Statistics 222, Spatial Statistics.

Outline for the day:
1. Variance of compound Poisson and simulation.
2. Hawkes process.
3. ETAS.
4. Likelihood.
1. Variance of the compound Poisson processes, from last time.
Fix B. Let M denote $M(B)$. For a compound Poisson process,

\[
E(N(B)) = \sum E(N(B)|m) f(m), \text{ where the sum is from } m = 0, 1, 2, ..., \\
= \sum E(Z_1 + Z_2 + ... + Z_m) f(m) \\
= \sum (m E(Z)) f(m) \\
= E(Z) \sum m f(m) \\
= E(Z) E(M) = c|B| E(Z).
\]

\[
E(N(B)^2) = \sum E(N(B)^2|m) f(m) \\
= \sum E(Z_1 + Z_2 + ... + Z_m)^2 f(m) \\
= \sum (mE(Z^2) + (m^2-m) E(Z)^2)f(m) \\
= E(Z^2)\sum mf(m) - E(Z)^2 \sum m f(m) + E(Z)^2 \sum m^2 f(m) \\
= E(Z^2) E(M) - E(Z)^2 E(M) + E(Z)^2 E(M^2) \\
= V(Z)E(M) + E(Z)^2 E(M^2).
\]

So \(V(N(B)) = E(N(B)^2) - (E(N(B)))^2\)

\[
= V(Z)E(M) + E(Z)^2 E(M^2) - E(M)^2 E(Z)^2 \\
= V(Z) E(M) + E(Z)^2 (E(M^2) - E(M)^2) \\
= V(Z) E(M) + E(Z)^2 V(M).
\]

M is Poisson, so $E(M) = V(M) = c|B|$, so

\[
V(N(B)) = c|B| (V(Z) + E(Z)^2) = c|B| E(Z)^2 \geq EN(B), \text{ since } E(Z^2) \geq E(Z).
\]
Simulation.

Suppose λ has some upper bound, B. $\lambda(t,x,y) \leq B$ everywhere. First, simulate a stationary Poisson process N with intensity B. For $i = 1,2, \ldots$ keep point τ_i with probability $\lambda(\tau_i)/B$. We saw this in the code for Day 3 for simulating inhomogeneous Poisson processes and it works for other processes too.

Boundary issues can be important in simulation. For Gibbs processes, for instance, the simulation can be biased because of missing points outside the observation region. For Hawkes processes, the simulation will tend to be biased by having too few points at the beginning of the simulation. One can have burn-in, by simulating points outside the observation region or before time 0, or in some cases some fancy weighting schemes can be done to achieve *perfect* simulation without burn-in. Møller, J. and Waagepetersen, R. (2003). *Statistical Inference and Simulation for Spatial Point Processes*. Chapman and Hall, Boca Raton.
2. Hawkes process.

A Hawkes process or *self-exciting* process has conditional intensity

\[
\lambda(t,x,y) = \mu(x,y) + \kappa \int_{t' < t} g(t-t',x-x',y-y') \, dN(t',x',y')
\]

\[
= \mu(x,y) + \kappa \sum_{\{t',x',y': t' < t\}} g(t-t',x-x',y-y').
\]

\(g\) is called the *triggering function* or *triggering density* and \(\kappa\) is the *productivity*.

If \(g\) is a density function, then \(\kappa\) is the expected number of points triggered directly by each point. Each background point, associated with \(\mu(x,y)\), is expected to generate \(\kappa + \kappa^2 + \kappa^3 + \ldots = \frac{1}{1-\kappa} - 1\) triggered points, so the exp. fraction of background pts is \(1-\kappa\).
3. ETAS process.

An *Epidemic-Type Aftershock Sequence (ETAS)* process is a marked version of the Hawkes process, where points have different productivities depending on their magnitudes. Ogata (1988, 1998) introduced

\[
\lambda(t,x,y) = \mu(x,y) + \sum_{\{t',x',y': t' < t\}} g(t-t',x-x',y-y')h(m'),
\]

where \(\mu(x,y)\) is estimated by smoothing observed large earthquakes,

\[
h(m) = \kappa e^{\alpha(m-m_0)},
\]

where \(m_0\) is the catalog cutoff magnitude, and \(g(t,x,y) = g_1(t) g_2(r^2)\), where \(r^2 = \| (x,y) \|^2\), and \(g_1\) and \(g_2\) are power-law or *Pareto* densities,

\[
g_1(t) = (p-1) c^{p-1} (t+c)^{-p}. \quad g_2(r^2) = (q-1) d^{q-1} (r^2+d)^{-q}.
\]

An alternative is where \(g_2\) is exponential or sum of exponentials.
4. Likelihood.

For iid draws t_1, t_2, \ldots, t_n, from some density $f(\theta)$, the likelihood is simply

$$L(\theta) = f(t_1; \theta) \times f(t_2; \theta) \times \cdots \times f(t_n; \theta) = \prod f(t_i; \theta).$$

This is the probability density of observing \(\{t_1, t_2, \ldots, t_n\} \), as a function of the parameter θ.

For a nonstationary Poisson process with intensity $\lambda(\theta)$, on $[0,T]$, the likelihood of observing the points $\{\tau_1, \tau_2, \ldots, \tau_n\}$ is simply

$$\lambda(\tau_1) \times \lambda(\tau_2) \times \cdots \times \lambda(\tau_n) \times \exp\{-A(\tau_1)\} \times \exp\{-A(\tau_2) - A(\tau_1)\} \times \cdots \times \exp\{-A(T) - A(\tau_n)\},$$

$$= \prod \lambda(\tau_i) \exp\{-A(T)\},$$

where $A(t) = \int_0^t \lambda(t)dt$.

$P\{k \text{ points in } (\tau_1, \tau_2)\} = \exp(-B) \frac{B^k}{k!} = \exp(-B)$ for $k = 0$, where $B = \int_{\tau_1}^{\tau_2} \lambda(t)dt$.
Likelihood, continued.

For a nonstationary Poisson process with intensity $\lambda(\theta)$, on $[0,T]$, the likelihood of observing the points \{\tau_1, \tau_2, \ldots, \tau_n\} is simply

$$\lambda(\tau_1)^x \lambda(\tau_2)^x \ldots \lambda(\tau_n)^x \exp\{-A(\tau_1)\} \times \exp\{-A(\tau_2)-A(\tau_1)\} \times \ldots \times \exp\{-A(T)-A(\tau_n)\},$$

$$= \prod \lambda(\tau) \exp\{-A(T)\},$$

where $A(t) = \int_0^t \lambda(t) dt$.

$P\{k \text{ points in } (\tau_1, \tau_2)\} = \exp(-B) \frac{B^k}{k!} = \exp(-B)$ for $k = 0$,

where $B = \int_{\tau_1}^{\tau_2} \lambda(t) dt$.

So the log likelihood is $\sum \log(\lambda(\tau)) - A(T)$.

In the spatial-temporal case, the log likelihood is simply

$$\sum \log(\lambda(\tau)) - \int \lambda(t,x,y) \, dt \, dx \, dy.$$

Find \(\hat{\theta} (= \theta^\wedge) \) maximizing \(l(\theta) = \sum \log(\lambda(\tau_i)) - \int \lambda(t,x,y) \, dt \, dx \, dy. \)

Ogata (1978) showed that the resulting estimate, \(\theta^\wedge \), is, under standard conditions, asymptotically unbiased, \(E(\theta^\wedge) \to \theta \), consistent, \(P(|\theta^\wedge - \theta| > \varepsilon) \to 0 \) as \(T \to \infty \), for any \(\varepsilon > 0 \), asymptotically normal, \(\theta^\wedge \to_D \text{Normal} \) as \(T \to \infty \), and asymptotically efficient, min. variance among asymptotically unbiased estimators.

Further, he showed standard errors for \(\theta^\wedge \) can be constructed using the diagonal elements of the inverse of the Hessian of \(L \) evaluated at \(\theta^\wedge \).

\[
\]
Maximum likelihood estimation continued.
The conditions of Ogata (1978) can be relaxed a bit for Poisson processes [1], and for certain spatial-temporal process in general [2]. Even if the process is not Poissson, under some circumstances [3] the parameters governing the unconditional intensity, \(E \lambda \), can be consistently estimated by maximizing \(L_p(\theta) = \sum \log(E \lambda(t_i)) - \int E \lambda(t,x,y) dt dx dy. \) Basically pretend the process is Poisson.

Suppose you are missing some covariate that might affect \(\lambda \). Under general conditions, the MLE will nevertheless be consistent, provided the effect of the missing covariate is small [4].

Maximum likelihood estimation continued.

\(\lambda \) is completely separable if
\[\lambda(t,x,y; \theta) = \theta_3 \lambda_0(t; \theta_0) \lambda_1(t, x; \theta_1) \lambda_2(t, y; \theta_2). \]

Suppose N has marks too. \(\lambda \) is separable in mark (or coordinate) \(i \) if
\[\lambda(t, x, y, m_1, m_2, ..., m_k ; \theta) = \theta_2 \lambda_i(t, m_i; \theta_i) \lambda_{-i}(t, x, y, m_{-i} ; \theta_{-i}). \]

Suppose you are neglecting some \textit{mark} or coordinate of the process. Under some conditions, the MLE of the other parameters will nevertheless be consistent [1].

In maximizing
\[L(\theta) = \sum \log(\lambda(t)) - \int \lambda(t,x,y) \, dt \, dx \, dy, \]
it is typically straightforward to compute the sum, but the integral can be tricky esp. when the conditional intensity is very volatile. One trick noted in [2] is that, for a Hawkes process where
\[\lambda(t,x,y) = \mu(x,y) + \kappa \sum_{t',x',y' : t' < t} g(t-t',x-x',y-y'), \]
where \(g \) is a density, and
\[\int \mu(x,y) \, dx \, dy = \mu, \]
\[\int \lambda(t,x,y) \, dt \, dx \, dy = \mu T + \kappa \int \sum g(t-t',x-x',y-y') \, dt \, dx \, dy \]
\[= \mu T + \kappa \sum \int g(t-t',x-x',y-y') \, dt \, dx \, dy \]
\[\sim \mu T + \kappa N. \]

6. Questions.

The difference between ETAS and a Hawkes process is ...

a) an ETAS process is more strongly clustered.
b) the points of an ETAS process occur at different locations.
c) the points of an ETAS process have different productivities.
d) the points of an ETAS process have different triggering functions.
Questions.

The difference between ETAS and a Hawkes process is ...

a) an ETAS process is more strongly clustered.
b) the points of an ETAS process occur at different locations.
c) the points of an ETAS process have different productivities.
d) the points of an ETAS process have different triggering functions.

Which of the following can possibly have two points within distance .01 of each other?

a) a hardcore process with $\sigma = .01$.
b) a Strauss process with $R = .01$.
c) a Matern I process with $r = .01$.
d) a Matern II process with $r = .01$.
Questions.

The difference between ETAS and a Hawkes process is ...

a) an ETAS process is more strongly clustered.
b) the points of an ETAS process all occur at different locations.
c) the points of an ETAS process all have different productivity.
d) the points of an ETAS process all have different triggering functions.

Which of the following can possibly have two points within distance .01 of each other?
a) a hardcore process with $\sigma = .01$.
b) a Strauss process with $R = .01$.
c) a Matern I process with $r = .01$.
d) a Matern II process with $r = .01$.
install.packages("spatstat")
library(spatstat)

STRAUSS process
z = rStrauss(100,0.7,0.05)
plot(z, pch=2,cex=.5)

HARDCORE process
z = rHardcore(100,0.05)
plot(z, pch=2,cex=.5)

MATERN(I).
z = rMaternI(20,.05)
plot(z, pch=2,cex=.5)
Code.

```r
## MATERN(II)
z = rMaternII(100,.05)
plot(z,pch=2,cex=.5)

## HAWKES.
install.packages("hawkes")
library(hawkes)

lambda0 = c(0.2,0.2)
alpha = matrix(c(0.5,0,0,0.5),byrow=TRUE,nrow=2)
beta = c(0.7,0.7)
horizon = 3600

h = simulateHawkes(lambda0,alpha,beta,horizon)
plot(c(0,3600),c(0,3),type="n",xlab="t",ylab="x")
points(h[[1]],.5+runif(length(h[[1]])),pch=2,cex=.1)
points(h[[2]],1.5+runif(length(h[[2]])),pch=3,cex=.1)
```