balance sheet statement of any firm.

'See http://nypost.com/2014/08/15 /lehman-bondholders-to-receive-17-cents-on-dollar,/ .



The conditional intensity associated with bankruptcies, which hereafter we refer to as A , may be
high in some regions of this space, and low in others. So much like an individual might seek to avoid
going to a crime-prone neighborhood and be robbed, an asset manager may want to avoid investing in,
or “going to”, a region of this “asset allocation space” where A is high. Figure 1 presents a diagram that
depicts this space. The y axis in this graph shows the variable market value, or market capitalization;
the z axis represents liquidation value, or book-value-of-equity. Asset managers often think that the
bankruptcy intensity is low for valuable firms (area in yellow), and high for firms with low market value
(area in blue). Also, they have reasons to believe that A is high below the 45 degree line shown in this
figure, and low above it?. One can reasonably conjecture, therefore, that there is inhomogeneity in this
space - which point process models can help us analyze.

In this study, we make use of the aforementioned two-dimensional abstract asset allocation space
- our coordinates are, as we alluded to above, market value (market capitalization®) and liquida-
tion value (proxied via book-value-of-equity*); and proceed to model bankruptcies of publicly-traded
firms as purely spatial and as spatial-temporal point processes. By modeling the data thorough an
epidemic-type aftershock sequence model, we hope to better understand the temporal triggering func-
tions associated with these rare events, and gain further insights into their productivity. We argue that
such knowledge can have economic/policy implications. A purely spatial analysis, moreover, helps to

further elucidate how the conditional intensity may vary across our spatial dimensions.

2 Brief Description of Data

The data we analyze is composed of 456 points, each of which represents the bankruptcy of a publicly-
traded firm®. Our observation time-window goes from January 1971 to December 2007%. Each point 7;
(i €{1,...,456}) is associated with two coordinates in space, x; and y;, which represent, respectively, the

book-value-of-equity and market capitalization of a firm filing for bankruptcy. Each point also has a

“Below the 45 degree line we have firms whose liquidation values are higher than their market values. This indicates
that such firms possibly face greater liquidation risk than firms that are in the region situated above the 45 degree line
- which have market value above liquidation value and are thus seen as ongoing concerns.

3We'll refer to the terms market capitalization and market value interchangeably.

*We'll also refer to book-value-of-equity and liquidation value interchangeably going forward.

5Traded on the New York Stock Exchange, American Stock Exchange or NASDAQ; and recorded in the CRSP US
Stock database under delisting code 574.

5Note that we have, purposely, left out of our analysis the period corresponding to the financial crisis. During such
period, the US Government engaged in an unprecedented effort to provide funds to firms that were close to experiencing
financial distress. If we were to include this period, our parameter estimates might underestimate the impact of one
bankruptcy on future ones, in normal times - i.e., without government interventions.



time coordinate, t;, which denotes the time/day when the bankruptcy occurred; as well as a mark, m;,
that contains the amount of debt each bankrupt firm had when it became insolvent. The more debt
a firm has when it goes bankrupt, the more bankruptcies it will likely trigger - debt-levels, therefore,
are analogous to earthquake magnitudes.

The market capitalization of a firm filing for bankruptcy was computed as the product of the share-
price of such firm on the day prior to the filing”, and the total number of shares outstanding for such
firm on that same day. Prices and numbers of shares, used in that computation, come from the CRSP
(Center for Research in Security Prices) US Stock Database. Debt-levels® and data on book-values-
of-equity come from the Compustat Annual database. Compustat compiles accounting data that is
presented in annual financial reports filed by corporations.

A time covariate was also used in our study - we refer to it as the default spread, or simply as spread.
It measures the difference between the return (or yield) promised by high risk corporate bonds (rated
BAA by the credit rating agency Moody’s), and the return promised by safe corporate bonds (rated
AAA by the same agency). This covariate proxies for the state of the economy. When the economy
is booming this variable tends to be low, and in periods of economic contraction it tends to be high.
Data for this covariate was obtained from the website of the Board of Governors of the Federal Reserve

System.

3 Analysis

3.1 Overview of Point Pattern

Figure 2 presents the point pattern we analyze in this study. Each circle in this diagram represents
one of the points in our sample - these, as we argued, denote in turn bankruptcies of publicly-traded
firms. Circle sizes are proportional to the outstanding debt-levels of bankrupt firms, i.e., they are
proportional to the values of marks associated with each point (debt-levels are in billions of US dol-

lars). Lighter colors represent events/points occurring in more recent times; darker colors, conversely,

"If share-price on the day prior to the filing was unavailable, we used instead share-price on the most recent date prior
to the filing, provided that date was at most 7 working days apart from the bankruptcy filing date.

8The debt-level of a firm filing for bankruptcy was defined as the total debt of such firm, in billions of dollars, as
shown in Compustat. If this information was not available in that database, we used instead long-term debt plus current
liabilities to represent the debt-level of an insolvent firm. If current liabilities were also unavailable, we then used instead
long-term debt. In the rare occurrences were neither total debt nor long-term debt were available, current liabilities were
used to proxy for debt-levels.



denote bankruptcy filings occurring in older periods. This figure illustrates that some firms filing for
bankruptcy had market values in excess of US $500 million when they became insolvent?, indicating
that some of these events may have come as a shocking surprise to market participants. Figure 2 also
suggests the potential occurrence of “temporal clustering” in our data - the colors shown in this figure
imply that a good portion of bankruptcy events occurred in the early 2000’s.

In Figure 3, we show the spatial region with greatest activity. We can see here that most bankruptcies
occurred in the region denoted by market capitalizations of 0 to 250 million dollars, and book values
of -2 to 6 billion dollars.

Figure 4 shows a histogram containing bankruptcy events per year of occurrence. We have periods
with few bankruptcies followed by periods with many, again suggesting some type of temporal triggering
in our data.

In the analyses that follow, our x, ¥ and ¢ coordinates were standardized so as to go from 0 to 1.

Similarly, all marks (debt-levels) were standardized so as to be within that same interval.

3.2 Purely Spatial Analysis

We start our analysis by conducting a purely spatial assessment of our data. Figure 5 shows the F, G
and J functions, all of which indicate potential clustering or inhomogeneity in the data. The F function
shows, for example, that there is roughly a 22% probability that the distance of a randomly chosen
location to its nearest point is less than or equal to 0.075 - a value much smaller than we would expect
if the underlying process generating these points in space were a stationary Poisson process. This,
in turn, indicates the prevalence of “a good deal of empty space” in our [0, 1] x [0, 1] spatial window,
suggesting thus clustering or simply inhomogeneity. The G function shows that the probability that
a randomly chosen point is less than or equal to, say, 0.025, is almost 1 - this suggests that points
are much closer than what we would expect if the underlying process was a stationary Poisson process
- which again indicates possible clustering, or inhomogeneity. Lastly, the J function lies below 1 for
various distances, also confirming the conclusions we drew from the F and G functions about the
process generating our points.

Figure 6 depicts the K function, and Figure 7 the L function. Both of these also indicate the potential

occurrence of clustering or inhomogeneity. Figure 8 shows the values of our marked G function. This

9These corresponded to the bankruptcies of Mirant Corporation (an energy producer), Delphi (a producer of auto
parts), Worldcom (a telecommunications company) and Enron (an energy, commodities and services firm).



diagram shows the probability that a point 7; with mark m; < 0.5 is within distance r of another point
7; with mark m; > 0.8, 4 # j. This graph indicates that there is a probability of almost 0 that a
bankruptcy with low magnitude (m < 0.5) will be very close to one of large magnitude (m > 0.8) in
our asset allocation space.

Figure 9 contains the results of our kernel estimation of the Papangelou intensity, when a bandwidth
of 0.8 is used (other bandwidth levels were used as well)!?. The estimates we obtained with this band-
width (and others) seem to be arguably too low for the region where most points are: a quick visual
inspection of this graph shows that if we were integrate the estimated rate over, say, the [0,0.2] x [0, 0.2]
square, we would get an estimated expected number of points in this region much lower than the actual
number of points observed there.

Next, we fit an inhomogeneous Poisson model to our data using the pseudo-loglikelihood method.
The model we use is of the form A(z,y) = u + ax + by + cxy. The results of our estimation are shown
in Figure 10. We see here that, for example, a one unit increase in y (which corresponds to an increase

of approximately US$ 700 million in market value) promotes an increase in the Papangelou intensity of

aAgz,y)

oy = b+ cx = 50.27 — 341.42z . Hence, the impact of an increase in y on the Papangelou intensity

depends on the value of the x coordinate in our diagram. A similar analysis can be applied to interpret

how changes in x affect A\(x,y). A spatial-temporal approach is in order.

3.3 ETAS Model with Covariate

The ETAS model we fit is presented below. We have:
Ny, 1) = ple,y,0) + Y g (@,y)g(t — ¢ )h(m)
(<t}

Where:

wu(t,x,y) = i+ax + by + ct + dspread;

OWe choose to use a “large” bandwidth level so as to “squash” more our points and thus get estimates for the Papangelou
intensity that would be non-zero across a large range of the [0, 1] x [0, 1] spatial window.



And:

g(t) = ae™®),
h(m') = Kb
7 (z.y) = La<0.2,y<0.2)

0.2x0.2

Note that the background rate, here denoted as u(x,y,t), is somewhat different from the one initially
proposed by Ogata. We allow for a time trend to influence p; moreover, the background rate depends
here on our spread covariate, which proxies for the state of the economy; and we specify p as a linear
function of z, y, t and our covariate - this facilitates interpreting the parameters that affect p.

The temporal triggering function is exponential. The impact function, h, is as usual, with mg set to
0 - so we consider all shocks/bankruptcies in our study.

Notice that the spatial triggering function that we use, g*(x,y), is a density: it integrates to one
over all space. Differently from the spatial triggering functions we studied, however, g*(z,y) takes on
a constant value over a small 0.2 by 0.2 square, which in our model represents the most “active spatial
region”. The idea here is that bankruptcies, wherever they happen, will lead to more bankruptcies in
exactly this active region, but not in other places. Firms in this region are more fragile. They will
usually have accumulated many losses, and have limited access to capital markets. Firms in other
regions will likely be less affected by previous bankruptcies given they may either have enough cash
available or have access to outside funding sources. Thus, this active region can be thought of as “a
death zone”.

Our parameter estimates are shown in Table 1 - they were obtained via maximum likelihood'!. The
background rate falls as x or y increases. An increase of one unit in y (or roughly US$ 700 million) is
associated, for example, with a decrease of 19.78 in the background rate. The a and c¢ coefficients can
be interpreted in a similar fashion'?.

Moreover, a one unit increase in the spread covariate is associated with a 16.67 increase in the

"'We fit our model using optim in R - to arrive at our results, we ran optim twice. This procedure took 5 minutes
and 45 seconds in total. We also tried using simulated annealing to maximize our log-likelihood function (using the
function GenSA, from the GenSA package). We allowed GenSA to also run for 5 minutes and 45 seconds. Despite having
performed well in a number of global optimization tests performed by Prof. Kathreen Mullen (see “Continuous Global
Optimization in R”, 2014, Journal of Statistical Software), GenSA yielded a lower log-likelihood than optim.

12Notice that even though our standard errors are high for many parameters, these are only relevant to the extent that
we have found an optimal solution to the global maximization problem at hand, which may not be the case. We should
thus take these with a grain of salt.



background rate (this covariate oscillated between 0.55 and 2.69 within our sample)3.

The expected number of first generation aftershocks is given by E[h(m)], which we estimate to be
equal to 0.9753, indicating that bankruptcies are fairly persistent events.

The temporal triggering function, g(t), is shown in Figure 11. Put simply, this function suggests
that bankruptcies can help trigger bankruptcies up to approximately 20 months into the future.

Lastly, an analysis of the performance of our model is shown in Figures 12 and 13. Superthinning
(Figure 12) shows that our ETAS model overpredicts (A is too high) in the active 0.2 by 0.2 region.
One could potentially deal with this by simply reducing the size of the “death zone” region in the
model, where triggering takes place. The G function of the superthinned points (shown in Figure 13)
shows, nevertheless, that the calibrated model does a reasonably good job in explaining our data.

Our model has investment implications, as well as implications for regulatory practices/policies. We

discuss these below in our concluding remarks.

4 Final Analysis and Concluding Remarks

Firstly, note that our model has implications for the regulatory environment in which firms operate.
What is too big to fail? If the expected value of the impact function, h(m), is greater than 1, the
process we model becomes explosive. Thus, government could potentially consider passing legislation
stating for example to no firm could have debt levels that made h(m) be greater than 1. This would
preclude the expectation of h(m) from ever being above 1. We can solve for the value of m tied to this
rule. By doing so, we get that the maximum debt that should be allowed, according to such policy,
should be about 26 billion dollars. But some firms have more than 600 billion dollars in debt today!
This suggest that some firms in operation may, indeed, be too big to fail.

Our model also has investment implications. As we move farther to the right in our spatial diagram
(i.e., as x increases), the background rate decreases. The region were x is “high” is also unaffected by
triggering in our model. The conditional intensity, A, is thus relatively low for high values of z, indi-
cating that the right-most region of our asset allocation space is safer, from a bankruptcy perspective.
Suppose one invests in stocks in this region, which also have liquidation value (z coordinate) above

their market value (y coordinate). Assume that these stocks, moreover, also have “good fundamentals”,

13The spread covariate was not standardized in our analysis.



in the sense that their earnings are non-decreasing'?. These companies are somewhat unlikely to go
bankrupt, as they are situated in a region where z is relatively high. They are also unlikely to move
to the left-most region of the spatial diagram, considering they have positive earnings - earnings tend
to be the main driver of changes in book-values-of-equity. But notice that if they do not go bankrupt,
then in the long run we would expect their market values to rise and become at least as large as their
liquidation values. This could potentially thus be a “winning” strategy. Interestingly, one could argue
that such strategy is very much in line with the one Warren Buffet seems to have implemented in the
later stages of his life: buying stocks of firms that look “cheap” (i.e. which have liquidation value above
market value); that are large (have high liquidation /book-values); and which have “good fundamentals”
(and thus potentially have positive earnings); and holding on to them for long periods of time'?.

Note, however, that our study is not devoid of limitations. We have not considered the impact of
bankruptcies of private firms on publicly traded ones - having more time, we would like to find databases
which contain information on bankruptcy events associated with such firms so as to incorporate these
into our analysis. Other covariates, particularly those associated with the availability of credit in the
economy, could also impact our estimates.

Lastly, we could also have defined the asset allocation space differently, using “network theories” to

create measures of proximity between firms. The temporal and spatial triggering functions, moreover,

could also be estimated non-parametrically. We intend to implement these extensions in future studies.

“Decreases in book-values-of-equity (2 coordinate) tend to occur mostly due to negative earnings.

'5Tn a recent documentary conducted by HBO, “Becoming Warren Buffet”, Buffet states that early on in his life he
implemented a strategy similar to this one - however, instead of investing in the region were z is high, he instead invested
in small firms (which would tend to have low liquidation/book values). He apparently later on realized that this strategy
was “too risky”, and decided to move his investments towards larger firms, which would tend to be farther to the right
in our diagram.



5 APPENDIX

5.1 Figures and Tables

Figure 1: Abstract Asset Allocation Space: Yellow - large-cap stocks; green - mid-cap stocks; blue -
small-cap stocks. Conditional intensity is expected to be high in blue region, and in region below the
45 degree line.
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Figure 2: Bankruptcies in Space-Time: most companies going bankrupt have market values below $
200 million dollars; and book values below $5 billion.
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Figure 3: Bankruptcies in Region with Greatest Activity.
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Figure 4: Histogram showing corporate bankruptcies: periods of "low" activity are followed by periods
of "high" activity.
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Figure 5: F, G and J functions indicate clustering or inhomogeneity. Data: red line; Poisson: green
line.
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Figure 6: K function also indicates clustering or inhomogeneity. Data: red line; Poisson: green line
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Figure 7: ...and so does the L function. Data: red line.
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Figure 8: Marked G Function: Probability that a point with m < 0.5 is within distance r of point with
m > 0.8. Data: Red; Poisson: Green.
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Figure 9: Kernel estimation of the Papangelou intensity: intensity is too small in "active region".
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Figure 10: Papangelou Intensity estimated via Pseudo-Loglikelihood. Model: A(z,y) = 539.17 —
50.27x + 50.27y — 341.42xy; SE = [98.44,1553.06,385.40,1977.14]
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Table 1: Coefficient estimates and standard errors for ETAS Model. The background rate decreases
with market capitalization and book value, and increases with time. The expected number of first
generation aftershocks is E[h(m)], which we estimate to be 0.9753.

7 a b c d Q I} K

2.052  -11.450 -19.775  18.837  16.667 62.990  0.016  0.975
(60.252) (24.660) (24.257) (38.759) (39.229) (8.974) (0.849) (0.052)

Figure 11: Temporal Triggering Function - g(t). Bankruptcies help trigger bankruptcies up to 20
months apart.
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Figure 12: Superthinning - Model "overpredicts" in [0,2]|x|0,2]. Green points: original data.
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Figure 13: G Function of Superthinned Points - the G function suggests here that our calibrated model
does a reasonably good job in explaining the data. Data: Red Line; Poisson: Green Line
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5.2 R Code

™

o

library(data.table)
library(plyr)
library(DataCombine)
library(reshape2)
library(stargazer)
library(ggplot2)
library(splancs)
library(spatstat)

library(gridExtra)

setwd ("C:/users/rafae/desktop/pdf/stats 222")
coalesce <- function(...) {
apply(cbind(...), 1, function(x) {

x['is.na(x)]1[1]
1

crsp <- read.csv("all_crsp.csv", header=TRUE)
if (is.null(crsp$date)) {

crsp$date <- crsp$DATE

crsp$DATE <- NULL

crsp$year <- as.numeric(substr(as.character(crsp$date), 1, 4))

crsp <- crsplcrsp$EXCHCD >= 1 & crsp$EXCHCD <= 3 & !is.na(crsp$EXCHCD),]

crsp <- crspl[!duplicated(crsp[, c("date", "PERMNO")]),]

crsp <- crsp[(crsp$SHRCD == 11 |crsp$SHRCD == 10) & !is.na(crsp$SHRCD),]

crsp$PRC = abs (crsp$PRC)
crsp$SHROUT = abs(crsp$SHROUT)

crsp$SHROUT [crsp$SHROUT==0] = NA
crsp$DLSTCD[is.na(crsp$DLSTCD)] = O
crsp_bankrupt = crsplcrsp$DLSTCD == 574,]

ids = matrix(unique (crsp_bankrupt$PERMNO),ncol = 1)

16




57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91

93
94
95
96
97
98
99
100
101
102
103
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106

108
109
110
111
112
113
114

ids = data.frame (PERMNO = matrix(unique(crsp_bankrupt$PERMNO),nco

crsp_subset = merge(ids,crsp, allx = TRUE)

crsp_subset = arrange(crsp_subset ,PERMNO,date)

destring <- function(x, columns=names(crsp)) {

tmp <- x
tmp[, columns] <- suppressWarnings(lapply(lapply(x[, columns],
return (tmp)

¥

crsp_subset <- destring(crsp_subset, c("PRC", "SHROUT","DLSTCD"))

1= 1))

as.character), as.numeric))

crsp_subset = slide(crsp_subset, Var = "PRC", GroupVar = "PERMNO", slideBy = -1,keepInvalid = TRUE)

crsp_subset = slide(crsp_subset, Var = "PRC", GroupVar = "PERMNO", slideBy = -2,keepInvalid = TRUE)

crsp_subset = slide(crsp_subset, Var = "PRC", GroupVar = "PERMNO", slideBy = -3,keepInvalid = TRUE)

crsp_subset = slide(crsp_subset, Var = "PRC", GroupVar = "PERMNO", slideBy = -4,keepInvalid = TRUE)

crsp_subset = slide(crsp_subset, Var = "PRC", GroupVar = "PERMNO", slideBy = -5,keepInvalid = TRUE)

crsp_subset = slide(crsp_subset, Var = "PRC", GroupVar = "PERMNO", slideBy = -6,keepInvalid = TRUE)

crsp_subset = slide(crsp_subset, Var = "PRC", GroupVar = "PERMNO", slideBy = -7,keeplInvalid = TRUE)

crsp_subset = slide(crsp_subset, Var = "SHROUT", GroupVar = "PERMNO", slideBy = -1,keepInvalid = TRUE)

crsp_clean = crsp_subset[crsp_subset$DLSTCD == 574,]

crsp_clean$PRICE = coalesce(crsp_clean[,"PRC-1"],crsp_clean[,"PRC-2"],crsp_clean[,"PRC-3"],
crsp_clean[,"PRC-4"],crsp_clean[,"PRC-5"],crsp_clean[,"PRC-6"],
crsp_clean[,"PRC-7"1)

crsp_clean$SHARES = crsp_clean[,"SHROUT-1"]

col_select = c("PRICE","SHARES","date","PERMNO","year","HSICCD","HSICMG","COMNAM")

crsp_clean = crsp_clean[,col_select]

remove (crsp)

remove (crsp_subset)

compustat <- read.csv("compustat_project.csv", header=TRUE)

compustat$book = coalesce(compustat$se,compustat$ce)

compustat$debt = coalesce(compustat$dt,compustat$dltt + compustat$lct,compustat$dltt,compustat$lct)

compustat$date = compustat$datadate

compustat$datadate = NULL

compustat$year <- as.numeric(substr(as.character(compustat$date),

17
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115| compustat$month <- as.numeric(substr(as.character (compustat$date), 5, 6))
116| compustat$day <- as.numeric(substr(as.character(compustat$date), 7, 8))
117
118
119| compustat <- compustat[!duplicated(compustat[, c("date", "LPERMNO")]),]
120
121
122| col_select = c("book","LPERMNO","date","year","debt")
123| compustat _subset = compustat[,col_select]

124| remove (compustat)

125
126| compustat _subset = rename (compustat_subset,replace = c("LPERMNO"= "PERMNO"))
127
128 | compustat _subset$year = compustat_subset$year +2
129
130
131
132| merged = merge (crsp_clean,compustat_subset,all.x = TRUE, by = c("PERMNO","year"))
133| merged <- merged[!is.na(merged$date.y),]

134

135| merged$date.y = NULL

136| merged = rename (merged,replace = c("date.x" = "date"))

137| merged$mkt _cap = merged$PRICE*merged$SHARES/ 1000000 $
138 | merged$book = merged$book/1000 $

139

140| merged = arrange (merged,desc(debt))
141
142| data = merged

143| data = datalis.na(data$book) == FALSE & is.na(data$mkt_cap) == FALSE &
144 is.na(data$debt) == FALSE,]

145| data$debt = data$debt/1000

146
147| data$month = as.numeric(substr(as.character(data$date), 5, 6))
148

149| dates = data$date

150
151| year = as.numeric(substr(as.character(dates), 1, 4))
152 | month = as.numeric(substr(as.character(dates), 5, 6))

153| day = as.numeric(substr(as.character(dates), 7, 8))
154
155| toDate <- function(year, month, day) {
156 ISOdate (year, month, day)

157}

158
159| t = as.numeric(toDate(year ,month,day))
160 MINT = min(t)

161 | MAXT = max(t)

162t = (t-MINT)/(MAXT-MINT)

163 | data$t = t

164
165| data = arrange (data,t)
166
167

169
170| book = data$book
171| market = data$mkt_cap

172| debt = data$debt
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173|m = (debt-min(debt))/(max(debt)-min(debt))
174| time = data$year

175| t = data$t

176(T = 1

177
178| setwd ("C:/users/rafae/desktop/ATC")
179
180| AAA = read.csv("AAA.csv", header=TRUE)

181 | BAA = read.csv("BAA.csv", header=TRUE)

182| def = data.frame(cbind (AAA[,11,BAAL[,-11-AAA[,-11))

183| def [,1] = as.Date(def[,1],0rigin="1899-12-30")

184| def = slide(def, Var = "X2", slideBy = -1)

185| def = def[def$X1>= "1971-01-01" & def$X1 <= "2007-12-31",]
186 def [,2]=NULL

188| def$year = as.numeric(substr(as.character(def[,1]), 1, 4))
189 | def$month = as.numeric(substr(as.character (def[,1]), 6, 7))
190| def[,1] = NULL

191

192| colnames (def) = c("spread","year","month")

194| data = merge(data,def,all.x = TRUE, by = c("year","month"))

196| spread = data$spread
197| n = length(book)

209| windowl = data.frame(Beggining = 0, End = 2)
210| window2 = data.frame(Beggining = 2, End = 10)

211| window3 = data.frame(Beggining = 10, End = 20)

213| dataplot = data.frame(book = seq(0,20,0.1), market = seq(0,20,0.1))

216| plot = ggplot (dataplot) + geom_line(aes(x=book, y=market)) +

217 theme (axis.text.x = element_text(angle = 45, hjust = 1)) +

218 geom_rect (data=windowl, aes(ymin=Beggining, ymax=End, xmin=-Inf, xmax=+Inf),
219 fill=’blue’, alpha=0.1) +
220 geom_rect (data=window2, aes(ymin=Beggining, ymax=End, xmin=-Inf, xmax=+Inf),
221 fill=’green’, alpha=0.1) +
222 geom_rect (data=window3, aes(ymin=Beggining, ymax=End, xmin=-Inf, xmax=+Inf),
223 fill=’yellow’, alpha=0.1) +

224 ylab ("Market Capitalization ($billions)") + xlab("Book Value of Equity ($billions)")
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251

data_plot = ggplot(dataframe,aes(book,market))
data_plot + geom_point (aes(size = debt,colour = time)) +
ylab("Market Capitalization ($ Billions)") +

xlab("Book Value of Equity ($ Billions)")

slice = (book<= 10 & market <= 0.3)

book_slice = book[slicel
market_slice = market[slicel
time_slice = time[slice]

debt_slice = debt[slicel

dataslice = data.frame (book = book_slice,market = market_slice, debt = debt_slice,

time = time_slice)

data_plot = ggplot(dataslice,aes(book,market))
data_plot + geom_point (aes(size = debt,colour = time)) +
ylab("Market Capitalization ($ Billions)") +

xlab("Book Value of Equity ($ Billions)")

dataframe = data.frame(book = book,market = market, debt = debt,

time = time)

ggplot (dataframe, aes(time, fill = debt)) +

geom_histogram(binwidth = 1)

book = (book-min(book))/(max(book)-min(book))

market = (market-min(market))/(max(market)-min(market))

bdw = 0.8

bl = as.points(book,market)

bdry = matrix(<(0,0,1,0,1,1,0,1,0,0),ncol=2,byrow=T)
z = kernel2d(bl,bdry,bdw)

par (mfrow=c(1,2))

image (z,col=gray ((64:20)/64) ,xlab="book",ylab="market cap.")

x4 = (0:100)/100*(max(z$z)-min(z$z))+min(z$z)

plot(c(0,10),c(.8*min(x4) ,1.2*max(x4)),type="n",axes=F,xlab="",ylab="")

image (c(-1:1) ,x4,matrix(rep(x4,2) ,nco0l=101,byrow=T),add=T,col=gray ((64:20)/64))
text (2,min(x4),as.character (signif (min(x4),2)),cex=1)

text (2, (max(x4)+min(x4))/2,as.character (signif ((max(x4)+min(x4))/2,2)),cex=1)
text (2,max(x4),as.character (signif (max(x4),2)),cex=1)

mtext (s=3,1=-3,at=1,"Rate (pts per unit area)")

b2 = as.ppp(bl, W = ¢(0,1,0,1))

f = Fest(b2,correction = ’none’)
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289| data.plot <- data.frame(r = f$r,Data = f$raw,Poisson = f$theo)

292| data_long <- melt(data.plot, id= "r")

294| plotl = ggplot(data=data_long,

295 aes(x=r, y=value, colour=variable)) +

296 theme (legend.position="none",axis.text.x = element_text(angle = 90, hjust = 1)) +
297 geom_line () +

208 labs(title="F Function") +ylab("F(r)") +xlab('"r"

301| g = Gest(b2,correction = '"none")

302| data.plot <- data.frame(r = g$r,Data = gl$raw,Poisson = g$theo)

304| data_long <- melt(data.plot, id= "r'")

306| plot2 = ggplot(data=data_long,

307 aes(x=r, y=value, colour=variable)) +

308 theme (legend.position="none",axis.text.x = element_text(angle = 90, hjust = 1)) +
309 geom_line () +

310 labs(title="G Function") +ylab("F(r)") +xlab("r"

311
312
313| j = Jest(b2,correction = ’none’)

314| data.plot <- data.frame(r = j$r,Data = j$un,Poisson = j$theo)
315
316| data_long <- melt(data.plot, id= "r'")
317
318| plot3 = ggplot(data=data_long,

319 aes(x=r, y=value, colour=variable)) +

320 theme (legend.position="none",axis.text.x = element_text(angle = 90, hjust = 1)) +
321 geom_line () +

322 labs(title="J Function") +ylab("J(r)") +xlab("r"

323
324
325| grid.arrange (plotl, plot2,plot3,nrow = 1, ncol=3)
326
327
328
329| k = Kest(b2,correction = "none')
330
331| data.plot <- data.frame(distance = k$r,Data = k$un,poisson = K$theo)
332
333| data_long <- melt(data.plot, id= "distance")
334
335| ggplot (data=data_long,

336 aes(x=distance, y=value, colour=variable)) +

337 theme (legend.position="none",axis.text.x = element_text(angle = 90, hjust = 1)) +
338 geom_line () +

339 labs(title="K Function") +ylab("K(r)") +xlab("r"

340

341|1 = Lest(b2,correction = "none')
342 s = seq(.001,.3,length=1length(1$r))
343

344| Lupper = 1.96 * sqrt(2*pi*1%1) * s / n
345| Llower = -1.0 * Lupper
346
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347| data.plot <- data.frame(distance = 1$r,Data = l$un - 1l$r,poisson = l$theo - 1$r,lupper = Lupper,llower = Llower)

349| data_long <- melt(data.plot, id= "distance')

351| ggplot (data=data_long,

352 aes(x=distance, y=value, colour=variable)) +

353 theme (legend.position="none",axis.text.x = element_text(angle = 90, hjust = 1)) +
354 geom_line () +

355 labs(title="L Function") +ylab("L(r) - r") +xlab("r"

359
360| n1 = length(book)
361
362| x1 = book

363| y1 = market
364
365|f = function(p){
366
367
368
369 if (p[1]

"

0) return (99999)

370 if£(pl1] + p[2] < 0) return(99999)

371 if(p[1] + p[3] < 0) return(99999)

372 if(p[1] + pl[4] < 0) return(99999)

373 if(p[2] + p[3] < 0) return(99999)

374 if(p[1] + p[3] < 0) return(99999)

375 if£(p[1] + p[3] < 0) return(99999)

376 if(pl1] + p[2] + p[3] + p[4] < 0) return(99999)
377 if(p[1] + p[2] + p[3] < 0) return(99999)

378
379 lam = p[1] + p[2] * x1 + p[3] * y1 +p[4]l*xlxy1
380
381 * *
382
383 if (min(lam) < 0) return (99999)
384
385 int2 = p[1] + p[2]1/2 + p[31/2 +pl[4l/4

386 / /

387

388 cat ("integral = ",int2," negative loglikelihood = ",
389 int2-sum(log(lam)), "\n"," p = ",p,"\n")

390

391 return(int2-sum(log(lam)))
392}

393
394
395
396| pstart = c(0.1, 0.1, 0.1, 0.1)
397
398| fitl = optim(pstart,f,control=1list(maxit=200),hessian = TRUE)
399| pend = fiti$par

400| b3 = sqrt(diag(solve(fiti$hess)))

401
402
403
404| par (mfrow=c(1,2))
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405| plot (c(0,1),c(0,1) ,type="n",xlab="x-coordinate",ylab="y-coordinate",

406 main="background rate')

407| x2 = seq(0.05,0.95,length=10)

408| y2 = seq(0.05,0.95,length=10)

409| z2 = matrix(rep(0,(10%10)),ncol=10)

410 *

411| for(i in 1:10){

412 for(j in 1:10){

413 z2[i,j] = pend[1] + pend[2]*x2[i] + pend[3]1*y2[j] +pend[4]x*y2[jl*x2[j]
414 * *

415 3}

416
417
418| zmin = min(z2)
419| zmax = max(z2)
420
421
422| image (x2,y2,22,col=gray ((64:20)/64) ,zlim=c(zmin, zmax) ,add=T)
423| points(x1,yl)

424

425

426| zrng = zmax - zmin
427| zmid = zmin + zrng/2

428 plot (c(0,10) ,c(zmid-2%zrng/3,zmid+2%*zrng/3) ,type="n",axes=F,xlab="",ylab="")
429| zgrid = seq(zmin,zmax,length=100)

430
431| image (c(-1:1) ,zgrid,matrix(rep(zgrid,2),ncol=100,byrow=T),add=T,col=gray ((64:20)/64))
432| text (2.5,zmin,as.character (signif (zmin,2)),cex=1)

433| text (2.5, zmax,as.character (signif (zmax,2)),cex=1)

434| text (2.5,zmid,as.character (signif (zmid,2)),cex=1)

435| text (4.5,zmid,"pts/unit area",srt=-90)

436

438
439 /
440
441
442
443
444
445| 222 = as.ppp(cbind(x1,y1), W = ¢(0,1,0,1))
446| b222$marks = m

4471 b222%n = ni

448
449
450
451
452 | par (mfrow=c(1,1))

453| gm = Gmulti(b222, b222¢$marks < 0.5, b222$marks > 0.8, correction = "none")
454
455| data.plot <- data.frame(r = gm$r,Data = gm$raw,Poisson = gm$theo)
456
457
458| data_long <- melt(data.plot, id= "r")
459
460| plotl = ggplot (data=data_long,

461 aes(x=r, y=value, colour=variable)) +

462 theme (legend.position="none",axis.text.x = element_text(angle = 90, hjust = 1)) +
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463 geom_line () +

464 labs(title="") +ylab("G(r) - marked") +xlab("r"

1

2

3| library(GenSA)

4

5/m3 = function(x) signif(x,3)
6

7| x = book

8| y = market

9

10| logl = function(theta){

12 mu_bar = theta[1]l; a = theta[2]; b = thetal3];c = thetal4];
13 d = theta[5]; alpha = thetal[6];

14 beta = thetal[7]; K = thetal[8]

15

16 cat ("\n mu_bar = ",m3(mu_bar),", X = ",m3(K),", a = ",m3(a),", b = ",m3(b),", ¢ = ",m3(c),", d = ",m3(d),
17 ", alpha = ",m3(alpha),"”, beta = ",m3(beta),".\n")

18

19| if(min(min(mu_bar+a*x+b*y+c*t+d*spread),K,alpha,beta,d) <0.000000001) return (99999)
20 if (min(mu_bar +a*1 +c*t +d*spread) < 0.000000001) return(99999)
21 if ((K*mean (exp(beta*m)))>.99999) return(99999)

22

23 mu_xyt = mu_bar + a*x + b*y +c*t +d*spread

24

25 intlam = mu_bar*T +a/2 +b/2 +c/2 +d*mean(spread) + K*sum(exp(beta*(m)))
26

27 g = vector (length = n)

28 lam = vector(length = n)

29 lam[1] = mu_xyt[1]

31 for(j in 2:n){

33 gij = 0

35 if (x[jl<= 0.2 & y[jl<= 0.2){

38 for(i im 1:(j-1)){

40 gij = gij + alpha*exp(-alphax(t[jl-t[il))*K*exp(beta*(m[il))

46 lamj = mu_xyt[j] + gij*(1/(0.2%0.2))

48 if (lamj <= 0){

49 cat ("lambda ",j," is less than 0.")

50 return (99999)

53 lam[j] = lamj
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14
15
16
17
18
19

sumlog = sum(log(lam))

loglik = sumlog - intlam

cat("loglike is ", loglik, ". sumlog = ", sumlog,". integral = ", intlam,".\n")

return(-1.0*loglik)

thetal = rep(0.3,8)

seed = 3000

ptm <- proc.time ()

b1l = optim(thetal,logl)

proc.time () - ptm

ptm <- proc.time()

b2 = optim(bl$par,logl ,hessian=T)

proc.time () - ptm
theta2 = b2$par

sqrt (diag(solve(b2%hess)))

bl_new = GenSA(thetal, fn = logl, lower = c(rep(-1000,8)), upper = c(rep(1000,8)),

control=list(max.time = 345.25))

z = data.frame(lat = market,lon= book,t= t,m= m,spread= spread,n= n )
theta = b2$par
mu_bar = theta[1]; a = thetal2]; b = thetal3l;c = thetal4];

d = thetal[5]; alpha = thetal6];

beta = thetal[7]; K = thetal[8]

find_spread = function(candt){

t_actual = MINT +candt*(MAXT - MINT)

date_obs = as.Date(t_actual/86400, origin = "1970-01-01")

year_obs = year(date_obs)
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month_obs = month(date_obs)

t_actual = data.frame(year = year_obs,month = month_obs)

covariate = merge(t_actual, def, allx = TRUE,by = c("year","month"))

return(covariate$spread)

compute_lambda_data = function(t,x,y,z,spread){

mu_xyt = mu_bar + a*x + b*y +c*t +d*spread
g = vector(length = n)

lam = vector(length = n)

lam[1] = mu_xyt[1]

for(j in 2:n){

gij = 0

if(x[jl<= 0.2 & y[jl<= 0.2){

for(i im 1:(j-1)){

gij = gij + alpha*exp(-alpha*(t[jl-t[i]))*K*exp(beta*(m[il))

lamj = mu_xyt[j] + gij*(1/(0.2%0.2))

if (lamj <= 0){
cat("lambda ",j," is less than 0.")

return (99999)

lam[j] = lamj

return(lam)

fun_comp = function(cant,canx,cany,spread,z){

gij = 0
j=0

if (cant > z$t[1]) j = max(c(l:z$n[1]) [z$t<cant])
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78 if(j>0 & canx <=0.2 & cany<=0.2) for(i im 1:j){

81 gij = gij + alpha*exp(-alphax(cant-z$t[i]))*K*xexp(betax(z$m[il))

86 return(mu_bar + a*canx + b*cany +c*cant +d*spread +gij*(1/(0.2%0.2)))

93| supthin = function(z,lambda,fun,thresh=median(lambda)){

99 keepz = list ()
100 for(i in 1:z$n[11){

101 if (runif (1) < thresh/lambdal[il){
102 keepz$t = c(keepz$t,z$t[il)

103 keepz$lon = c(keepz$lon,z$lon[il)
104 keepz$lat = c(keepz$lat,z$lat[i])
105 ¥

106 i

107 candn = rpois(1,thresh*X1*Y1xT)
108 candt = sort (runif (candn)*T)
109 candx = runif (candn) *X1

110 candy = runif(candn)*Y1

111
112 cov = find_spread(candt)
113

114 for(i in 1:candn){

115 v = fun_comp(candt[i],candx[i],candy[il,cov[il,z)
116 if (v < thresh){

117 if (runif (1) < (thresh-v)/thresh){

118 keepz$t = c(keepz$t,candt[il])

119 keepz$lon = c(keepz$lon,candx[il)

120 keepz$lat = c(keepz$lat,candy[il)

121

122 3}

123 ¥

124 keepz$lon = keepz$lon[order (keepz$t)]
125 keepz$lat = keepz$lat[order (keepz$t)]
126 keepz$t = sort(keepz$t)

127 keepz$n = length(keepz$t)

128 keepz

129 ¥

130
131| lambda = compute_lambda_data(t,x,y,z,spread)
132
133
134| s = supthin(z, lambda,fun_comp)
135| par (mfrow=c(1,2))
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plot(z$lon,z$lat ,pch=3,cex=.5,xlab="book",ylab="market cap.",main="original pts.")

plot (s$lon,s$lat ,pch=3,cex=.5,xlab="book",ylab="market cap",main="superthinned points'")
par (mfrow=c(1,1))

plot(z$lon,z$lat ,pch=3,cex=.5,xlab="book",ylab="market cap'",col="green")

points(s$lon,s$lat,pch=1,cex=.5,xlab="book",ylab="market cap")
y P

g_func = function(alpha,t){

alpha*exp(-alphax*t)

data.plot <- data.frame(distance = seq(0,0.05,0.0001),Data = g_func(alpha,seq(0,0.05,0.0001)))

data_long <- melt (data.plot, id= "distance')

ggplot (data=data_long,
aes(x=distance, y=value, colour=variable)) +
theme (legend.position="none",axis.text.x = element_text(angle = 90, hjust = 1)) +

geom_line () +

labs(title="g(t)") +ylab("g(t)") +xlab("t")

s$lon

s$lat

b1l = as.points(s$lon,s$lat)

b22 = as.ppp(bll, W = c(0,1,0,1))
g = Gest(b22,correction = "none")
data.plot <- data.frame(distance = g$r,Data = g$raw,poisson = g$theo)
data_long <- melt(data.plot, id= "distance")
ggplot (data=data_long,
aes(x=distance, y=value, colour=variable)) +
theme (legend.position="none",axis.text.x = element_text(angle = 90, hjust = 1)) +

geom_line () +

labs(title="G Function - Superthinned points") +ylab("G(r)") +xlab("r"
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