
Statistics 222, Spatial Statistics. 

Outline for the day:

1. Poisson process, continued. 

2. Mixed Poisson process. 

3. Compound Poisson process

4. Poisson cluster process. 

5. Cox process. 

6. Gibbs processes. 

7. Matern processes. 

8. Examples and code. 



1. Poisson processes. 

Last week we discussed Poisson processes. 

If N is a simple point process with conditional intensity l, where l does 
not depend on what points have occurred previously, then N is a 
Poisson process. 

For such a process, for any set B, 
N(B) has a Poisson distribution. 
P(N(B) = k) = e-A Ak / k! , 
for k = 0, 1, 2, ..., 
where A = ∫B l(t,x,y) dtdxdy, 
and with the convention 0! = 1.
The mean of N(B) is A and the variance
is also A.  E(N(B)2) = A2 + A. 

We will now discuss a few 
extensions of Poisson processes. 



Poisson processes, continued.  

On the left is a stat. Poisson process with l(t,x) = 2.5 on [0,1] x [0,10], 

and on the right is a Poisson process with l(t,x) = 1.5 + 10t + 2x. 

The key thing about Poisson processes is their complete independence.

For a Poisson process N, N(B1) and N(B2) are independent for any disjoint 
sets B1 and B2. 
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2. Mixed Poisson processes. 
Suppose l(t,x,y) = c, where c is a random variable. For example, c  

might be Poisson or exponential, or half normal, or something 
constrained to be positive. Then conditional on c, N(B) is Poisson 
distributed. Then N is a mixed Poisson process. 
E(N(B) | c) = V(N(B)|c) = c|B|, but unconditionally, N(B) is not 
Poisson distributed now. 
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2. Mixed Poisson processes. 
Suppose l(t,x,y) = c, where c is a random variable. For example,  c 

might be Poisson or exponential, or half normal, or something 
constrained to be positive. Then conditional on c, N(B) is Poisson 
distributed. Then N is a mixed Poisson process. 
E(N(B) | c) = V(N(B)|c) = c|B|, but unconditionally, N(B) is not 
Poisson distributed now. If we imagine simulating the process 
repeatedly, each time with a different draw of c, then the 
distribution of N(B) will not be Poisson. N(B) will typically be 
overdispersed relative to the Poisson process, i.e. will have higher 
variance. 

E(N(B)) = ∫ E(N(B)|c) f(c)dc = ∫ c|B| f(c)dc = |B|E(c).
E(N(B)2) = ∫ E(N(B)|c)2 f(c) dc = ∫ [c2|B|2 + c|B|] f(c) dc 
= |B|2 E(c2) + |B|E(c), 
so V(N(B)) =  |B|2 E(c2) + |B|E(c) - |B|2 [E(c)]2 = E(N(B)) + |B|2 V(c). 
So, V(N(B)) ≥ E(N(B)). 



3. Compound Poisson process. 

Suppose N is not simple, and instead, it is generated as follows. You first 
generate a stationary Poisson process M with intensity c, and then for 
each point ti of M, N will have some non-negative number Zi of points 
right at ti, where Zi are all iid and independent of M. Then N is a 
compound Poisson process. 

For a compound Poisson process, again the variance ≥ the mean. 
EN(B) = c|B|E(Z), and 
V(N(B)) = c|B|V(Z) + c|B|(E(Z))2 = c|B|E(Z2) ≥ EN(B), because, for a 

non-negative integer-valued random variable Z, E(Z2) ≥ E(Z) with 
equality iff. Z can only be 0 or 1. 

0 2 4 6 8 10

0
2

4
6

8
10

lon

lat

5
1

4

2

3

2

1

2

3

2

5

1



3. Variance of the compound Poisson process. 
Fix B. Let M denote M(B). For a compound Poisson process, 
EN(B) = c|B| E(Z). 
E(N(B)2) = V(Z) E(M) + (E(Z))2 E(M2). 
So V(N(B)) = V(Z) E(M) + E(Z)2 V(M). 
M is Poisson, so E(M) = V(M) = c|B|, so 
V(N(B)) = c|B| (V(Z) + E(Z)2 ) = c|B| E(Z2) ≥  EN(B), 
since E(Z2)  ≥ E(Z) because Z is nonnegative integer valued. 



4. Poisson cluster processes. 
Another extension of the Poisson process is the Poisson cluster 
process. Imagine first generating parent points M according to a 
Poisson process. Then for each parent point ti, you generate some 
random number Zi of offspring points, and these offspring points are 
scattered spatially and temporally, independently of each other, with 
some distribution centered at ti. Let N be the collection of just the 
offspring, not the parents. N is called Poisson cluster process. 
Usually M is assumed stationary Poisson. 
In the particular case where the Zi are iid Poisson random variables 
independent of M, the process is called a Neyman-Scott cluster 
process.

Jerzy Neyman
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5. Cox process.  

Suppose you somehow generate a stochastic process l(t,x,y) such that  
l(t,x,y) ≥ 0 for all t, x, and y. Then you let N be a Poisson process 
with intensity l(t,x,y). So l(t,x,y) can be random, but conditional 
on l, N is a Poisson process. In this case we say N is a Cox process 
or equivalently a doubly stochastic Poisson process. 

Cox processes arise in practice when modeling
events depending on some other random
phenomenon. For instance, the points of N
might be the times and locations of flu
epidemics, which might depend on 
the temperature and this might in turn 
be modeled as evolving stochastically. 



6. Gibbs process. 
For any finite collection (t1, t2, ..., tn) of 
points in space-time, if the joint density is 
C(q) exp[-q {∑iy1(ti) + ∑i,j y2(ti,tj)}],  
then N is a Gibbs process. 
Often y2(xi , xj) can be written y(r), where 
r = |xi - xj|.
Some special cases are important. 
a. When y(r) = 0, there are no interactions, 
and the process is an inhomogeneous 
Poisson process with intensity y1(x). 
b. y(r) = -log[1-e-(r/s)2] defines a soft-core
model. Weak repulsion. 



6. Gibbs process, continued. 

y2(r) is called the interaction potential. 

c. y(r) = ∞ for r ≤ s
=  0 for r > s

defines a hard-core process. 

d. y(r) = (s/r)n is an intermediate choice 
between the soft-core and hard-core 
models. 

e. Strauss process. 
y1(x) = a, and 
y2(r) = b, for r ≤ R,
y2(r) = 0, for r > R. 

  z
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7. Matern process. 
The Matern(I) process is generated as follows. 
a) Generate M according to a stationary Poisson process. 
b) Let N be all points of M that are not within some fixed distance r of 

any other point of M. 

The Matern(II) process is generated a bit differently.
a) Generate points t1, t2, ... according to a stationary Poisson process.
b) For i = 1, 2, ..., keep point i if there is no previous kept point tj with 

| ti - tj | ≤ r. 
  z   z



Exercises.

1. A mixed Poisson process is a Cox process where 

a. l = E(l) in every realization. 

b. l(t,x,y) = l(t',x',y'), for any locations (t,x,y) and (t',x',y').

c. The cluster sizes are Poisson distributed with mean l. 

d. l = 1. 



Exercises.

1. A mixed Poisson process is a Cox process where 

a. l = E(l) in every realization. 

b. l(t,x,y) = l(t',x',y'), for any locations (t,x,y) and (t',x',y').

c. The cluster sizes are Poisson distributed with mean l. 

d. l = 1. 

a. means l is a constant, so N is a stationary Poisson process. 
d. Also defines a stationary Poisson process, with rate 1. 



Code from Day 2.

## nonsimple point process 
n = 20
x = runif(n)
y = runif(n)
plot(x,y,xlab="t",ylab="lat",pch=2)
points(x[20],y[20],pch=3)

## nonsimple ground process 
plot(x,y,xlab="t",ylab="lat",pch=2)
points(x[20],y[20]+.05,pch=3)

## nonorderly process
plot(c(0,1),c(0,1),type="n",xlab="t",ylab="lat")
n = 100
for(i in 1:n) points(1/i,runif(1),pch=3,cex=.5) 



Code from Day 2.

## points at (i,i) with prob. 1/i. 
plot(c(0,100),c(0,100),type="n",xlab="t",ylab="lat")
for(i in 1:100) if(runif(1) < 1/i) points(i,i,pch=3)

## stationary Poisson process with intensity 2.5 on B=[0,1]x[0,10].
n = rpois(1,2.5*1*10)
t = runif(n)
x = runif(n)*10
plot(t,x,pch=3)  



Code from Day 2. 
## nonstationary Poisson process with intensity 1.5+10t+2x on B.
n = rpois(1,15+50+100)
n1 = 0
t = c()
x = c()
while(n1<n){
t2 = runif(1) ## candidate point
x2 = runif(1)*10
if(runif(1) < (1.5+10*t2+2*x2)/(1.5+10+20)){ ## keep it
t = c(t,t2)
x = c(x,x2)
n1 = n1 + 1
cat(n1," ")

}
}
plot(t,x,pch=3) 



Code from Today. 
## mixed Poisson process
par(mfrow=c(1,3))
m = rexp(1,rate=.5)
n1 = rpois(1,m*10*10)
x1 = runif(n1)*10
y1 = runif(n1)*10
plot(c(0,10),c(0,10),xlab="lon",ylab="lat",type="n")
points(x1,y1) 
## I ran the previous 5 lines 3 times. 



Code.
## compound Poisson. 
par(mfrow=c(1,1))
n1 = rpois(1,.12*10*10)
x1 = runif(n1)*10
y1 = runif(n1)*10
a = as.character(rpois(n1,3))
plot(c(0,10),c(0,10),xlab="lon",ylab="lat",type="n")
text(x1,y1,a)



Code.
## Neyman-Scott. 
n1 = rpois(1,.12*10*10)
x1 = runif(n1)*10
y1 = runif(n1)*10
x2 = c()
y2 = c()
## parents are (x1,y1). 
for(i in 1:n1){ 
c = rpois(1,8) ## number of offspring
if(c>0) for(j in 1:c){
x2 = c(x2,rnorm(1,sd=.2)+x1[i])
y2 = c(y2,rnorm(1,sd=.2)+y1[i])
}}
plot(c(0,10),c(0,10),xlab="lon",ylab="lat",type="n")
points(x2,y2,pch=3)
points(x1,y1,col="red")  


