Statistics 222, Spatial Statistics.

Outline for the day:

1. Continue with day7.r.
2. Nonparametric estimation of Hawkes processes using MISD.

Background and motivation.

* History of numerous models for earthquake forecasting, with mostly failures.
(elastic rebound, water levels, radon levels, animal signals, quiescence, electro-magnetic signals, characteristic earthquakes, AMR, Coulomb stress change, etc.)
* Skepticism among many in seismological community toward all probabilistic forecasts.
* Different models can have similar fit and very different implications for forecasts. (e.g. Pareto vs. tapered Pareto for seismic moments. Fitting these by MLE to 3765 shallow worldwide events with $\mathrm{M} \geq 5.8$ from 1977-2000, the Pareto says there should be an event of $\mathrm{M} \geq 10.0$ every 102 years, the tapered Pareto every 10^{436} years.
The fitted Pareto predicts an event with $\mathrm{M} \geq 12$ every 10,500 years, the tapered Pareto every 10^{43400} years.)
* Model evaluation techniques and forecasting experiments to discriminate among competing models and improve them are very important.
* We also need non-parametric alternatives to these models.

Kagan and Schoenberg (2001)

* We also need non-parametric alternatives to these models.

Temporal activity described by modified Omori Law: K/(u+c) ${ }^{p}$

Nonparametric estimation of Hawkes and ETAS processes.
Let \mathbf{x} mean spatial coordinates $=(\mathrm{x}, \mathrm{y})$.
Hawkes processes have $\lambda(\mathrm{t}, \mathbf{x})=\mu(\mathbf{x})+\mathrm{K} \sum_{\mathrm{i}} \mathrm{g}\left(\mathrm{t}-\mathrm{t}_{\mathrm{i}}, \mathbf{x}-\mathbf{x}_{\mathrm{i}}\right)$.

- An ETAS model may be written

$$
\lambda\left(t, \mathbf{x} \mid \mathcal{H}_{t}\right)=\mu(\mathbf{x})+K \sum_{i: t_{i}<t} g\left(t-t_{i}, \mathbf{x}-\mathbf{x}_{\mathbf{i}}, m_{i}\right),
$$

with triggering function

$$
g\left(t-t_{i}, \mathbf{x}-\mathbf{x}_{\mathbf{i}}, m_{i}\right)=\exp \left\{a\left(m_{i}-M_{0}\right)\right\}\left(t-t_{i}+c\right)^{-p}\left(\left\|\mathbf{x}-\mathbf{x}_{\mathbf{i}}\right\|^{2}+d\right)^{-q} .
$$

with e.g. $g\left(u, \mathbf{x} ; m_{i}\right)=(u+c)^{-p} \exp \left\{a\left(m_{i}-\mathrm{M}_{0}\right)\right\}\left(\|\mathbf{x}\|^{2}+\mathrm{d}\right)^{-\mathrm{q}}$.
These ETAS models were introduced by Ogata (1998).
Instead of estimating g parametrically, one can estimate g nonparametrically, using the method of Marsan and Lengliné (2008), which they call Model Independent Stochastic Declustering (MISD).

David Marsan

Extending Earthquakes' Reach Through Cascading

David Marsan* and Oelvier LengUné

Carthquakes, whabever their siae, can trigger ather eartwquakes. Mainshocks cause aftershocks is accur, which in tourn acthate their own local aftershodk sequences, resulting in a carscade of triggering that externds the reach of the irvitiol mainahock, A long-lasting fffikulty os to deterrnine which earthquakes are onenmected, either dirextly or indinectly. Here we show that th's causal structare can be found probabilissically, with mo a priori model noe parameseriration. Large reglonal earthquakes ane found so have a short direct influence in comporison bo the overall aftershock sequernce duration, ibelatfive to these lange mainohocks, small earthquakes osllectively have a greater effect on triggering. Hense cascade triggering is a boy comporvent in earthqualoe inseractionk

11=hquakes of all siaks, inclualing afhershocks, are able to trigecr theur own

Iriggering causes the seivmicity to develop soemplex, scale-invanant pasterms the catasality of "mainshock A trigpored aftershock

R". which appocurs 80 olviceas A. happens to be larpo, mest then inco a mare subbule 'mairubhock CL_{1}, which triggerod CD_{2}, \ldots wh R. This has paramount conse plyysical mechaniam that cause gering (static or Aymamio stre fluid flow, afterslip, one.J camns by looking at affershocks th Enectly triggered by the mains ower, if indirect triggering is imp owerall aftershock bradget ($S-3 \lambda$, then direct triggering must be confined to spatial rangee and times shorter than the size of the botal
aborasolise de Geophysinue intrwe et Tectunoplysione
 Trencer
 dawld nuersangavil- savelefr

Fige. 1. Estimared rabes and Fig-1. Estimasod rases and and m B Bare kernels $O C$ and D0 dressed loenmels. The best porner laws for the semporel power haws for the semporsk
reties $2,1 t, ~ a m l$
 sities $\lambda,\langle x, y$, wil ane shown ass black doshed tines. The bockground bernporal rate $\lambda 00$ fblack horizortal tine in (a) and 400 is campoted as $\Sigma^{*}, w_{E}, / T$, in $0 C l$ and $4 D 0$. the inessed loencls. Icomtinasus. Ginest ane varnpered to the bane ones foolor dashed tinest. The densibies k, have been vertically shifted for clarity-

Nonparametric estimation of Hawkes and ETAS processes.

Model Independent Stochastic Declustering

- The method of Marsan and Lengliné (2008):

$$
\lambda\left(t, m, x, y \mid \mathcal{H}_{t}\right)=\mu(x, y)+\sum_{j: t_{j}<t} \kappa\left(m_{j}\right) g\left(t-t_{j}\right) f\left(x-x_{j}, y-y_{j}\right),
$$

- Maximizes the expectation of the complete data log-likelihood and assigns probabilities that a child event i is caused by an ancestor event j.

Expectation Step

$$
\begin{aligned}
p_{i j} & =\frac{g(u) f(x, y)}{\mu(x, y)+\sum g(u) f(x, y)} \\
p_{i i} & =\frac{\mu(x, y)}{\mu(x, y)+\sum g(u) f(x, y)}
\end{aligned}
$$

Nonparametric estimation of Hawkes and ETAS processes.
Gordon et al. (2017) let the triggering function, g , depend on magnitude, sub-region, distance, and angular separation from the location (x, y) in question to the triggering event.

$$
\lambda\left(t, m, x, y \mid \mathcal{H}_{t}\right)=\mu(x, y)+\sum_{j: t_{j}<t} \kappa\left(m_{j}\right) g\left(t-t_{j}\right) f\left(x-x_{j}, y-y_{j} ; \phi_{j}, m_{j}\right),
$$

Josh Gordon

Nonparametric estimation of Hawkes and ETAS processes.

Expectation Step

$$
\begin{aligned}
& p_{i j}=\frac{g(u) f(x, y, \phi, m)}{\mu(x, y)+\sum g(u) f(x, y, \phi, m)} \\
& p_{i i}=\frac{\mu(x, y)}{\mu(x, y)+\sum g(u) f(x, y, \phi, m)}
\end{aligned}
$$

Maximization Step

$$
h(r, \theta, m)_{k, \ell, q}=\frac{\sum_{c_{k, \ell, q}} p_{i j}}{\Delta r_{k} \Delta \theta_{\ell} \Delta m_{q}} \underbrace{\sum_{i=1}^{N} \sum_{j=1}^{i-1} p_{i j}}_{\# \text { of Aftershocks }}
$$

- $c_{k, \ell, q}=\left\{(i, j) \mid \delta r_{k} \leq r_{i j} \leq \delta r_{k+1}, \delta \theta_{\ell} \leq \theta_{i j} \leq \delta \theta_{\ell+1}, \delta m_{q} \leq m_{j} \leq \delta m_{q+1}, i>j\right\}$ is the set of indices of all pairs of events that fall within the bins specified by the multidimensional histogram density estimator for magnitude, distance, and angular separation $h(r, \theta, m)$.
- κ and g are maximized similarly

