
Statistics 222, Spatial Statistics. 

Outline for the day:
1. Integrals for the exam. 
2. MLE. 

3. Purely spatial processes, Papangelou intensity, 

and the Georgii-Zessin-Nguyen formula. 

4. Exercises and code. 

5. Discuss Van Lieshout pp 11-15. 



1. Integrals for the exam. 

For the exam, you need to know the very basics of integrals, 

like ∫ (f(x)+g(x))dx = ∫ f(x)dx + ∫ g(x)dx, 

and be able to compute the integral of f(x) dx, where f(x) is 

f(x) = c, 

f(x) = log(x), 

f(x) = xa where a is any real number, 

f(x) = eax. 

What is ∫13 ∫ 13 (4+3/x) dx dy? 

2(4x + 3log(x)]1
3) = 2(12 + 3log(3) – 4 – 3log(1)) = 2(8 + 3log(3)). 



2. Maximum likelihood estimation. 

Find      (= qˆ) maximizing l(q) = ∑ log(l(ti)) - ∫ l(t,x,y) dt dx dy.  

Ogata (1978) showed that the resulting estimate,
qˆ, is, under standard conditions, 
asymptotically unbiased, E(qˆ) à q, 
consistent, P(|qˆ - q| > e) à 0 as T à ∞, for any e > 0,  
asymptotically normal, qˆ àD Normal as T à ∞, 
and asymptotically efficient, min. variance among 
asymptotically unbiased estimators.  

Further, he showed standard errors for qˆ can be 
constructed using the diagonal elements of the 
inverse of the Hessian of L evaluated at qˆ . 
sqrt(diag(solve(loglikelihood$hess)))

Ogata, Y. (1978). The asymptotic behaviour of maximum likelihood 
estimators for stationary point processes. Ann. Inst. Statist. Math. 30, 
243-261.



Maximum likelihood estimation continued.  
The conditions of Ogata (1978) can be relaxed a bit for Poisson processes [1], and 
for certain spatial-temporal process in general [2]. 
Even if the process is not Poisson, under some circumstances [3] the parameters 
governing the unconditional intensity, El, can be consistently estimated by 
maximizing LP(q) = ∑ log(El(ti)) - ∫ El(t,x,y) dt dx dy. Basically pretend the process 
is Poisson. 
Suppose you are missing some covariate that might affect l. Under general 
conditions, the MLE will nevertheless be consistent, provided the effect of the 
missing covariate is small [4]. 

[1] Rathbun, S.L., and Cressie, N. (1994). Asymptotic properties of estimators for 
the parameters of spatial inhomogeneous Poisson point processes. Adv. Appl. 
Probab. 26, 122–154. 
[2] Rathbun, S.L., (1996). Asymptotic properties of the maximum likelihood 
estimator for spatio-temporal point processes. JSPI 51, 55–74.
[3] Schoenberg, F.P. (2004). Consistent parametric estimation of the intensity of a 
spatial-temporal point process. JSPI 128(1), 79--93.
[4] Schoenberg, F.P. (2016). A note on the consistent estimation of spatial-temporal 
point process parameters. Statistica Sinica, 26, 861-879.



Maximum likelihood estimation continued.  

λ is completely separable if l(t,x,y; θ) = θ3 λ0(t; θ0) λ1(t, x; θ1) λ2 (t, y; θ2).
Suppose N has marks too. λ is separable in mark (or coordinate) i if 
l(t, x, y, m1, m2, ..., mk ; θ) = θ2 λi(t, mi; θi) λ-i(t, x, y, m-i ; θ-i).

Suppose you are neglecting some mark or coordinate of the process. Under some 
conditions, the MLE of the other parameters will nevertheless be consistent [1]. 

In maximizing L(q) = ∑ log(l(ti)) - ∫ l(t,x,y) dt dx dy, 
it is typically straightforward to compute the sum, but the integral can be tricky esp.
when the conditional intensity is very volatile. One trick noted in [2] is that, for a
Hawkes process where l(t,x,y) = µ(x,y) + k ∑{t',x',y': t' < t} g(t-t',x-x',y-y'), where g is a 
density, and ∫µ(x,y)dxdy = µ, 
∫ l(t,x,y) dt dx dy = µT + k ∫ ∑ g(t-t',x-x',y-y') dt dx dy

= µT + k ∑ ∫ g(t-t',x-x',y-y') dt dx dy 
~ µT + k N. 

[1] Schoenberg, F.P. (2016). A note on the consistent estimation of spatial-temporal 
point process parameters. Statistica Sinica, 26, 861-879.
[2] Schoenberg, F.P. (2013). Facilitated estimation of ETAS. Bulletin of the 
Seismological Society of America, 103(1), 601-605.



3. Purely spatial processes, Papangelou intensity and the Georgii-Zessin Nguyen 
formula. 
For point processes in R2, there is no natural ordering as there is in time. One could 
just use the x-coordinate in place of time and define a conditional intensity, but most 
models for spatial processes would be very awkward to define this way. 
Instead, a more natural and useful tool is the Papangelou intensity, l(x,y), which is 
the conditional rate of points around location (x,y), given information on everywhere 
else. Letting 
l(q) = ∑ log(l(ti)) - ∫ l(x,y) dx dy, 
where l(x,y) is the Papangelou intensity, 
l(q) is called the pseudo-loglikelihood. 

A key formula for space-time point processes is called the martingale formula:
for any predictable function f(t,x,y), 
E ∫ f(t,x,y) dN = E ∫ f(t,x,y) l(t,x,y) dµ. 
= E ∑i f(t i,x i,y i) = E ∫ f(t,x,y) l(t,x,y) dt dx dy
For spatial point processes the corresponding formula, 
E ∫ f(x,y) dN = E ∫ f(x,y) l(x,y) dx dy
is called the Georgii-Zessin-Nguyen formula. 
When f = 1, this means EN(B) = E ∫ l dµ. 



4. Exercises. 

a. Suppose N is a Poisson process with intensity l(t,x,y) = exp(3t) over 
t in [0,10], x in [0,1], y in [0,1]. 
N happens to have points at (1.5,  .4,    .2)

(2,   .52, .31)
(4,   .1,  .33)
(5,    .71, .29).

What is the log-likelihood of this realization?



4. exercises. 

a. Suppose N is a Poisson process with intensity l(t,x,y) = exp(-3t) over 
t in [0,10], x in [0,1], y in [0,1]. 
N happens to have points at (1.5,  .4,    .2)

(2,   .52, .31)
(4,   .1,  .33)
(5,    .71, .29).

What is the log-likelihood of this realization?

-4.5-6-12-15 - ∫∫∫ exp(-3t) dt dx dy 
= -37.5 - ∫0 10 exp(-3t) dt, because x and y go from 0 to 1, 
= -37.5 - exp(-3t) / (-3)] 0

10

= -37.5 + exp(-30)/3 - exp(0)/3
= -37.5 + exp(-30)/3 – 1/3 
~ -37.83. 



exercises. 

Which of the following is not typically true of the MLE of a spatial-temporal point 
process? 

a. It is unbiased. 
b. It is consistent. 
c. It is asymptotically normal.
d. It is asymptotically efficient. 
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