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Preface

Today, much information reaches us in graphical form. From a math-
ematical point of view, such data may be divided into various classes,
each having its own salient characteristics. For instance, in classical geo-
statistics, some spatially varying variable is observed at a given number
of fixed locations and one is interested in its value at locations where
it was not observed. One might think of the prediction of ore content
in the soil based on measurements at some conveniently placed bore-
holes or the construction of air pollution maps based on gauge data.
In other cases, due to technical constraints or for privacy reasons, data
is collected in aggregated form as region counts or as a discrete image.
Typical examples include satellite imagery, tomographic scans, disease
maps or yields in agricultural field trials. In this case, the objective is
often spatial smoothing or sharpening rather than prediction. Finally,
data may consist of a set of objects or phenomena tied to random spa-
tial locations and the prime interest is in the geometrical arrangement
of the set, for instance in the study of earthquakes or of cellular patterns
seen under a microscope.

The statistical analysis of spatial data merits treatment as a separate
topic, as it is different from ‘classical’ statistical data in a number of
aspects. Typically, only a single observation is available, so that artificial
replication in the form of an appropriate stationarity assumption is called
for. Also the size of images, or the number of objects in a spatial pattern,
is typically large and, moreover, there may be interactions at various
scales. Hence a conditional or hierarchical specification is useful, often
in combination with Monte Carlo methods.

This book will describe the mathematical foundations for each of
the data classes mentioned above, present some models and discuss sta-
tistical inference. Each chapter first presents the theory which is then
applied to illustrative examples using an open source R-package, lists
some exercises and concludes with pointers to the literature. The pre-
requisites consist of maturity in probability and statistics at the level
expected of a graduate student in mathematics, engineering or statistics.
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Indeed, the contents grew out of lectures in the Dutch graduate school
‘Mastermath’ and are suitable for a semester long introduction. Those
wishing to learn more are referred to the excellent monographs by Cressie
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Gaetan and Guyon (Springer, 2010) or to the exhaustive Handbook of
Spatial Statistics (CRC, 2010).

In closing, I would like to express my gratitude to the students
who attended my ‘Mastermath’ courses for useful feedback, to the staff
at Taylor and Francis, especially to Rob Calver, for their support, to
three anonymous reviewers for constructive suggestions and to Christoph
Hofer–Temmel for a careful reading of the manuscript.

Marie-Colette van Lieshout
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C H A P T E R 1

Introduction

The topic of these lecture notes is modelling and inference for spatial
data. Such data, by definition, involve measurements at some spatial
locations, but can take many forms depending on the stochastic mech-
anism that generated the data, on the type of measurement and on the
choice of the spatial locations.

Ideally, the feature of interest is measured at every location in some
appropriate region, usually a bounded subset of the plane. From a math-
ematical point of view, such a situation can be described by a random
field indexed by the region. In practice, however, it is not possible to
consider infinitely many locations. Additionally, there may be physical,
administrative, social or economic reasons for limiting the number of
sampling locations or for storing measurements in aggregated form over
areal units. The locations may even be random, so that, in mathematical
terms, they constitute a point process.

In the next three sections, we will present some typical examples
to motivate the more mathematical treatment in subsequent chapters.
Suggestions for statistical inference will also be given, but note that these
should be taken as an indication. Indeed, any pertinent analysis should
take into account the data collection process, the specific context and the
scientific question or goal that prompted data collection in the first place.

1.1 GRIDDED DATA

Figure 1.1 shows 208 coal ash core samples collected on a grid in the
Robena Mine in Greene County, Pennsylvania. The diameters of the
discs are proportional to the percentage of coal ash at the sampled loca-
tions. The data can be found in a report by Gomez and Hazen [1] and

1
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Figure 1.1 Percentage of coal ash sampled on a grid in the Robena Mine
in Greene County, Pennsylvania.

were prepared for R by E. Pebesma using a digital version at a website
maintained by D. Zimmerman.

A mining engineer might be interested in knowing basic summary
statistics, including the first and second moments of the sample. Next,
with model building in mind, he could ask himself whether the data
could have come from a normal distribution, possibly after discarding
some outliers, and if not, whether they are multi-modal or skewed. Such
questions could be addressed by elementary tools including histograms,
quantiles, boxplots and Q-Q plots.

On a higher conceptual level, the mining company could also be
interested in local outliers, measured percentages that are markedly dif-
ferent from those around them, or in trends that could indicate good
places to concentrate future mining efforts. Indications of these can be
found by applying the elementary statistics across rows or columns. For
instance, consideration of the mean across columns suggests that there
is a decreasing trend in the percentage of coal ash from left to right. It
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would be of interest to quantify how strongly correlated measurements
at adjacent sampling locations are too.

Another striking feature of Figure 1.1 is that there are holes in the
sampling grid, for example in the seventh row from above and in the
sixth one from below. Therefore, when the mining engineer has found and
validated a reasonable model that accounts for both the global trends
and the local dependencies in the data, he could proceed to try and fill
in the gaps, in other words, to estimate the percentage of coal ash at
missing grid points based on the sampled percentages. Such a spatial
interpolation procedure is called kriging in honour of the South-African
statistician and mining engineer D.G. Krige, one of the pioneers of what
is now known as geostatistics.

1.2 AREAL UNIT DATA

The top-most panel of Figure 1.2 shows a graphical representation of
the total number of deaths from Sudden Infant Death Syndrome (SIDS)
in 1974 for each of the 100 counties in North Carolina. These data were
collected by the state’s public health statistics branch and analysed in
[2]. More precisely, the counts were binned in five colour-coded intervals,
where darker colours correspond to higher counts.

From the picture it is clear that the centroids of the counties do not
lie on a regular grid. The sizes and shapes of the counties vary and can
be quite irregular. Moreover, the recorded counts are not tied to a pre-
cise location but tallied up county-wise. This kind of accumulation over
administrative units is usual for privacy-sensitive data in, for instance,
the crime or public health domains.

A public health official could be interested in spatial patterns. Indeed,
the original research question in [2] was whether or not there are clusters
of counties with a high incidence of SIDS. However, death counts by
themselves are quite meaningless without an indication of the population
at risk. For this purpose, Symons, Grimson and Yuan [3] asked the North
Carolina public health statistics branch for the counts of live births in
each county during the same year 1974. These are shown in the lower
panel of Figure 1.2.

Presented with the two pictures, our public health official might look
for areas where the SIDS counts are higher than what would be expected
based on the number of live births in the area. Such areas would be
prime targets for an information campaign or a quest for factors specific
to those areas that could explain the outlier. For the data at hand, when
comparing counties at the north-east and the north-west with similar
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Figure 1.2 Numbers of cases of Sudden Infant Death Syndrome (top)
and live births (bottom) during 1974 accumulated per county in North
Carolina. The death counts are binned in five classes with breaks at
5, 10, 15 and 20, the live birth counts in six classes with breaks at 1000,
2000, 3000, 4000 and 5000. Darker colours correspond to higher counts.

birth numbers, it is clear that there is a higher SIDS rate in the north-
east. Note that there are also counties in the centre of the state with a
high number of births but a rather low SIDS incidence. Other outliers
can be identified using classic boxplots and quantile techniques on the
rates of SIDS compared to live births.

Such an analysis, however, ignores the fact that the county borders
are purely administrative and disease patterns are unlikely to follow.
Moreover, rates in counties with many births are likely to be more stable
than those with few. On a higher conceptual level, the public health
authority may therefore wish for a model that explicitly accounts for
large scale variations in expected rates and their associated variances as
well as for local dependencies between adjacent counties.

1.3 MAPPED POINT PATTERN DATA

Figure 1.3 shows a mapped pattern consisting of 3, 605 Beilschmiedia
trees in a rectangular stand of tropical rain forest at Barro Colorado
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Figure 1.3 Top: positions of Beilschmiedia trees in a 1,000 by 500 metre
stand in Barro Colorado Island, Panama. Bottom: norm of elevation (in
metres) gradient in the stand.

Island, Panama. These data were prepared for R by R. Waagepetersen
and taken from a larger data set described in [4].

We will only be interested in maps where the mechanism that gener-
ated the points is of interest. For instance, since the map of centroids of
the North Carolina counties discussed in the previous section is purely
artificial and has no bearing on the abundance of SIDS cases, there is no
point in studying it. For genuine mapped point pattern data, research
questions tend to focus on the arrangement of the points, in particular,
on trends and interactions.

Returning to Figure 1.3, it is clear at first glance that the trees are
not distributed over the plot in a uniform way. Rather, they seem to
be concentrated in specific regions. Possible explanations could include
local differences in soil quality or the availability of nutrients, differences
in the terrain, or traces of a planting scheme. To quantify and test non-
homogeneity, the forester may use quadrats, that is, a partition of the
stand in disjoint spatial bins, and apply classical statistical dispersion
tests to the quadrat counts. It might also be of interest to test whether
the counts follow a Poisson distribution.
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Since Barro Colorado island has been studied extensively over the
past century, a lot is known about the terrain. The image in the lower-
most panel of Figure 1.3 displays the norm of the elevation gradient.
Visually, it seems that a steep gradient aligns well with a high tree
intensity, a correlation that the forester may be interested in quantifying
by means of a spatial generalised linear regression model.

The steepness of the terrain is only one factor in explaining the
mapped pattern. A cluster in the left part of the stand, for example,
is rich in trees, even though the terrain there is not steep at all. Addi-
tionally, there could be interaction between the trees due to competition
for nutrients or sunlight or because of seed dispersion patterns that the
forester may try to capture in a model.

Finally note that additional measurements might be taken at each
tree location, for example the number of stems, the size of the crown or
the diameter at breast height, but we will not pursue this topic further.

1.4 PLAN OF THE BOOK

Chapter 2 is devoted to gridded data such as the coal ash measurements
displayed in Figure 1.1. The mathematical definition of a random field is
given before specialising to Gaussian random fields. Such random fields
are convenient to work with since their distribution is fully described by
the mean and covariance functions. Next, various types of stationarity
are discussed and shown to be equivalent for Gaussian random fields.
The celebrated Bochner theorem provides a spectral representation for
continuous covariance functions.

The second part of the chapter is dedicated to spatial interpolation.
First, the semi-variogram and its empirical counterpart are introduced
to quantify the local interaction structure in the data. A simple kriging
procedure is developed that is appropriate when both the mean and the
semi-variogram are known explicitly. It is shown that this procedure re-
duces to a Bayes estimator when the random field is Gaussian. In the
last sections of the chapter, the strong assumptions on mean and semi-
variogram are relaxed. More precisely, ordinary kriging is the name given
to spatial interpolation when the mean is constant but unknown. Uni-
versal kriging is apt when explanatory variables are available to define
a spatial regression for the mean.

Chapter 3 is concerned with areal unit data such as the infant death
counts shown in Figure 1.2. Special attention is given to autoregression
models, including Gaussian and logistic ones. It is shown that, provided
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a positivity condition holds, the distribution of such models is fully de-
scribed by their local characteristics, that is, by the family of the condi-
tional distributions of the measurement at each areal unit given those at
other units. When these local characteristics are truly local in the sense
that they depend only on the neighbours of the areal unit of interest,
the random field is said to be Markov. Using the theory of Gibbs states,
it is proved that the joint probability density of a Markov random field
can be factorised in interaction functions on sets of mutual neighbours.

The second part of the chapter is devoted to statistical inference,
in particular estimation of the model parameters. First, the maximum
likelihood equations are derived for a Gaussian autoregression model.
For most other models, the likelihood is available only up to a parame-
ter dependent normalisation constant. Several techniques are discussed,
including maximum pseudo-likelihood and Monte Carlo maximum like-
lihood estimation. The chapter closes with two examples of hierarchical
modelling and inference, image segmentation and disease mapping.

The last chapter, Chapter 4, features mapped point pattern data
such as the map of trees in Figure 1.3. The formal definition of a point
process is given before specialising to Poisson processes. These processes
are convenient to work with because of the lack of interaction between
their points, and the fact that their distribution is fully described by the
intensity function. Next, the moment measures and associated product
densities are defined for general point processes, together with their em-
pirical counterparts. Various concepts of stationarity are also discussed.

The remainder of the chapter is restricted to finite point processes.
Following similar lines as those laid out in Chapter 3, a family of condi-
tional distributions is defined on which a Markov property can be based
and a factorisation of the joint probability density in terms of interac-
tion functions defined on sets of mutual neighbours is seen to hold. A
maximum likelihood theory is developed for Poisson processes, whilst
the maximum pseudo-likelihood and Monte Carlo maximum likelihood
methods apply more generally. Minimum contrast techniques can be used
for point processes, including Cox and cluster processes, for which the
likelihood is intractable. An application to cluster centre detection con-
cludes the chapter.

Each chapter also contains worked examples and exercises to illus-
trate, complement and bring the theory into practice. In order to make
the book suitable for self-study, solutions to selected exercises are col-
lected in an appendix. The chapters close with pointers to the original
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sources of the results, in so far as it was possible to trace them, and to
more specialised and elaborate textbooks for further study.

The calculations in this book were done using the R-language, a free,
open source implementation of the S programming language created by
J.M. Chambers [5]. R was created in the 1990s by R. Ihaka and R.
Gentleman and is being developed by the R Development Core Team
currently consisting of some twenty people. For an introduction, we refer
to [6]. An attractive feature of the R-project is that it comes with a great
many state of the art packages contributed by prominent researchers.
The current list of packages is available at the site cran.r-project.org.
A bit of a warning, though. Packages come with absolutely no warranty!
Of course, it is also possible to write one’s own functions and to load
C-code.
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C H A P T E R 2

Random field modelling
and interpolation

2.1 RANDOM FIELDS

Climate or environmental data are often presented in the form of a map,
for example the maximum temperatures on a given day in a country,
the concentrations of some pollutant in a city or the mineral content in
soil. In mathematical terms, such maps can be described as realisations
from a random field, that is, an ensemble of random quantities indexed
by points in a region of interest.
Definition 2.1 A random field is a family X = (Xt)t∈T of random
variables Xt that are defined on the same probability space and indexed
by t in a subset T of Rd.

Let us consider a finite set t1, . . . , tn ∈ T of index values. Then the
random vector (Xt1 , . . . , Xtn)′ has a well-defined probability distribu-
tion that is completely determined by its joint cumulative distribution
function

Ft1,...,tn(x1, . . . , xn) = P(Xt1 ≤ x1; · · · ; Xtn ≤ xn),

where xi ∈ R for i = 1, . . . , n. The ensemble of all such joint cumulative
distribution functions with n ranging through the natural numbers and
t1, . . . , tn through T constitute the finite dimensional distributions or
fidi’s of X. Together, they uniquely define the probability distribution
of X.

The proof relies on Kolmogorov’s consistency theorem which states
the following. Suppose that for every finite collection t1, . . . , tn, we have

9



10 ! Random field modelling and interpolation

a probability measure µt1,...,tn on Rn with joint cumulative distribution
function Ft1,...,tn . If this family of fidi’s is symmetric in the sense that

Ftπ(1),...,tπ(n)(xπ(1), . . . , xπ(n)) = Ft1,...,tn(x1, . . . , xn)

for all n ∈ N, all x1, . . . , xn ∈ R, all t1, . . . , tn ∈ T and all permutations
π of (1, . . . , n), and consistent in the sense that

lim
xn→∞

Ft1,...,tn(x1, . . . , xn) = Ft1,...,tn−1(x1, . . . , xn−1),

for all n ∈ N, all x1, . . . , xn−1 ∈ R and all t1, . . . , tn ∈ T , then there
exists a random field X whose fidi’s coincide with those in F .

In summary, in order to define a random field model, one must specify
the joint distribution of (Xt1 , . . . , Xtn)′ for all choices of n and t1, . . . , tn

in a consistent way. In the next section, we will assume that these joint
distributions are normal, and show that in that case it suffices to specify
a mean and covariance function. For this reason, Gaussian models are
widely used in practice. Alternative modelling strategies may be based
on transformations, linear models, series expansions or deterministic or
stochastic partitions of T , of which we present a few simple examples
below.

Example 2.1 Fix n ∈ N and consider a partition A1, . . . , An of T . More
precisely, the Ai are non-empty, disjoint sets whose union is equal to T .
Let (Z1, . . . , Zn)′ be a random n-vector and write

Xt =
n∑

i=1
Zi1{t ∈ Ai}

for all t ∈ T . In other words, the random surface defined by X is flat
on each partition element Ai. The value set of the Zi may be finite,
countable or a subset of R. In all cases, Xt is a linear combination of
random variables and therefore a random variable itself.

Example 2.2 Fix n ∈ N and let fi : T → R, i = 1, . . . , n, be a set of
functions. Let (Z1, . . . , Zn)′ be a real-valued random n-vector and write

Xt =
n∑

i=1
Zifi(t), t ∈ T.

Then Xt is a well-defined random variable. The fi may, for example, be
harmonic or polynomial base functions, or express some spatial charac-
teristic of interest.
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One may also apply transformations to a random field to obtain new
ones.

Example 2.3 Let X = (Xt)t∈T be a random field and φ : R → R a
measurable function. Then φ(X) = (φ(Xt))t∈T is also a random field.
Note that the supports of the random variables Xt and φ(Xt) may differ.
The transformation φ : x → exp(x), for instance, ensures that φ(Xt)
takes positive values.

2.2 GAUSSIAN RANDOM FIELDS

Recall that a random variable is normally or Gaussian distributed if it
has probability density function

f(x) = 1
σ(2π)1/2 exp

[

−(x − µ)2

2σ2

]

, x ∈ R,

with σ2 > 0 or if it takes the value µ with probability one, in which case
σ2 = 0. The constant µ ∈ R is the mean, σ2 the variance.

Similarly, a random vector X = (X1, . . . , Xn)′ has a multivariate
normal distribution with mean vector m = (EX1, . . . ,EXn)′ ∈ Rn and
n × n covariance matrix Σ with entries Σij = Cov(Xi, Xj) if any linear
combination a′X = ∑n

i=1 aiXi, a ∈ Rn, is normally distributed.
The normal distribution plays a central role in classical statistics. In

a spatial context, we need the following analogue.

Definition 2.2 The family X = (Xt)t∈T indexed by T ⊆ Rd is a Gaus-
sian random field if for any finite set t1, . . . , tn of indices the random
vector (Xt1 , . . . , Xtn)′ has a multivariate normal distribution.

By the definition of multivariate normality, an equivalent charac-
terisation is that any finite linear combination ∑n

i=1 aiXti is normally
distributed.

The finite dimensional distributions involve two parameters, the
mean vector and the covariance matrix. The entries of the latter are
Cov(Xti , Xtj ), i, j = 1, . . . , n. Define the functions

m : T → R; m(t) = EXt

and
ρ : T × T → R; ρ(s, t) = Cov(Xs, Xt).
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They are called the mean and covariance function of X. If we know m
and ρ, we know the distributions of all (Xt1 , . . . , Xtn)′, t1, . . . , tn ∈ T .
However, not every function from T × T to R is a proper covariance
function.

Example 2.4 Examples of proper covariance functions include the fol-
lowing.

1. The choices T = R+ = [0, ∞), m ≡ 0 and

ρ(s, t) = min(s, t)

define a Brownian motion.

2. For m ≡ 0, β > 0, and

ρ(s, t) = 1
2β

exp (−β||t − s||) , s, t ∈ Rd,

we obtain an Ornstein–Uhlenbeck process. The function ρ is alter-
natively known as an exponential covariance function.

3. For β, σ2 > 0, the function

ρ(s, t) = σ2 exp
(
−β||t − s||2

)
, s, t ∈ Rd,

is the Gaussian covariance function.

4. Periodicities are taken into account by the covariance function

ρ(s, t) = σ2sinc(β||t − s||), s, t ∈ Rd,

for β, σ2 > 0 defined in terms of the sine cardinal function
sinc(x) = sin(x)/x for x ̸= 0 and 1 otherwise. Note that the corre-
lations are alternately positive and negative, and that their absolute
value decreases in the spatial lag ||t − s||.

Proposition 2.1 The function ρ : T × T → R, T ⊆ Rd, is the covari-
ance function of a Gaussian random field if and only if ρ is non-negative
definite, that is, for any t1, . . . , tn, n ∈ N, the matrix (ρ(ti, tj))n

i,j=1 is
non-negative definite.
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In other words, for any finite set t1, . . . , tn, the matrix (ρ(ti, tj))n
i,j=1

should be symmetric and satisfy the following property: for any a ∈ Rn,
n∑

i=1

n∑

j=1
aiρ(ti, tj)aj ≥ 0.

Proof: “⇒” Since (ρ(ti, tj))n
i,j=1 is the covariance matrix of (Xt1 , . . . ,

Xtn)′, it is non-negative definite.
“⇐” Apply Kolmogorov’s consistency theorem. To do so, we need

to check the consistency of the fidi’s. Define µt1,...,tn to be a multivari-
ate normal with covariance matrix Σ(t1, . . . , tn) having entries ρ(ti, tj).
By assumption, Σ(t1, . . . , tn) is non-negative definite so that µt1,...,tn is
well-defined. The µt1,...,tn are also consistent since they are symmetric
and the marginals of normals are normal with the marginal covariance
matrix. "

Example 2.5 For T = Rd, set ρ(s, t) = 1{s = t}. Then ρ is a
proper covariance function as, for any t1, . . . , tn ∈ T , n ∈ N, and all
a1, . . . , an ∈ R,

n∑

i=1

n∑

j=1
aiρ(ti, tj)aj =

n∑

i=1
a2

i ≥ 0.

More can be said for Gaussian random fields under appropriate sta-
tionarity conditions, as will be discussed in the next two sections.

2.3 STATIONARITY CONCEPTS

Throughout this section, the index set will be T = Rd.

Definition 2.3 A random field X = (Xt)t∈Rd is strictly stationary if
for all finite sets t1, . . . , tn ∈ Rd, n ∈ N, all k1, . . . , kn ∈ R and all
s ∈ Rd,

P(Xt1+s ≤ k1; · · · ; Xtn+s ≤ kn) = P(Xt1 ≤ k1; · · · ; Xtn ≤ kn).

Let X be strictly stationary with finite second moments EX2
t < ∞

for all t ∈ Rd. Then

P(Xt ≤ k) = P(Xt+s ≤ k)
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for all k so that Xt and Xt+s are identical in distribution. In particular,
EXt = EXt+s. We conclude that the mean function must be constant.

Similarly,

P(Xt1 ≤ k1; Xt2 ≤ k2) = P(Xt1+s ≤ k1; Xt2+s ≤ k2)

for all k1, k2 so that the distributions of (Xt1 , Xt2)′ and (Xt1+s, Xt2+s)′

are equal. Hence Cov(Xt1 , Xt2) = Cov(Xt1+s, Xt2+s). In particular, for
s = −t1, we get that

ρ(t1, t2) = ρ(t1 + s, t2 + s) = ρ(0, t2 − t1)

is a function of t2 − t1. These properties are captured by the following
definition.

Definition 2.4 A random field X = (Xt)t∈Rd is weakly stationary if

• EX2
t < ∞ for all t ∈ Rd;

• EXt ≡ m is constant;

• Cov(Xt1 , Xt2) = ρ(t2 − t1) for some ρ : Rd → R.

Since a Gaussian random field is defined by its mean and covari-
ance functions, in this case the reverse implication (weak stationarity
implies strict stationarity) also holds. To see this, consider the ran-
dom vector (Xt1 , . . . , Xtn)′. Its law is a multivariate normal with mean
vector (m, . . . , m)′ and covariance matrix Σ(t1, . . . , tn) with ij-th entry
ρ(tj − ti). The shifted random vector (Xt1+s, . . . , Xtn+s)′ also follows a
multivariate normal distribution with mean vector (m, . . . , m)′ and co-
variance matrix Σ(t1 + s, . . . , tn + s) whose ij-th entry is ρ(tj + s − (ti +
s)) = ρ(tj − ti) regardless of s. We conclude that X is strictly stationary.

Defintion 2.4 can easily be extended to random fields that are defined
on a subset T of Rd.

Example 2.6 Let (Xt)t∈Rd be defined by

Xt =
d∑

j=1
(Aj cos tj + Bj sin(tj)) , t = (t1, . . . , td) ∈ Rd,

where Aj and Bj, j = 1, . . . , d, are independent random variables that
are uniformly distributed on [−1, 1]. Then Xt is not strictly stationary.
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Indeed, for example the supports of X(0,...,0) = ∑
j Aj and X(π/4,...,π/4) =

∑
j(Aj + Bj)/

√
2 differ. However, the mean EXt = 0 is constant and

E(XsXt) =
d∑

j=1

{
EA2

j cos tj cos sj + EB2
j sin tj sin sj

}
= EA2

1

d∑

j=1
cos(tj−sj)

depends only on the difference t − s. Hence Xt is weakly stationary.

Proposition 2.2 If ρ : Rd → R is the covariance function of a weakly
stationary (Gaussian) random field, the following hold:

• ρ(0) ≥ 0;

• ρ(t) = ρ(−t) for all t ∈ Rd;

• |ρ(t)| ≤ ρ(0) for all t ∈ Rd.

Proof: Note that ρ(0) = Cov(X0, X0) = Var(X0) ≥ 0. This proves the
first assertion. For the second claim, write

ρ(t) = Cov(X0, Xt) = Cov(Xt, X0) = ρ(−t).

Finally, the Cauchy–Schwarz inequality implies

|ρ(t)|2 = |E [(Xt − m)(X0 − m)] |2 ≤ E
[
(Xt − m)2

]
E

[
(X0 − m)2

]
= ρ(0)2.

Taking the square root on both sides completes the proof. "

Of course, defining a covariance function as it does, ρ is also non-
negative definite.

To define an even weaker form of stationarity, let X be a weakly
stationary random field and consider the increment Xt2 −Xt1 for t1, t2 ∈
T . Since the second order moments exist by assumption, the variance of
the increment is finite and can be written as

Var(Xt2−Xt1) = Var(Xt2)+Var(Xt1)−2Cov(Xt2 , Xt1) = 2ρ(0)−2ρ(t2−t1).

Hence, the variance of the increments depends only on the spatial lag
t2 − t1.

Definition 2.5 A random field X = (Xt)t∈Rd is intrinsically station-
ary if
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• EX2
t < ∞ for all t ∈ Rd;

• EXt ≡ m is constant;

• Var(Xt2 − Xt1) = f(t2 − t1) for some f : Rd → R.

As for weak stationarity, the definition of intrinsic stationarity re-
mains valid for random fields defined on subsets T of Rd.

Example 2.7 The one-dimensional Brownian motion on the positive
half-line (cf. Example 2.4) is not weakly stationary. However, since by
definition the increment Xt+s − Xs, s, t > 0, is normally distributed
with mean zero and variance t, this Brownian motion is intrinsically
stationary. More generally, in any dimension, the fractional Brownian
surface with mean function zero and covariance function

ρ(s, t) = 1
2(||s||2H + ||t||2H − ||t − s||2H), 0 < H < 1,

is intrinsically but not weakly stationary. The constant H is called the
Hurst index and governs the smoothness of realisations from the model.

2.4 CONSTRUCTION OF COVARIANCE FUNCTIONS

This section presents several examples of techniques for the construction
of covariance functions.

Example 2.8 Let H : Rd → Rk, k ∈ N, be a function and set

ρ(s, t) =
k∑

j=1
H(s)jH(t)j , s, t ∈ Rd.

Then for any t1, . . . , tn ∈ Rd, n ∈ N, the matrix (ρ(ti, tj))n
i,j=1 is sym-

metric. Furthermore, for all a ∈ Rn,

n∑

i=1

n∑

j=1
aiρ(ti, tj)aj =

∥∥∥∥∥

n∑

i=1
aiH(ti)

∥∥∥∥∥

2

≥ 0.

Hence, by Proposition 2.1, ρ is a covariance function.



Construction of covariance functions ! 17

Example 2.9 Let ρm : Rd × Rd → R be a sequence of covariance func-
tions and suppose that the pointwise limits

ρ(s, t) = lim
m→∞

ρm(s, t)

exist for all s, t ∈ Rd. Then, for all t1, . . . , tn ∈ Rd, n ∈ N, the matrix
(ρ(ti, tj))n

i,j=1 is non-negative definite. To see this, note that

ρ(s, t) = lim
m→∞

ρm(s, t) = lim
m→∞

ρm(t, s) = ρ(t, s)

as each ρm is symmetric. Furthermore, for all a1, . . . , an ∈ R, n ∈ N,
n∑

i=1

n∑

j=1
aiρ(ti, tj)aj =

n∑

i=1

n∑

j=1
ai lim

m→∞
ρm(ti, tj)aj

= lim
m→∞

n∑

i=1

n∑

j=1
aiρm(ti, tj)aj ≥ 0.

The order of sum and limit may be reversed as limm→∞ ρm(ti, tj) exists
for all ti and tj.

Example 2.10 Let µ be a finite, symmetric Borel measure on Rd, that
is, µ(A) = µ(−A) for all Borel sets A ⊆ Rd. Set

ρ(t) =
∫

Rd
ei<w,t>dµ(w), t ∈ Rd,

where < w, t > denotes the inner product on Rd. Since µ is symmet-
ric, ρ takes real values and is an even function. Moreover, ρ defines a
strictly stationary Gaussian random field. To see this, note that for all
a1, . . . , an ∈ R, n ∈ N,

n∑

k=1

n∑

j=1
akajρ(tj − tk) =

∫

Rd

n∑

k=1

n∑

j=1
akaje

i<w,tj−tk>dµ(w)

=
∫

Rd

n∑

k=1

n∑

j=1
ake−i<w,tk>aje

i<w,tj>dµ(w)

=
∫

Rd

∣∣∣∣∣

n∑

k=1
ake−i<w,tk>

∣∣∣∣∣

2

dµ(w) ≥ 0

and use Proposition 2.1. In particular, if µ admits an even density f :
Rd → R+, then

ρ(t) =
∫

Rd
ei<w,t>f(w) dw =

∫

Rd
f(w) cos(< w, t >) dw.
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By the inverse Fourier formula,

f(w) =
( 1

2π

)d ∫

Rd
e−i<w,t>ρ(t) dt.

In fact, by Bochner’s theorem, any continuous covariance function of
a strictly stationary Gaussian random field can be written in this form.

Theorem 2.1 Suppose ρ : Rd → R is a continuous function. Then ρ
is the covariance function of some strictly stationary Gaussian random
field if and only if

ρ(t) =
∫

Rd
ei<w,t>dµ(w)

for some finite (non-negative) symmetric Borel measure µ on Rd.

The measure µ is called the spectral measure of the random field.

The proof of Bochner’s theorem is quite technical. For complete-
ness’ sake it will be given in Section 2.5. The reader may wish to skip
the proof, though, and prefer to proceed directly to some examples and
applications.

Example 2.11 For every ν > 0, the Whittle–Matérn spectral density is
defined as

f(w) ∝
(
1 + ||w||2

)−ν−d/2
, w ∈ Rd.

In the special case ν = 1/2, the spectral density f(w) corresponds to an
exponential covariance function with β = 1 as introduced in Example 2.4.

Example 2.12 For the Gaussian covariance function ρ(t) = σ2 exp[−β
||t||2], β, σ2 > 0, t ∈ Rd, that we encountered in Example 2.4, the can-
didate spectral density is

f(w) = σ2
( 1

2π

)d ∫

Rd
e−i<w,t>e−β||t||2dt.

The integral factorises in d one-dimensional terms of the form
∫ ∞

−∞
e−iwte−βt2

dt = e−w2/(4β)
∫ ∞

−∞
e−β(t+iw/(2β))2

dt = e−w2/(4β)(π/β)1/2
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for w ∈ R. Collecting the d terms and the scalar multiplier, one obtains

f(w) = σ22−d(βπ)−d/2 exp
[
−||w||2/(4β)

]
, w ∈ Rd.

In other words, the spectral density is another Gaussian function. One
speaks of self-duality in such cases.

Without proof1 we note that if X is a strictly stationary Gaussian
random field with spectral measure µ such that

∫

Rd
||w||ϵdµ(w) < ∞

for some ϵ ∈ (0, 1), then X admits a continuous version. In particular
this is true for the Gaussian covariance function in the example above.

From a practical point of view, the spectral representation of
Bochner’s theorem can be used to generate realisations of a Gaussian
random field.

Proposition 2.3 Let µ be a finite symmetric Borel measure on Rd

and set

ρ(t) =
∫

Rd
ei<w,t>dµ(w) =

∫

Rd
cos(< w, t >) dµ(w).

Suppose that Rj, j = 1, . . . , n, n ∈ N, are independent and identically
distributed random d-vectors with distribution µ(·)/µ(Rd). Also, let Φj,
j = 1, . . . , n, n ∈ N, be independent and identically distributed random
variables that are uniformly distributed on [0, 2π) independently of the
Rj. Then

Zt =
√

2µ(Rd)
n

n∑

j=1
cos(< Rj , t > +Φj), t ∈ Rd,

converges in distribution to a zero mean Gaussian random field with
covariance function ρ as n → ∞.

Proof: Let R be distributed according to µ(·)/µ(Rd) and, indepen-
dently, let Φ follow a uniform distribution on [0, 2π). Fix t ∈ Rd. Then
the random variable Yt = cos(< R, t > +Φ) has expectation

EYt = 1
2πµ(Rd)

∫ 2π

0

∫

Rd
cos(< r, t > +φ)dµ(r)dφ.

1Adler (1981). The Geometry of Random Fields.
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By the goniometric equation

cos(< r, t > +φ) = cos(< r, t >) cos φ − sin(< r, t >) sin φ (2.1)

and Fubini’s theorem, it follows that EYt = 0.
Next, fix s, t ∈ Rd and consider the random variables Yt = cos(<

R, t > +Φ) and Ys = cos(< R, s > +Φ). Since their means are equal to
zero, the covariance reads

E [YtYs] = 1
2πµ(Rd)

∫ 2π

0

∫

Rd
cos(< r, t > +φ) cos(< r, s > +φ) dµ(r) dφ.

Using (2.1) and the fact that
∫ 2π

0
sin φ cos φdφ = 0,

the integral can be written as the sum of
∫ 2π

0

∫

Rd
[cos(< r, t >) cos(< r, s >)] cos2 φ dµ(r) dφ

and ∫ 2π

0

∫

Rd
[sin(< r, t >) sin(< r, s >)] sin2 φ dµ(r) dφ.

Hence, as
∫

sin2 φdφ =
∫

cos2 φdφ = π,

E [YtYs] = 1
2µ(Rd)

∫

Rd
cos(< r, t − s >) dµ(r).

The claim follows by an application of the multivariate central limit
theorem. "

2.5 PROOF OF BOCHNER’S THEOREM

In this section, we give a proof of Theorem 2.1. It requires a higher level
of maturity and may be skipped.

Proof: (Bochner’s theorem) We already saw that any ρ of the given
form is non-negative definite. For the reverse implication, suppose ρ is
non-negative definite and continuous. We are looking for a measure µ
that is the inverse Fourier transform of ρ. Since we have information
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on finite sums only, we will approximate µ by a finite sum and use the
continuity to take limits.

Let K, n > 0 be large integers and set δ = 1/n. Then by assumption,
for all w ∈ Rd,

hK,n(w) :=
∑ ∑

(l,m)∈SK,n

ei<w,δl>ρ(δm − δl)e−i<w,δm> ≥ 0, (2.2)

upon recalling that ρ, being a covariance function, is symmetric, so that
hK,n takes real values. Here the indices run through the set

SK,n = {(l, m) ∈ Zd × Zd : max
j=1,...,d

|lj | ≤ Kn, max
j=1,...,d

|mj | ≤ Kn}.

Note that the box of size (2K)d contains (2Kn + 1)d index points, so
each point represents a volume of (2K)d/(2Kn + 1)d. Multiplying (2.2)
by cell size and using the continuity and boundedness of ρ yields

hK(w) = lim
n→∞

(2K)2d

(2Kn + 1)2d
hK,n(w)

=
∫

||x||∞≤K

∫

||y||∞≤K
ρ(y − x)e−i<w,y−x>dydx. (2.3)

For fixed v = y − x, the j-th coordinate of x ranges through
[−K − vj , K − vj ] ∩ [−K, K], which has size 2K − |vj |. Hence a change
of parameters implies that the integral in the right hand side of (2.3) is
equal to

∫

||v||∞≤2K

d∏

j=1
(2K − |vj |)ρ(v)e−i<w,v>dv ≥ 0

as limit of real non-negative numbers. Up to a factor (2π)−d, it is the
Fourier transform of ρ(v) ∏d

j=1(2K − |vj |). Hence

(2π)−d(2K)−dhK(w) = (2π)−d
∫

||v||∞≤2K

d∏

j=1

(
1 − |vj |

2K

)
ρ(v)e−i<w,v>dv

= (2π)−d
∫

Rd

d∏

j=1
θ

(
vj

2K

)
ρ(v)e−i<w,v>dv = gK(w)

for
θ(t) =

{
1 − |t| if |t| ≤ 1;
0 otherwise.
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We would like to define a symmetric measure on Rd by its density
gK(w) with respect to Lebesgue measure. Thus, we must show that gK

is non-negative, symmetric and integrable. The first two properties are
inherited from hK,n. To show that gK is integrable, multiply componen-
twise by θ(·/(2M)) for some large M and integrate. Then

∫

Rd

d∏

j=1
θ

(
wj

2M

)
gK(w)dw

= (2π)−d
∫

Rd

∫

Rd

d∏

j=1
θ

(
vj

2K

)
ρ(v)

d∏

j=1
θ

(
wj

2M

)
e−i<w,v>dvdw

= (2π)−d
∫

Rd

⎧
⎨

⎩

∫

Rd

d∏

j=1
θ

(
wj

2M

)
e−i<w,v>dw

⎫
⎬

⎭

d∏

j=1
θ

(
vj

2K

)
ρ(v)dv.

The order of integration may be changed as the domains of integration
are compact.

Since ∫ ∞

−∞
θ(t)e−iξtdt =

(sin(ξ/2)
ξ/2

)2
,

which can be seen by computing the Fourier transform of the box func-
tion t 0→ 1{|t| ≤ 1/2} and noting that θ is equal to the convolution of the
box function with itself, the integral

∫
Rd

∏d
j=1 θ

( wj

2M

)
gK(w)dw equals

(
M

π

)d ∫

Rd
ρ(v)

d∏

j=1
θ

(
vj

2K

) d∏

j=1

(
sin(Mvj)

Mvj

)2

dv.

Hence, since the integral is non-negative, |θ(·)| ≤ 1 and |ρ(·)| ≤ ρ(0),
∫

Rd

d∏

j=1
θ

(
wj

2M

)
gK(w)dw ≤

(
M

π

)d

ρ(0)
∫

Rd

d∏

j=1

(
sin(Mvj)

Mvj

)2

dv

= ρ(0)
πd

∫

Rd

d∏

j=1

(
sin tj

tj

)2

dt = ρ(0).

The bound does not depend on M . The integrand in the left hand side
increases in M . Hence the monotone convergence theorem implies that

lim
M→∞

∫

Rd

d∏

j=1
θ

(
wj

2M

)
gK(w)dw =

∫

Rd
lim

M→∞

d∏

j=1
θ

(
wj

2M

)
gK(w)dw

=
∫

Rd
gK(w)dw ≤ ρ(0)
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and gK is integrable.
To recap, we have a well-defined symmetric density gK on Rd such

that
gK(w) =

( 1
2π

)d ∫

Rd
ρ(v)

d∏

j=1
θ

(
vj

2K

)
e−i<w,v>dv.

By the inverse Fourier formula,

ρ(v)
d∏

j=1
θ

(
vj

2K

)
=

∫

Rd
gK(w)ei<w,v>dw.

Taking v = 0, we get
∫

gK(w)dw = ρ(0), so gK(w)/ρ(0) is a probability
density with characteristic function

ρ(v)
ρ(0)

d∏

j=1
θ

(
vj

2K

)
.

For K → ∞, this characteristic function tends to ρ(v)/ρ(0). By assump-
tion, ρ is continuous at zero, so the Lévy–Cramér continuity theorem
states that ρ(v)/ρ(0) is the characteristic function of some random vari-
able, X say. In other words,

ρ(v)
ρ(0) = EXei<v,X>

or ρ(v) = ρ(0)EXei<v,X>. The probability distribution of X scaled by
ρ(0) finally gives us the sought-after measure µ. "

2.6 THE SEMI-VARIOGRAM

In geostatistics, one often prefers the semi-variogram to the covariance
function.

Definition 2.6 Let X = (Xt)t∈Rd be intrinsically stationary. Then the
semi-variogram γ : Rd → R is defined by

γ(t) = 1
2Var(Xt − X0), t ∈ Rd.

Note that
γ(t) = ρ(0) − ρ(t)

for weakly stationary random fields. In particular, γ(0) = ρ(0)−ρ(0) = 0.
The definition of a semi-variogram, however, requires only the weaker
assumption of intrinsic stationarity.
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Example 2.13 The semi-variogram of the fractional Brownian surface
introduced in Example 2.7 is given by

γ(t) = 1
2 ||t||2H

and coincides with that of the Brownian motion for H = 1/2.

Example 2.14 Below, we list the semi-variograms corresponding to
some of the covariance functions presented in Examples 2.4 and 2.10.

1. For the exponential covariance function ρ(t) = σ2 exp [−β||t||],

γ(t) = σ2 (1 − exp [−β||t||]) .

2. For the Gaussian covariance function ρ(t) = σ2 exp
[
−β||t||2

]
,

γ(t) = σ2
(
1 − exp

[
−β||t||2

])
.

3. If ρ(t) =
∫

ei<w,t>f(w)dw for some even integrable function f :
Rd → R+,

γ(t) =
∫

(1 − ei<w,t>)f(w)dw.

In practice, there is often additional measurement error. To be spe-
cific, suppose that the observations are realisations from the linear model

Yi = Xti + Ei, i = 1, . . . , n,

for independent, identically distributed zero mean error terms Ei that
are independent of the intrinsically stationary random field X and have
variance σ2

E . Then

1
2Var(Yj − Yi) = γX(tj − ti) + 1

2Var(Ej − Ei) = γX(tj − ti) + σ2
E1{i ̸= j}

so that
γY (t) =

{
γX(t) + σ2

E t ̸= 0
γX(t) t = 0 (2.4)

is discontinuous in t = 0. This phenomenon is known as the nugget effect.
It is natural to assume that the dependence between sampled

values fades out as the distance between them increases, that is,
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lim||t||→∞ ρ(t) = 0, provided it exists. In this case, the limit lim||t||→∞ γ(t)
is called the sill. Taking into account the nugget effect, the partial sill
is defined as lim||t||→∞ γ(t) − lim||t||→0 γ(t).

In many applications, there is only a single finite sample Xt1 , . . . , Xtn ,
n ∈ N, available of the random field X. In order to be able to carry out
statistical inference, one must obtain an artificial replication by assuming
at least intrinsic stationarity. The idea is then, at lag t, to consider all
pairs of observations that are ‘approximately’ t apart and to average.
Doing so, one obtains the smoothed Matheron estimator

γ̂(t) = 1
2|N(t)|

∑

(ti,tj)∈N(t)
(Xtj − Xti)2, (2.5)

where the t-neighbourhood N(t) is defined by

N(t) = {(ti, tj) : tj − ti ∈ B(t, ϵ)},

B(t, ϵ) is the closed ball of radius ϵ centred at t and |·| denotes cardinality.
The choice of ϵ is an art. It must be small enough to have γ(tj −ti) ≈

γ(t) for tj −ti in the ϵ-ball around t and, on the other hand, large enough
to have a reasonable number of points in N(t) for the averaging to be
stable. In other words, there is a trade-off between bias and variance.

The estimator (2.5) is approximately unbiased whenever N(t) is not
empty. Indeed, still assuming that X is intrinsically stationary,

2|N(t)|Eγ̂(t) =
∑

(ti,tj)∈N(t)
E

[
(Xtj − Xti)2

]
= 2

∑

(ti,tj)∈N(t)
γ(tj − ti).

In other words, Eγ̂(t) is the average value of γ(tj − ti) over N(t).
Note that although the Matheron estimator is non-parametric, a spe-

cific family γθ may be fitted by minimising the contrast
∑

j

wj (γ̂(hj) − γθ(hj))2

with, for example, wj = |N(hj)| or wj = |N(hj)|/γθ(hj)2 and the sum
ranging over a finite family of lags hj . For the second choice, the smaller
the value of the theoretical semi-variogram, the larger the weight given
to a pair of observations at approximately that lag to compensate for
their expected rare occurrence.
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2.7 SIMPLE KRIGING

Suppose one observes values Xt1 = xt1 , . . . , Xtn = xtn of a random field
X = (Xt)t∈Rd at n locations ti ∈ Rd, i = 1, . . . , n. Based on these obser-
vations, the goal is to predict the value at some location t0 of interest at
which no measurement has been made. We shall need the mean function
m and the covariance function ρ of X.

Let us restrict ourselves to linear predictors of the form

X̂t0 = c(t0) +
n∑

i=1
ciXti .

Then
EX̂t0 = c(t0) +

n∑

i=1
cim(ti)

so X̂t0 is unbiased in the sense that EX̂t0 = m(t0) if and only if

c(t0) = m(t0) −
n∑

i=1
cim(ti). (2.6)

The mean squared error (mse) of X̂t0 is given by

E
[
(X̂t0 − Xt0)2

]
= Var(X̂t0 − Xt0) +

(
E

[
X̂t0 − Xt0

])2
, (2.7)

which can by seen by sandwiching in the term E(X̂t0 − Xt0). In other
words, the mean squared error is a sum of two terms, one capturing the
variance, the other the bias. For unbiased predictors

mse(X̂t0) = Var(X̂t0 − Xt0). (2.8)

To optimise (2.8), write

X̂t0 − Xt0 = c(t0) +
n∑

i=1
ciXti − Xt0 .

Abbreviate the sum by c′Z for c′ = (c1, . . . , cn) and Z ′ = (Xt1 , . . . , Xtn).
Then

Var(X̂t0 − Xt0) = Var(c′Z − Xt0) = c′Σc − 2c′K + ρ(t0, t0)
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where Σ is an n × n matrix with entries ρ(ti, tj) and K an n × 1 vector
with entries ρ(ti, t0). The gradient with respect to c is 2Σc−2K, which is
equal to zero whenever c = Σ−1K provided Σ is invertible. As an aside,
even if Σ were singular, since K is in the column space of Σ, there would
always be a solution.

To verify that the null solution of the gradient is indeed the minimiser
of the mean squared error, let c̃ be any solution of Σc̃ = K. Any linear
combination c′Z can be written as (c̃ + (c − c̃))′Z. Now, with a = c − c̃,

Var((c̃ + a)′Z − Xt0) = c̃′Σc̃ + a′Σa + 2c̃′Σa − 2c̃′K − 2a′K + ρ(t0, t0)
= c̃′Σc̃ − 2c̃′K + a′Σa + ρ(t0, t0)
= ρ(t0, t0) − c̃′K + a′Σa

where we use that Σc̃ = K. The addition of a to c̃ leads to an extra
term a′Σa which is non-negative since Σ, being a covariance matrix, is
non-negative definite. We already saw that adding a scalar constant only
affects the bias.

We have proved the following theorem.

Theorem 2.2 Let Xt1 , . . . , Xtn be sampled from a random field (Xt)t∈Rd

at n locations ti ∈ Rd, i = 1, . . . , n, and collect them in the n-vector Z.
Write Σ for the covariance matrix of Z and assume Σ exists and is non-
singular. Additionally let K = (Ki)n

i=1 be the n × 1 vector with entries
Ki = ρ(ti, t0). Then

X̂t0 = m(t0) + K ′Σ−1(Z − EZ) (2.9)

is the best linear predictor of Xt0 , t0 ∈ Rd, in terms of mean squared
error. The mean squared prediction error is given by

ρ(t0, t0) − K ′Σ−1K. (2.10)

It is worth noticing that (2.10) is smaller than ρ(t0, t0), the variance
of Xt0 . The reduction in variance is due to the fact that information from
locations around t0 is taken into account explicitly in the estimator X̂t0 .

Mean squared error based prediction was named ‘kriging’ by Math-
eron in honour of D.G. Krige, a South-African mining engineer and pio-
neer in geostatistics. Under the model assumptions of Theorem 2.2, we
refer to (2.9) as the simple kriging estimator of Xt0 .
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2.8 BAYES ESTIMATOR

In a loss function terminology, the mean squared error (2.7) of a predictor
X̂t0 is often referred to as the Bayes loss. The Bayes estimator optimises
the Bayes loss over all estimators that are functions of the sample Z =
(Xt1 , . . . , Xtn)′, linear or otherwise.

Theorem 2.3 Let Xt1 , . . . , Xtn be sampled from a random field (Xt)t∈Rd

at n locations ti ∈ Rd, i = 1, . . . , n, and collect them in the n-vector Z.
Then the Bayes estimator of Xt0 , t0 ∈ Rd, is given by

X̂t0 = E [Xt0 | Z] . (2.11)

Proof: Let X̃t0 = f(Z) be some estimator based on the sample Z and
write M = E [Xt0 | Z]. Then

E
[
(X̃t0 − Xt0)2

]
= E

[
(X̃t0 − M + M − Xt0)2

]

= E
[
(X̃t0 − M)2

]
+ E

[
(M − Xt0)2

]
+ 2E

[
(X̃t0 − M)(M − Xt0)

]
.

Since both M and X̃t0 are functions of Z,

E
[
(X̃t0 − M)(M − Xt0)

]
= E

(
E

[
(X̃t0 − M)(M − Xt0) | Z

])

= E
[
(X̃t0 − M)(M − E(Xt0 | Z))

]
= 0.

Consequently

E
[
(X̃t0 − Xt0)2

]
= E

[
(X̃t0 − M)2

]
+E

[
(M − Xt0)2

]
≥ E

[
(M − Xt0)2

]

with equality if and only if E
[
(X̃t0 − M)2

]
= 0. "

So far, we did not use any information about the distribution of the
random field X. For multivariate normally distributed random vectors,
it is well known that the Bayes estimator of a component given the other
ones is linear in Z and given by m(t0)+K ′Σ−1(Z −EZ). The conditional
variance is ρ(t0, t0) − K ′Σ−1K (in the notation of Theorem 2.2) and
depends on Z only through the covariances. Hence, under the assumption
of normality, the Bayes estimator coincides in distribution with the best
linear predictor. Finally, note that the unconditional mean of the Bayes
estimator is given by m(t0) and, by the variance decomposition formula

Var(Xt0) = EVar(Xt0 |Z) + Var(E(Xt0 |Z)),

its variance equals ρ(t0, t0) − (ρ(t0, t0) − K ′Σ−1K) = K ′Σ−1K.
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Example 2.15 As a simple example where the Bayes estimator is not
linear, return to the framework of Example 2.1. Let A be a set in Rd,
Y = (Y1, Y2)′ a random vector with known mean and covariance matrix,
and set

Xt = Y01{t ̸∈ A} + Y11{t ∈ A}, t ∈ Rd.

Then, for t0 ∈ A and t1 ̸∈ A, the Bayes estimator

E [Y1|Y0]

is not necessarily linear in Y0, for instance when Y1 = Y 2
0 .

2.9 ORDINARY KRIGING

Consider the model
Xt = µ + Et, t ∈ Rd,

where µ ∈ R is the unknown global mean and Et is a zero mean random
field with covariance function Cov(Et, Es) = ρ(t, s).

Based on samples of X at t1, . . . , tn, n ∈ N, we look for a linear
unbiased predictor

X̂t0 = c(t0) +
n∑

i=1
ciXti

at some other location t0 ∈ Rd that optimises the mean squared error.
As in Theorem 2.2, let Z be the n-vector of the Xti , i = 1, . . . , n. Write
Σ for the covariance matrix of Z and let K = (Ki)n

i=1 be the n×1 vector
with entries Ki = ρ(ti, t0). The simple kriging estimator would be

X̂t0 = µ + K ′Σ−1(Z − EµZ),

but we cannot compute it as µ is unknown.
Instead, we proceed as follows. First, consider unbiasedness

µ = EµX̂t0 = c(t0) + µ
n∑

i=1
ci

for all µ. The special case µ = 0 implies that c(t0) = 0 and therefore
n∑

i=1
ci = 1.

Turning to the variance term, with c′ = (c1, . . . , cn), one wishes to opti-
mise

Varµ(c′Z − Xt0)
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under the scale constraint on the ci by the Euler–Lagrange method. Note
that

(X̂t0 − Xt0)2 =
(

n∑

i=1
ci(Xti − µ) − (Xt0 − µ)

)2

= E2
t0 +

(
n∑

i=1
ciEti

)2

− 2Et0

n∑

i=1
ciEti .

Hence

E
[
(X̂t0 − Xt0)2

]
= ρ(t0, t0) +

n∑

i=1

n∑

j=1
cicjρ(ti, tj) − 2

n∑

i=1
ciρ(t0, ti).

For ease of notation, write 1′ = (1, . . . , 1). Then we must optimise

ρ(t0, t0) + c′Σc − 2c′K + λ(c′1 − 1).

The score equations are
{

0 = 2Σc − 2K + λ1;
1 = c′1.

From now on, assume that Σ is non-singular. Multiply the first equation
by 1′Σ−1 to obtain

{
0 = 21′c − 21′Σ−1K + λ1′Σ−11;
1 = c′1.

Consequently the Lagrange multiplier equals

λ = 21′Σ−1K − 1′c

1′Σ−11 = 21′Σ−1K − 1
1′Σ−11 .

Substitution into the first score equation yields

c = Σ−1K − λ

2 Σ−11 = Σ−1K + 1 − 1′Σ−1K

1′Σ−11 Σ−11.

The corresponding mean squared error is

ρ(t0, t0) + c′Σc − 2c′K = ρ(t0, t0) − K ′Σ−1K + (1 − 1′Σ−1K)2

1′Σ−11 .

As one would expect, the mean squared error is larger than that for
simple kriging.
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To see that, indeed, the mean squared error is optimised, write any
unbiased linear predictor as (c+a)′Z, where c is the solution of the score
equations and (c + a)′1 = 1, i.e. a′1 = 0. Its mean squared error is

ρ(t0, t0) + c′Σc − 2c′K + a′Σa + 2c′Σa − 2a′K.

Now, a′Σc = a′K using the unbiasedness and the expression for c. Hence,
the mean squared error is indeed optimal for a = 0.

We have proved the following.

Theorem 2.4 Let Xt1 , . . . , Xtn be sampled from a random field (Xt)t∈Rd

with unknown constant mean at n locations ti ∈ Rd, i = 1, . . . , n, and
collect them in the n-vector Z. Write Σ for the covariance matrix of Z
and assume Σ exists and is non-singular. Additionally let K = (Ki)n

i=1
be the n × 1 vector with entries Ki = ρ(ti, t0). Then

X̂t0 = K ′Σ−1Z + 1 − 1′Σ−1K

1′Σ−11 1′Σ−1Z (2.12)

is the best linear predictor in terms of mean squared error. The mean
squared prediction error is given by

ρ(t0, t0) − K ′Σ−1K + (1 − 1′Σ−1K)2

1′Σ−11 . (2.13)

The additional variance contribution (1−1′Σ−1K)2/1′Σ−11 in (2.13)
compared to (2.10) in Theorem 2.2 is due to the uncertainty regarding
the mean.

In the remainder of this section, let us specialise to the case where Z
is sampled from a Gaussian random field (Xt)t∈Rd . In other words, Z is
multivariate normally distributed with unknown constant mean µ and
known non-singular covariance matrix Σ. The log likelihood evaluated
at Z, up to constants that do not depend on µ, is given by

−1
2(Z − µ1)′Σ−1(Z − µ1) = −1

2
∑

i

∑

j

(Xti − µ)Σ−1
ij (Xtj − µ).

The derivative with respect to µ equals

−1
2

∑

i

∑

j

[
−Σ−1

ij (Xti − µ) − Σ−1
ij (Xtj − µ)

]
= 1′Σ−1(Z − µ1)
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and is equal to zero if and only if 1′Σ−1Z = µ1′Σ−11. Hence

µ̂ = 1′Σ−1Z

1′Σ−11 .

Note that since Σ is non-negative definite, the second order derivative
−1′Σ−11 is non-positive, which implies that µ̂ is the unique maximiser of
the log likelihood. Upon substitution of µ̂ in the simple kriging estimator
(2.9), one obtains

X̂t0 = µ̂ + K ′Σ−1(Z − µ̂1),

which is equal to the ordinary kriging predictor (2.12).

2.10 UNIVERSAL KRIGING

Universal kriging relaxes the constant mean assumption of ordinary krig-
ing to the more general assumption that

EXt = m(t)′β

for some known function m : Rd → Rp and unknown parameter vector
β ∈ Rp. Such a model would be appropriate in a spatial regression
context where the sampled values are deemed to depend linearly on p
explanatory variables m(t)i, i = 1, . . . , p.

A linear estimator X̂t0 = c(t0) + ∑n
i=1 ciXti is unbiased whenever

m(t0)′β = c(t0) +
n∑

i=1
cim(ti)′β

for all β. Note that both sides are polynomial in β. Therefore, all coef-
ficients must be equal. In other words, c(t0) = 0 and

m(t0) =
n∑

i=1
cim(ti). (2.14)

Universal kriging optimises the mean squared error

E

⎡

⎣
(

n∑

i=1
ciXti − Xt0

)2⎤

⎦
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under the constraint (2.14). Provided M ′Σ−1M is non-singular for the
n × p matrix M whose rows are given by m(ti)′, it can be shown that
the optimal vector of linear coefficients is

c = Σ−1
[
K + M(M ′Σ−1M)−1(m(t0) − M ′Σ−1K)

]
. (2.15)

The corresponding mean squared prediction error is

ρ(t0, t0)−K ′Σ−1K+(m(t0)−M ′Σ−1K)′(M ′Σ−1M)−1(m(t0)−M ′Σ−1K).

Note that we have been working under minimal model assumptions
based on a single sample. This implies that we are forced to violate the
golden standard in statistics that parameters are estimated from one
sample, whereas prediction or validation is carried out on another. More-
over, to calculate (2.15), the covariance matrix Σ needs to be known. To
make matters worse, it cannot even be estimated from the empirical
semi-variogram, as the random field (Xt)t∈Rd is neither weakly nor in-
trinsically stationary (its mean is not constant). It would be natural to
focus on the residual process (Et)t∈Rd instead. However, this would re-
quire knowledge of β, estimation of which depends on knowing the law
of the random field, in other words, on knowing Σ.

A pragmatic solution is to estimate β in a least squares sense. Write

Z = Mβ + E,

where, as before, the vector Z collects the sample Xti , the rows of M
consist of the m(ti)′ and E denotes the vector of residuals. Pretending
that Var(E) = σ2I, I being the n × n identity matrix, minimise

n∑

i=1
(Xti − m(ti)′β)2 = (Z − Mβ)′(Z − Mβ)

over β. The gradient is −2M ′(Z − Mβ), so

β̂ = (M ′M)−1M ′Z,

provided M ′M is non-singular. The vector Z −M β̂ has a constant mean
equal to zero when the residuals have mean zero, and one might esti-
mate its covariance function by using the empirical semi-variogram of
Z − M β̂. Indeed, this is the procedure implemented in standard statis-
tical software. Bear in mind, though, that the approach is based on an
approximation and may incur a bias.

As always, if one would be prepared to make more detailed model
assumptions, maximum likelihood ideas would apply.
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Figure 2.1 Realisations of a Gaussian random field on [0, 5]2 with mean
zero and exponential covariance function ρ(s, t) = σ2 exp(−β||t − s||).
Top row: σ2 = 1, β = 1/2 (left) and σ2 = 1, β = 5 (right). Bottom:
σ2 = 10, β = 1/2.

2.11 WORKED EXAMPLES WITH R

Samples from a Gaussian random field may be obtained using the pack-
age RandomFields: Simulation and analysis of random fields. We used
version 3.1.50 to obtain the pictures shown in this section. The package
is maintained by M. Schlather. An up-to-date list of contributors and a
reference manual can be found on

https://CRAN.R-project.org/package=RandomFields.

As an illustration, consider the covariance function

ρ(s, t) = σ2e−β||t−s||, t, s ∈ R2.

https://CRAN.R-project.org/package=RandomFields
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The script

model <- RMexp(var, scale)
RFsimulate(model, x=seq(0,5,0.05), y=seq(0,5,0.05))

defines the model and generates a realisation with σ2 = var and β = 1/
scale. The arguments x and y define a planar grid in [0, 5]2 with square
cells of side length 0.05. A few samples are shown in Figure 2.1. Note
that increasing σ2 results in a wider spread in values as can be seen
from the ribbons displayed alongside the samples. Increasing β means
that the correlation decays faster, resulting in rougher realisations with
more fluctuations.

113
198
326
674.5
1839

Figure 2.2 Concentrations of zinc (mg/kg) in the top soil measured at 155
locations in a flood plain of the Meuse river near Stein.

We illustrate the basic kriging ideas by means of the package Gstat:
Spatial and spatio-temporal geostatistical modelling, prediction and sim-
ulation maintained by E. Pebesma in collaboration with B. Graeler. Fur-
ther details can be found on

https://CRAN.R-project.org/package=gstat
including a reference manual. The results here were obtained using ver-
sion 1.1-5.

The package imports the data set ‘Meuse’ from the package sp. The
data were collected by M.G.J. Rikken and R.P.G. van Rijn for their 1993

https://CRAN.R-project.org/package=gstat
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thesis ‘Soil pollution with heavy metals - an inquiry into spatial varia-
tion, cost of mapping and the risk evaluation of copper, cadmium, lead
and zinc in the floodplains of the Meuse west of Stein, the Netherlands’
at Utrecht University and compiled for R by E. Pebesma. The descrip-
tion was extended by D. Rossiter. The data include topsoil heavy metal
concentrations for 155 locations in a flood plain of the Meuse river in the
southern-most province of the Netherlands close to the village of Stein.
The metal concentrations were computed from composite samples of an
area of about 15m × 15m. Additionally, a number of soil and landscape
variables are available, including the distance to the river bed.
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Figure 2.3 Estimated semi-variogram of logarithmic zinc concentrations
as a function of distance. Left: width = 50; right: width = 100.

In Figure 2.2, a graphical representation of the zinc concentrations
(in mg/kg soil) is given. The radius of the circles drawn at the sample
locations are proportional to the concentrations. The window is about
three by four kilometers. It may be seen that the larger concentrations
follow the curve of the river bed.

We begin our analysis by fitting a semi-variogram. Since the zinc
concentrations are heavily skewed to the right, we use a logarithmic
transformation and calculate the Matheron estimator using the script

coordinates(meuse) = ˜x+y
v <- variogram(log(zinc)˜1, meuse, cutoff=1400, width=w)

The cutoff value is set to about half the minimum side length of the
observation window. To select an appropriate width, one may start at
the minimum interpoint distance of 43.9 metres between sampling loca-
tions and gradually increase the value until the plotted semi-variogram
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Figure 2.4 Estimated semi-variogram (width = 50) of logarithmic zinc
concentrations as a function of distance (dots) and fitted spherical semi-
variogram model (line).

is deemed smooth enough. Figure 2.3 shows the results for w = 50 and
w = 100.

To fit a parametric function γ to the estimated semi-variogram γ̂,
numerical optimisation may be used to minimise the contrast

∑

j

wj (γ̂(hj) − γθ(hj))2 ,

where j ranges over a finite number of range bins. This procedure is im-
plemented in the function fit.variogram. If the parameter fit.method
is set to 1, the weights read wj = N(hj); a parameter value of 2 uses
wj = N(hj)/γθ(hj)2. Since Figure 2.3 suggests that the semi-variogram
increases almost linearly up to about 900 metres and then levels off, we
use the so-called spherical semi-variogram

γ(t) =

⎧
⎪⎨

⎪⎩

0 t = 0
α + β

[
3||t||
2R − ||t||3

2R3

]
0 < ||t|| < R

α + β ||t|| ≥ R

t ∈ R2

for nugget α > 0, scale parameter β > 0 and range parameter R > 0.
Fitting this model to the empirical semi-variogram shown in the left-
most panel of Figure 2.3 results in α̂ = 0.06, β = 0.6, and R = 958.7.
The graph of the fitted model γ̂ is plotted in Figure 2.4.

Having fitted a plausible model, one may proceed to calculate the
ordinary kriging predictor X̂t for t in a grid over the region of interest. For
our example, the data frame meuse.grid supplies such a grid. Writing
m for the fitted semi-variogram model, the script
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Figure 2.5 Left: logarithmic zinc concentrations in the top soil interpo-
lated by ordinary kriging from measured values at 155 locations in a flood
plain of the Meuse river near Stein using the semi-variogram plotted in
Figure 2.4. Right: estimated mean squared prediction errors.

gridded(meuse.grid) = ˜x+y
Xhat <- krige(log(zinc)˜1, meuse, meuse.grid, model=m)

carries out the calculations. The formula log(zinc)∼1 demands a con-
stant mean in accordance with the ordinary kriging assumptions. The
resulting kriging predictor and estimated mean squared prediction error
are shown in Figure 2.5. It can be seen that larger concentrations tend
to occur near the river bed. The variance tends to be higher in regions
where there are few observations.

The assumption of a constant mean inherent in the ordinary krig-
ing framework does not seem realistic (cf. Figure 2.2). In particular,
zinc concentrations seem to be correlated with the distance to the river
bed. In the meuse data set, these distances are discretised in a grid and
rescaled so that they take values in the interval [0, 1]. To find a proper
functional form for the correlation, in Figure 2.6 the logarithmic zinc
concentration is plotted against the normalised distance to the river bed
(left-most panel) as well as against its square root. Note that the square
root transformation improves the linear approximation.

Based on the above observations, we apply universal kriging with
the square root of the discretised and normalised distance, denoted by
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Figure 2.6 Logarithmic zinc concentrations in the top soil at 155 loca-
tions in a flood plain of the Meuse river near Stein plotted against the
normalised distance to the river bed (left) and the square root of the
normalised distance to the river bed (right).

d(t), as a covariate. Thus, the log zinc concentrations follow the linear
regression model

Xt = β0 + β1d(t) + Et,

where Et is a zero mean random field. The parameters β0 and β1 are
assumed to be unknown.

To compute an empirical semi-variogram of the random field (Et)t,
one must first estimate β = (β0, β1)′. The least squares estimator is

β̂ = (M ′M)−1M ′Z,

where Z is the observation vector and M a 155 × 2 matrix whose first
column contains entries that are all equal to 1. The i-th entry of the
second column of M is the square root of the normalised distance from
the grid cell of sampling location i to the river bed. Next, the semi-
variogram of (Et)t can be estimated as before for the residuals Xt − β̂0 −
β̂1d(t). The following script carries out these two tasks:

vdist <- variogram(log(zinc)˜sqrt(dist), meuse, cutoff=1300,
width=50)

Figure 2.7 shows the residuals and the fitted spherical semi-variogram

mdist <- fit.variogram(vdist, vgm(0, "Sph", 100, 0),
fit.method=1).
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Figure 2.7 Estimated semi-variogram (width = 50) of residual logarithmic
zinc concentrations as a function of distance (dots) and fitted spherical
semi-variogram model (line). The residuals are obtained from a linear
regression against the square root of the normalised distance to the
river bed.

Having fitted a plausible model incorporating the covariate informa-
tion, we calculate the universal kriging predictor X̂t for t in the grid sup-
plied with the data. Writing mdist for the fitted semi-variogram model,
the command
krige(log(zinc)˜sqrt(dist), meuse, meuse.grid, model=mdist)
carries out the calculations. Note that the formula now involves the co-
variate dist in the the meuse data frame. The resulting kriging predictor
and estimated mean squared prediction error are shown in Figure 2.8.
Upon comparison with Figure 2.5, it can be seen that taking the distance
to the river into account leads to a smoother predictor and a smaller
estimated mean squared prediction error.

To validate the final model, appropriate residuals are needed. Since
data are available only at the measurement locations, we predict the
logarithmic zinc concentration in the top soil at a selected measurement
location based on the concentrations at all other measurement locations
using the model and subtract the result from the actual measurement.
Repeating this procedure for all 155 locations yields the set of so-called
cross-validation residuals. The script
krige.cv(log(zinc)˜sqrt(dist), meuse, meuse.grid,
model=mdist)
carries out the computations. A graphical representation of the cross-
validation procedure is shown in Figure 2.9. Since the mean value −0.003
of the residuals is close to zero and there does not appear to be any
spatial pattern, we conclude that the model seems adequate.
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Figure 2.8 Left: logarithmic zinc concentrations in the top soil interpo-
lated by universal kriging from measured values at 155 locations in a
flood plain of the Meuse river near Stein using the semi-variogram plot-
ted in Figure 2.7. Right: estimated mean squared prediction errors.

For further details, we refer to the vignettes of RandomFields and
gstat that are available on the CRAN website
https://cran.r-project.org.

−0.995
−0.216
0.005
0.184
1.544

Figure 2.9 Residuals of logarithmic zinc concentrations in the top soil
interpolated by cross-validated universal kriging from measured values
at 155 locations in a flood plain of the Meuse river near Stein using the
semi-variogram plotted in Figure 2.7.

https://cran.r-project.org
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2.12 EXERCISES

1. Consider the random field (Xt)t∈Rd defined by

Xt = Z1{t ∈ A}

for a real-valued random variable Z and compact subset A of Rd.
Express the finite dimensional distributions of X in terms of the
cumulative distribution function of Z.

2. Fix n ∈ N and let fi : Rd → R, i = 1, . . . , n, be a set of functions.
Let (Z1, . . . , Zn)′ be a random n-vector whose moments exist up
to second order. Derive the covariance function of the random field

Xt =
n∑

i=1
Zifi(t), t ∈ Rd.

3. Let X = (Xt)t∈Rd be a Gaussian random field with mean func-
tion m and covariance function ρ. Set Yt = X2

t . Show that the
mean function mY and covariance function ρY of the random field
(Yt)t∈Rd are given by

mY (t) = m(t)2 + ρ(t, t)
ρY (s, t) = 2ρ(s, t) {ρ(s, t) + 2m(s)m(t)}

for s, t ∈ Rd.
Hint: You may use the Isserlis theorem stating that if (Z1, . . . , Z4)′

is a zero mean multivariate normally distributed random vector,
then

E [Z1Z2Z3Z4] = E [Z1Z2]E [Z3Z4] + E [Z1Z3]E [Z2Z4]
+ E [Z1Z4]E [Z2Z3] .

4. Show that if ρ1, ρ2 : Rd × Rd → R are non-negative definite, then
so are αρ1 + βρ2 (α, β ≥ 0) and ρ1ρ2.

5. Consider the function

ρ(t1, t2) = min(t1, t2), t1, t2 ∈ (0, ∞).

Show that ρ is non-negative definite.
Hint: Use the Sylvester criterion.
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6. Compute the spectral measure of the 1-dimensional Ornstein–
Uhlenbeck process with covariance function ρ(t) = exp(−β|t|)/(2β),
t ∈ R, β > 0. Does this process admit a version with continuous
sample paths?

7. Let θ(t) = (1 − |t|)+ for t ∈ R. Show that, for all ξ ∈ R,
∫ ∞

−∞
θ(t)e−iξtdt =

(sin(ξ/2)
ξ/2

)2

by computing the Fourier transform of φ(t) = 1{−1/2 ≤ t ≤ 1/2},
t ∈ R, and relating φ to the triangle function θ.

8. Consider the function

ρ(θ) =
∞∑

j=0
σ2

j cos(jθ), θ ∈ [−π, π],

for σ2
j = (α + βj2p)−1 and α, β > 0 (the generalised p-order model

of Hobolth, Pedersen and Jensen). For which p is ρ the covariance
function of a Gaussian random field X? For which p does X admit
a continuous version?

9. Consider the spherical semi-variogram

γ(t) =

⎧
⎪⎨

⎪⎩

0 t = 0
α + β

[
3|t|
2 − |t|3

2

]
0 < |t| < 1

α + β |t| ≥ 1
t ∈ R

for α, β > 0. What are the nugget, sill and partial sill? Sketch the
graph.

10. Let X be a zero mean random field from which two observations
are available at t1 ̸= t2. Moreover, suppose that

Cov(Xt1 , Xt2) = ρσ2

Cov(Xti , Xti) = σ2, i ∈ {1, 2},

for some known ρ ∈ (−1, 1) and σ2 > 0.

• Give the general expression for the best linear predictor (krig-
ing estimator) at t0 ̸∈ {t1, t2}.



44 ! Random field modelling and interpolation

• Specialise to the case where ρ ̸= 0, Cov(Xt0 , Xt1) ̸= 0 and
Cov(Xt0 , Xt2) = 0.

• Specialise to the case where ρ ̸= 0, Cov(Xt0 , Xt1) = 0 and
Cov(Xt0 , Xt2) = 0.

• What does your estimator look like when ρ = 0?
• Calculate the mean squared prediction error for the above

special cases.

11. Consider the linear model

Xt = m(t)′β + Et, t ∈ Rd,

for some function m : Rd → Rp, β ∈ Rp and zero mean Gaussian
random field (Et)t∈Rd .

• Propose a kriging estimator X̂t0 based on observations
Xt1 , . . . , Xtn when m and β are known. What assumptions
do you make regarding (Et)t?

• If β were unknown, how would you proceed?

12. Let X be a random field from which two observations are available
at t1 ̸= t2. Assume that

EXt1 = EXt2 = EXt0 = m

for some unknown m ∈ R and write

Cov(Xt1 , Xt2) = ρσ2

Cov(Xti , Xti) = σ2, i ∈ {1, 2},

for known ρ ∈ (−1, 1) and σ2 > 0.

• Give the general expression for the best linear predictor (krig-
ing estimator) at t0 ̸∈ {t1, t2}.

• Specialise to the case where ρ ̸= 0, Cov(Xt0 , Xt1) ̸= 0 and
Cov(Xt0 , Xt2) = 0.

• Specialise to the case where ρ ̸= 0, Cov(Xt0 , Xt1) = 0 and
Cov(Xt0 , Xt2) = 0.

• What does your estimator look like when ρ = 0?
• Calculate the mean squared prediction error and compare to

that of simple kriging (cf. Exercise 10).
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13. Let Xt1 , . . . , Xtn be sampled from a zero mean random field
(Xt)t∈Rd at n locations ti ∈ Rd, i = 1, . . . , n, and collected in
the n-vector Z. Write Σ = Cov(Z) and let K = (Ki)n

i=1 be the
n × 1 vector with entries Ki = ρ(ti, t0). If some eigenvalue of Σ is
zero, show that K lies in the column space of Σ.

14. Consider the linear model

Xt = m(t)′β + Et, t ∈ Rd,

for some given function m : Rd → Rp, unknown parameter β ∈
Rp and zero mean random field (Et)t∈Rd . Carry out the Euler–
Lagrange optimisation to verify that the universal kriging predictor
X̂t0 of Xt0 based on observation of Xt at t1, . . . , tn has the form
(2.15).

15. The gstat package contains a data set coalash. Fit a semi-
variogram model to these data and carry out an appropriate krig-
ing analysis with particular attention to trends in the east-west
direction.
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2.13 POINTERS TO THE LITERATURE

The mathematical theory of probability distributions defined as mea-
sures, that is, satisfying a set of axioms, dates back to the famous 1933
monograph by A.N. Kolmogoroff, which also contains the consistency
theorem [1, Section III.4]. The first textbook on stochastic processes was
published by J.L. Doob in 1953 [2]. We refer specifically to Chapter II.3
for a definition of Gaussian random fields and a proof of Proposition 2.1,
and to Chapter II.8 for various concepts of stationarity. A current text-
book is that by P. Billingsley [3]. In Chapter 7, he proves the consistency
theorem and applies it to the finite dimensional distributions of a ran-
dom field. Part I of the book by Adler and Taylor [4] may be consulted
for a comprehensive overview of the theory of Gaussian random fields.

The Brownian motion, named in honour of the botanist R. Brown
who studied the movements of particles in a fluid, seems to have been
modelled mathematically by T.N. Thiele [5] and, independently, by L.J.-
B.A. Bachelier [6]. The Ornstein–Uhlenbeck covariance function was in-
troduced in [7], whilst Mandelbrot and Van Ness [8] introduced the frac-
tional Brownian surface. The latter is an example of the wider class of
intrinsic random functions [9].

Covariance functions are at the heart of geostatistics. For a survey
of the state of the art one may consult, for example, Chapter 2 by M.
Schlather in [10] or M.L. Stein’s book [11]. In particular, Section 2.3
in [11] collects elementary properties of covariance functions, including
Proposition 2.2. The Whittle–Matérn function is named after the pio-
neers B. Matérn (see [12], section 2.4) and P. Whittle [13]. Theorem 2.1
is due to S. Bochner and can be found in Section 8 of his 1933 paper
[14]. The proof given here is due to H. Cramér [15]. For the relations
between the spectral density and sample path properties, one may con-
sult the early monograph by Cramér and Leadbetter [16], or the more
recent textbooks by R.J. Adler [17], Adler and Taylor [4] or Rogers and
Williams [18], for example. Proposition 2.3 is a spectral version of G.
Matheron’s turning bands method (Section 4 in [9]). On a practical note,
the R-package RandomFields may be used to generate realisations.

The origins of kriging are traced in a survey paper [19] by N. Cressie
who argues that L.S. Gandin [20] and G. Matheron [21, 22] indepen-
dently discovered ordinary and simple kriging during the early 1960s.
The Matheron estimator of the semi-variogram can be found in [21].
Universal kriging is also due to G. Matheron [23]. There are many other
variations on kriging. For further details, including discussions on the
merits and drawbacks, we refer the reader to the textbooks by Journel
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and Huijbregts [24], Diggle and Ribeiro [25], Chilès and Delfiner [26] or
to the relevant parts of Cressie [28], Bivand, Pebesma and Gómez–Rubio
[29] and the Handbook of Spatial Statistics [27]. Implementations of krig-
ing methods are available in the R-packages gstat, geoR, RandomFields
and spatial. Finally, the Bayes estimator is well known in statistical
decision theory; see for example Chapter 4 in Lehmann and Casella’s
textbook in statistics [30].
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C H A P T E R 3

Models and inference
for areal unit data

3.1 DISCRETE RANDOM FIELDS

In this chapter, we will study random field models with a discrete index
set. Such models are useful when observations are collected over areal
units such as pixels, census districts or tomographic bins. In contrast to
the previous chapter, the aims are noise removal and smoothing rather
than interpolation.

Mathematically speaking, the index set T of the random field X is
finite. In statistical physics, T may be a collection of atoms and gen-
uinely finite; more often, Xi represents an integral or average of the
phenomenon of interest over some region represented by i ∈ T . Often,
there is a natural adjacency relation or neighbourhood structure.

Definition 3.1 Let T ̸= ∅ be a finite collection of ‘sites’. A random field
X on T with values in L is a random vector (Xi)i∈T having L–valued
components. If L is finite or countably infinite, the distribution of X is
specified by the probability mass function

πX(x) = P(X = x) = P(Xi = xi, i ∈ T ), x ∈ LT .

Otherwise, we assume that L ⊆ R and that X is absolutely continuous
with a joint probability density πX .

An example with a finite label set L is the following.

Example 3.1 Presence/absence data record 1 if a phenomenon of in-
terest is observed in the region represented by i ∈ T and 0 otherwise.

49
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Hence L = {0, 1}. Write i ∼ j if the regions corresponding to i and
j are adjacent. Then the Ising model is defined by the probability mass
function

πX(x) ∝ exp

⎡

⎣α
∑

i∈T

xi + β
∑

{i,j}:i∼j

xixj

⎤

⎦ , x ∈ LT ,

for constants α, β ∈ R. The parameter α influences the prevalence. In-
deed, if β = 0, in each region, the phenomenon of interest is observed
with probability eα/(1 + eα) independently of other regions. For β > 0,
presence in a given region encourages presence in neighbouring regions,
whereas for β < 0 such presence is discouraged. As an aside, the Ising
model is also used in statistical physics to describe magnetisation, usually
with the label set L = {−1, +1}.

In the next example, the label set L is equal to R.
Example 3.2 Conditional autoregression (CAR) models can be defined
by requiring the random field X to be multivariate normally distributed
with mean zero and covariance matrix (I − B)−1K, where K = diag(κi)
is a diagonal matrix with κi > 0, I − B is non-singular and (I − B)−1K
is symmetric and positive definite. The scale is fixed by assuming that
the diagonal elements of B are zero.

Usually the matrix B is sparse; for instance B = φN could be pro-
portional to the neighbourhood matrix N defined by Nij = 1{i ∼ j} for
some symmetric neighbourhood relation ∼ on T . To ensure that bii = 0,
the relation should be non-reflexive, that is i ̸∼ i for all i ∈ T . In the
literature, N is also known as the adjacency or contiguity matrix.

To verify that a matrix is positive definite, the Gershgorin disc the-
orem is useful. It states that, for a symmetric matrix A, the conditions
aii > 0 and aii >

∑
j ̸=i |aij | imply that A is positive definite. Applied to

I − φN , a sufficient condition is that for each site, |φ| is smaller than
the reciprocal of the number of neighbours of that site.

Write XA for the restriction of X to sites in the set A ⊂ T . In the
case of finite L, conditional probabilities of the type

πA(xA | xT \A) = P(XA = xA | XT \A = xT \A)

are of interest. In the absolutely continuous case, πA is defined as the
conditional probability density, provided it exists.

An important special case is A = {i}, yielding the following defini-
tion. To improve readability, write T \ i for the set T \ {i}.
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Definition 3.2 Let T ̸= ∅ be a finite collection of sites. The local char-
acteristics of a random field X on T with values in L are

πi(xi | xT \i), i ∈ T, x ∈ LT ,

whenever well-defined.

Example 3.3 For the Ising model introduced in Example 3.1,

log
[

πi(1 | xT \i)
πi(0 | xT \i)

]

= α + β
∑

j∼i

xj .

Therefore, the Ising model is also known as (first-order) auto-logistic
regression and

πi(1 | xT \i) =
exp

[
α + β

∑
j∼i xj

]

1 + exp
[
α + β

∑
j∼i xj

] .

It is interesting to note that πi(· | xT \i) depends only on values xj for
regions indexed by neighbours of i.

Example 3.4 For the CAR model of Example 3.2, the local character-
istics are Gaussian distributions with

{
E(Xi | Xj , j ̸= i) = ∑

j ̸=i bijXj

Var(Xi | Xj , j ̸= i) = κi
(3.1)

These expressions justify the name ‘conditional autoregression’. In par-
ticular, if bij = φNij, (3.1) involves only the neighbours of site i. The
result can be proved by basic but tedious matrix algebra. We will give a
more elegant proof below.

For strictly positive distributions, the local characteristics determine
the entire distribution. The proof relies on the following theorem.

Theorem 3.1 (Besag’s factorisation theorem – Brook’s lemma)
Let X be an L-valued random field on T = {1, . . . , N}, N ∈ N, such
that πX(x) > 0 for all x ∈ LT . Then, for all x, y ∈ LT ,

πX(x)
πX(y) =

N∏

i=1

πi(xi | x1, . . . , xi−1, yi+1, . . . , yN )
πi(yi | x1, . . . , xi−1, yi+1, . . . , yN ) . (3.2)
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Proof: Due to the positivity assumption, one never divides by zero.
Now,

πX(x) = πN (xN | x1, . . . , xN−1)
πN (yN | x1, . . . , xN−1) πX(x1, . . . , xN−1, yN ).

Similarly, πX(x1, . . . , xN−1, yN ) factorises as

πN−1(xN−1 | x1, . . . , xN−2, yN )
πN−1(yN−1 | x1, . . . , xN−2, yN ) πX(x1, . . . , xN−2, yN−1, yN ).

The claim is seen to hold by iterating the above argument. "

On a cautionary note, the converse does not hold in the sense that it
is not always possible to construct a joint distribution from arbitrarily
chosen πi(·|·).

Corollary 3.1 Let X be an L-valued random field on a finite collection
T ̸= ∅ of sites such that πX(x) > 0 for all x ∈ LT . Then the local
characteristics determine the whole distribution, that is, if Y is a random
field having the same local characteristics as X, necessarily πY ≡ πX .

Proof: Choose any element a ∈ L. Then, by Besag’s factorisation theo-
rem, πX(x)/ πX(a, . . . , a) is determined by the local characteristics. The
distribution is obtained by normalisation. "

3.2 GAUSSIAN AUTOREGRESSION MODELS

Recall the following definition (cf. Example 3.2).

Definition 3.3 Let K = diag(κi) be a diagonal N ×N matrix with κi >
0 and B an N × N matrix whose diagonal elements bii are zero. Then,
provided I −B is invertible and (I −B)−1K is positive definite, a random
field X that is normally distributed with mean zero and covariance matrix
(I −B)−1K is said to follow a conditional autoregression (CAR) model.

The name is justified by the fact that if one specifies local character-
istics as in (3.1), then relative to (yi)i=1,...,N = 0,

πi(xi|x1, . . . , xi−1, yi+1, . . . , yN )
πi(yi|x1, . . . , xi−1, yi+1, . . . , yN ) =

exp
[
− 1

2κi
(xi −

∑
j<i bijxj)2

]

exp
[
− 1

2κi
(∑j<i bijxj)2

]
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= exp

⎡

⎣− 1
2κi

(x2
i − 2xi

∑

j<i

bijxj)

⎤

⎦ ,

cf. Besag’s factorisation theorem, so the joint relative density

πX(x)
πX(0) = exp

⎡

⎣−1
2

∑

i

x2
i

κi
+

∑

i

∑

j<i

bijxixj

κi

⎤

⎦

= exp
[
−1

2x′K−1x + 1
2x′K−1Bx

]

is well-defined and proportional to the density of a zero-mean normal
distribution with covariance matrix (I − B)−1K.

In matrix notation, define E = (I − B)X. Then E is normally dis-
tributed with mean zero and covariance matrix

(I − B)(I − B)−1K(I − B)′ = K(I − B)′.

Consequently,
X = BX + E

is an autoregression formula. Note, though, that the ‘noise’ field E may
be spatially correlated.

It may feel more natural to assume independent noise, that is, to let E
be normally distributed with diagonal covariance matrix L = diag(λi) =
(λi)i with λi > 0 for i = 1, . . . , N . In this case, the covariance matrix of
X = (I − B)−1E is given by

(I − B)−1L(I − B′)−1.

The resulting random field X is known as a simultaneous autoregression
(SAR). Although both CAR and SAR are expressed in terms of an au-
toregression equation, and by Proposition 3.1 below any simultaneous
autoregression model may be reformulated as a conditional autoregres-
sion, it is important to bear in mind that the interpretation of the bij in
the two models is different!

Proposition 3.1 Any SAR model can be written as a CAR model.

Proof: Let L be an N × N positive definite diagonal matrix, B
an N × N matrix such that I − B is non-singular and bii = 0. Then
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(I − B)−1L(I − B′)−1 is well-defined, symmetric and positive definite.
One needs to solve

(I − B)−1L(I − B′)−1 = (I − C)−1K

for C and K = diag(κi), or, equivalently,

(I − B′)L−1(I − B) = K−1(I − C).

Setting cii = 0, it remains to solve for the scale factors κi. Indeed, writing
λi for the i-th element on the diagonal of L, for all i ∈ {1, . . . , N},

1
λi

+
N∑

j=1

b2
ji

λj
= 1

κi
,

and therefore κi > 0. "

There is a price to pay for the uncorrelated noise in SAR models. To
see this, note that for a CAR model

Cov(E, X) = E(EX ′) = Cov((I − B)X, X) = (I − B)(I − B)−1K = K.

Consequently Xi and Ej are independent for i ̸= j. For SAR models,
such a remark does not necessarily hold. Indeed,

Cov(X, E) = Cov((I − B)−1E, E) = (I − B)−1L

may be non-diagonal.
To conclude this section, it is worth noticing that one would often

like to define
⎧
⎨

⎩
E(Xi | Xj , j ̸= i) =

∑
j ̸=i

NijXj∑
j ̸=i

Nij

Var(Xi | Xj , j ̸= i) = κi

(3.3)

for Nij as in Example 3.2. In other words, bij = Nij/
∑

k ̸=i Nik. However,
for such models I − B may no longer be invertible due to the row sums
being zero. Nevertheless, intrinsic autoregression models ‘defined’ by
(3.3) are often used as ‘prior distribution’ in a hierarchical Bayesian
model.
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3.3 GIBBS STATES

The log probability mass function of the Ising model can be interpreted
as a sum of contributions from single sites and pairs of sites. Breaking
up a high-dimensional joint probability mass function in lower dimen-
sional components in this way is often useful, both from a computational
point of view and conceptually, for example in defining new models or
in formalising the notion of interaction.

Definition 3.4 Let T ̸= ∅ be a finite collection of sites, L a subset of R.
An interaction potential is a collection {VA : A ⊆ T} of functions VA :
LT → R such that V∅(·) ≡ 0 and VA(x) depends only on the restriction
xA of x ∈ LT to sites in A.

The interaction potential V is said to be normalised with respect to
a ∈ L if the property that xi = a for some i ∈ A implies that VA(x) = 0.

A random field whose distribution is defined in terms of interaction
potentials is known as a Gibbs state.

Definition 3.5 Let X be an L-valued random field on a finite collection
T ̸= ∅ of sites and V an interaction potential. Then X is a Gibbs state
with interaction potentials V = {VA : A ⊆ T}, VA : LT → R, if

πX(x) = 1
Z

exp

⎡

⎣
∑

A⊆T

VA(xA)

⎤

⎦ , x ∈ LT . (3.4)

The constant Z in (3.4) is called the partition function and is usually
intractable, both analytically and numerically.

Example 3.5 The auto-logistic regression model introduced in Exam-
ple 3.1 is a Gibbs state with interaction potentials

V{i}(x) = αxi

V{i,j}(x) =
{

βxixj if i ∼ j
0 else

and VA(x) = 0 for sets A of cardinality larger than two.
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Example 3.6 Let X be multivariate normally distributed with mean
vector µ and positive definite covariance matrix Σ and write Q = Σ−1

for the precision matrix. Then, since

πX(x) ∝ exp

⎡

⎣−1
2

∑

i

∑

j

(xi − µi)Qij(xj − µj)

⎤

⎦ ,

X is a Gibbs state with interaction potentials
V{i}(x) = −Qii(xi − µi)2/2

V{i,j}(x) = −Qij(xi − µi)(xj − µj) (3.5)
upon recalling that Q, being a precision matrix, is symmetric. For sets
A of cardinality larger than two, VA(x) = 0.

In fact, any random field X such that πX(x) > 0 for all x is a Gibbs
state.

Theorem 3.2 Let X be an L-valued random field on a finite collection
T ̸= ∅ of sites such that πX(x) > 0 for all x ∈ LT . Then X is a Gibbs
state with respect to the canonical potential

VA(x) =
∑

B⊆A

(−1)|A\B| log πX(xB), x ∈ LT ,

where xB
i = xi for i ∈ B and a prefixed value a ∈ L otherwise. This

is the unique normalised potential with respect to a. Moreover, for any
element i ∈ A,

VA(x) =
∑

B⊆A

(−1)|A\B| log πi(xB
i | xB

T \i), x ∈ LT . (3.6)

The proof relies on the following combinatorial identity.

Theorem 3.3 (Möbius inversion formula) If T is a finite set and
f, g : P (T ) → R are two functions defined on the power set P (T ) of T ,
then

f(A) =
∑

B⊆A

g(B) for all A ⊆ T (3.7)

if and only if
g(A) =

∑

B⊆A

(−1)|A\B|f(B) for all A ⊆ T. (3.8)

In particular, there is only one way to represent a given function f in
the form (3.7).
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Proof: First suppose g is fixed and define f(A) = ∑
B⊆A g(B) for

A ⊆ T . Then

∑

B⊆A

(−1)|A\B|f(B) =
∑

B⊆A

(−1)|A\B|

⎡

⎣
∑

C⊆B

g(C)

⎤

⎦

=
∑

B⊆A

⎡

⎣
∑

C⊆B

(−1)|A\C|(−1)−|B\C|g(C)

⎤

⎦

=
∑

C⊆A

⎡

⎣
∑

B:C⊆B⊆A

(−1)|B\C|

⎤

⎦ (−1)|A\C|g(C) = g(A).

For the last equality, note that the inner sum
|A\C|∑

k=0

(
|A \ C|

k

)

(−1)k

equals 0, unless A = C.
Conversely, if f is fixed and g(A) = ∑

B⊆A(−1)|A\B|f(B), then

∑

B⊆A

g(B) =
∑

B⊆A

⎡

⎣
∑

C⊆B

(−1)|B\C|f(C)

⎤

⎦

=
∑

C⊆A

⎡

⎣
∑

B:C⊆B⊆A

(−1)|B\C|

⎤

⎦ f(C) = f(A)

by similar arguments. "

We are now ready to give the proof of Theorem 3.2.
Proof: Fix x ∈ LT . Since πX(x) > 0 we can set, for A ⊆ T , fx(A) =
log πX(xA). Define the interaction potential VA : LT → R by

VA(x) =
∑

B⊆A

(−1)|A\B|fx(B), x ∈ LT .

By the Möbius inversion formula

fx(T ) =
∑

A⊆T

VA(x)

or, equivalently,

πX(x) = exp[fx(T )] = exp

⎡

⎣
∑

A⊆T

VA(x)

⎤

⎦ .
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Now letting x vary, this identity shows that πX is a Gibbs state with
interaction potential {VA : A ⊆ T} upon incorporating V∅ into the
partition function if necessary.

To prove that the interaction potential is normalised, choose any
i ∈ A. Then

VA(x) =
∑

i̸∈B⊆A

(−1)|A\B| log πX(xB) +
∑

i∈B⊆A

(−1)|A\B| log πX(xB)

=
∑

B⊆A\{i}
(−1)|A\B| log πX(xB) −

∑

B⊆A\{i}
(−1)|A\B| log πX(xB∪{i})

=
∑

B⊆A\{i}
(−1)|A\B|

[
log πX(xB) − log πX(xB∪{i})

]
.

If xi = a, then xB = xB∪{i} for all B ⊆ A \ {i} and therefore VA(x) = 0.
We conclude that the interaction potential is normalised with respect
to a. Moreover xB

T \i = xB∪{i}
T \i for all B ⊆ A \ {i}. Therefore

πX(xB)
πX(xB∪{i}) =

πi(xB
i | xB

T \i)
πi(xB∪{i}

i | xB∪{i}
T \i )

and the expression in terms of the local characteristics follows.
Next suppose πX is a Gibbs state with respect to normalised poten-

tials UA. We will show that UA ≡ VA. Write aT for the realisation with
only a–labels and fix x ∈ LT . Define the set function hx(A) by

hx(A) = log πX(xA)
πX(aT ) =

∑

B⊆A

[UB(x) − UB(aT )] =
∑

B⊆A

UB(x).

The last equation uses the assumption that the interaction potential U
is normalised. By Theorem 3.3, for all A ̸= ∅,

UA(x) =
∑

B⊆A

(−1)|A\B|hx(B) = VA(x)−log πX(aT )
∑

B⊆A

(−1)|A\B| = VA(x).

Finally, since VA(x) = UA(x) = 0 by assumption when A = ∅, the proof
is complete. "

Example 3.7 Consider a multivariate normally distributed random
field X with precision matrix Q as in Example 3.6. If the mean vec-
tor is constant, that is, µi ≡ µ0 for all i ∈ T , the natural potential (3.5)
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is clearly normalised with respect to µ0. For inhomogeneous models, one
may normalise with respect to zero. Then for x ∈ RT , using the notation
of Theorem 3.2, by definition V∅(x) = 0,

V{i}(x) = log πX(x{i}) − log πX(0) = −1
2x2

i Qii + xi

∑

j∈T

µjQij

and, for i ̸= j,

V{i,j}(x) = log πX(x{i,j}) − log πX(x{i}) − log πX(x{j}) + log πX(0)
= −xixjQij .

Note that V{i,j} is equal to zero when Qij is.

3.4 MARKOV RANDOM FIELDS

Suppose that the set of sites T is equipped with a symmetric relation ∼.
If the interaction potentials VA(x) vanish except when A is a singleton
or consists of a pair {i, j} of ∼-related sites, as in Example 3.5, the
local characteristics πi(· | xT \i) depend only on the values xj at sites
j ∈ T \ i that are ∼-neighbours of i. More generally, one may formulate
the following definition.

Definition 3.6 Let ∼ be a symmetric relation on the finite set T ̸=
∅ and define the boundary of A ⊆ T by ∂A = {s ∈ T \ A : s ∼ t
for some t ∈ A}. A random field X on T is a Markov random field with
respect to ∼ if

πi(xi | xT \i) = πX(Xi = xi | X∂i = x∂i)

whenever πX(xT \i) > 0, where πX denotes the probability mass function
of X if X takes values in a finite or countable set L and a probability
density if X is absolutely continuous on L ⊆ R.

In other words, for a Markov random field, the conditional distribu-
tion of the label at some site i given those at all other sites depends only
on the labels at neighbours of site i.

Definition 3.7 Let T ̸= ∅ be a finite collection of sites. Let ∼ be a
symmetric relation on T . A clique, with respect to ∼, is a subset C ⊂ T
for which s ∼ t for all s ̸= t ∈ C. The family of all cliques is denoted
by C.
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Note that, by default, singletons and the empty set are cliques.

Theorem 3.4 (Hammersley–Clifford) Let X be an L-valued ran-
dom field on a finite collection T ̸= ∅ of sites such that πX(x) > 0 for
all x ∈ LT . Let ∼ be a symmetric relation on T . Then X is a Markov
random field with respect to ∼ if and only if

πX(x) =
∏

C∈C
ϕC(xC) (3.9)

for some interaction functions ϕC : LC → R+ defined on cliques C ∈ C.

In other words, the distribution of any Markov random field such
that πX is positive can be expressed in terms of interactions between
neighbours. Moreover, by the positivity condition, equation (3.9) can be
rewritten as

πX(x) = exp
[

∑

C∈C
log ϕC(xC)

]

,

so X is a Gibbs state with non-zero interaction potentials log ϕC

restricted to cliques.

Proof: First we show that any distribution of the form (3.9) has the
Markov property. Suppose that L is countable and write T a

i x for the
configuration in which xi is replaced by a. Then

πi(xi | xT \i) =
∏

C∋i ϕC(xC)
∑

a∈L [∏C∋i ϕC(T a
i xC)]

and the right-hand side depends only on xi and x∂i. In the absolutely
continuous case, replace the sum over L by an integral.

Conversely suppose that X is a Markov random field with πX > 0.
By Theorem 3.2, X is a Gibbs state with canonical potential (3.6). We
claim that VA(x) = 0 for all A ̸∈ C. Indeed, if A ⊆ T is not a clique,
there are two distinct sites s, t ∈ A with s ̸∼ t. Then

VA(x) =
∑

B⊆A

(−1)|A\B| log πs(xB
s | xB

T \s),

which can be written as the sum of four terms:
∑

B⊆A\{s,t}
(−1)|A\B| log πs(xB

s | xB
T \s)

+
∑

B⊆A\{s,t}
(−1)|A\(B∪{s})| log πs(xB∪{s}

s | xB∪{s}
T \s )
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+
∑

B⊆A\{s,t}
(−1)|A\(B∪{t})| log πs(xB∪{t}

s | xB∪{t}
T \s )

+
∑

B⊆A\{s,t}
(−1)|A\(B∪{s,t})| log πs(xB∪{s,t}

s | xB∪{s,t}
T \s ).

Rearranging terms, it follows that

VA(x) =
∑

B⊆A\{s,t}
(−1)|A\B| log

⎡

⎣
πs(xB

s | xB
T \s)πs(xB∪{s,t}

s | xB∪{s,t}
T \s )

πs(xB∪{t}
s | xB∪{t}

T \s )πs(xB∪{s}
s | xB∪{s}

T \s )

⎤

⎦ .

Since s ̸∼ t, πs(xB
s | xB

T \s) = πs(xB∪{t}
s | xB∪{t}

T \s ) and πs(xB∪{s}
s |

xB∪{s}
T \s ) = πs(xB∪{s,t}

s | xB∪{s,t}
T \s ) and hence VA(x) = 0. Thus the only

nonzero interaction potentials are for cliques and (3.9) holds. "

Example 3.8 For the auto-logistic regression model, the interaction
functions are

ϕ∅ = 1/Z

ϕ{i}(xi) = exp(αxi)

ϕ{i,j}(x{i,j}) =
{

exp(βxixj) if i ∼ j
1 else

All higher order interaction functions take the constant value 1.

The positivity condition is needed, as demonstrated by the following
example.

Example 3.9 Let T be a 2 × 2 grid equipped with the relation ∼ under
which horizontally or vertically adjacent sites are related. Order the sites
in row major order. Set L = {0, 1} and let X be an L-valued random
field on T such that

πX(0, 0, 0, 0) = πX(0, 1, 0, 0) = πX(0, 1, 0, 1) = πX(0, 1, 1, 1)

= πX(1, 1, 1, 1) = πX(1, 0, 1, 1) = πX(1, 0, 1, 0) = πX(1, 0, 0, 0) = 1/8
and zero otherwise. Then X is Markov, since, for example,

π1(1 | 0, 1, 0) = 1 = π1(1 | 0, 1, 1) = P(X1 = 1 | X2 = 0, X3 = 1)
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or
π1(1 | 0, 0, 0) = 1/2 = P(X1 = 1 | X2 = 0, X3 = 0).

It is left to the reader to verify the remaining cases. The probability mass
function πX cannot be factorised over cliques. To see this, suppose that
it is. Then, as πX(0, 1, 1, 0) = 0, the product

ϕ∅ϕ{1}(0)ϕ{2}(1)ϕ{3}(1)ϕ{4}(0)ϕ{1,2}(0, 1)ϕ{1,3}(0, 1)ϕ{2,4}(1, 0)ϕ{3,4}(1, 0)

must also be zero. However, all terms are positive, occurring as they
do in the factorisation of some x ∈ LT for which πX(x) > 0, and one
arrives at a contradiction.

Corollary 3.2 Let X be an L-valued random field on a finite collection
T ̸= ∅ of sites such that πX(x) > 0 for all x ∈ LT . Then the spatial
Markov property

π(XA = xA | XT \A = xT \A) = π(XA = xA | X∂A = x∂A)

holds for all nonempty sets A ⊆ T .

Proof: Write T y
Ax for the configuration in which xA is replaced by y

(xA, y ∈ LA) on the set A ⊆ T . By the Hammersley-Clifford theorem,

π(XA = xA | XT \A = xT \A) =
∏

A∩C ̸=∅ ϕC(xC)
∑

y∈LA

∏
A∩C ̸=∅ ϕC((T y

Ax)C)

depends only on x∂A. "

3.5 INFERENCE FOR AREAL UNIT MODELS

Suppose that some spatial variable of interest is observed in a finite set
of areal units and that the dependence of the variable on covariates is
expressed through a design matrix X and parameter vector β ∈ Rp.

In an autoregression context, for example in a SAR model, this idea
is formalised as follows. Write Y = (Y1, . . . , Yn)′ for the random field. If
EY = Xβ for the n × p design matrix X and β ∈ Rp, the simultaneous
auto-regression equation for Y − Xβ reads

Y = BY + (I − B)Xβ + E
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where B is a known n × n matrix with bii = 0, for example propor-
tional to the neighbourhood matrix, and E is n-variate Gaussian noise.
For simplicity, assume that Cov(E) = σ2I. As before, we assume that
(I − B) is non-singular, in which case the covariance matrix of Y is
σ2(I − B)−1(I − B′)−1.

Inference regarding the parameters β and σ2 can be based on the log
likelihood L(β, σ2; Y ), which reads

− 1
2σ2 (Y −Xβ)′(I−B)′(I−B)(Y −Xβ)+log det(σ2(I−B)−1(I−B′)−1)−1/2.

Since the determinant is equal to σ2n det(I − B)−2, upon deletion of
terms that do not depend on the parameters σ2 and β, the log likelihood
reduces to

L(β, σ2; Y ) = − 1
2σ2 (Y − Xβ)′(I − B)′(I − B)(Y − Xβ) − n log σ.

Therefore, the score equations are

0 = −n

σ
+ 1

σ3 (Y − Xβ)′(I − B)′(I − B)(Y − Xβ);

0 = X ′(I − B)′(I − B)(Y − Xβ),

which can be solved explicitly. Indeed

σ̂2 = 1
n

(Y − Xβ̂)′(I − B)′(I − B)(Y − Xβ̂)

is the usual population variance and

β̂ = (X ′(I − B)′(I − B)X)−1X ′(I − B)′(I − B)Y,

provided X ′(I − B)′(I − B)X is non-singular. Since Y is Gaussian, so is
β̂. Moreover,

Eβ̂ = β;
Cov(β̂) = σ2(X ′(I − B)′(I − B)X)−1.

As for nσ̂2, it is of quadratic form U ′U = ∑n
j=1 U2

j . The random vector
U = (I − B)(Y − Xβ̂) is normally distributed with mean vector zero. In
general, however, the Uj are not independent.
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As a second example, consider the auto-logistic regression model

πY (y) = 1
Z(α, θ) exp

⎡

⎣
n∑

i=1
αiyi + θ

∑

i∼j;i<j

yiyj

⎤

⎦

for θ ∈ R, α = Xβ, β ∈ Rp and y = (y1, . . . , yn) ∈ LT . The log likelihood
for the parameters β and θ evaluated at y is

L(β, θ; y) = − log Z(Xβ, θ) +
n∑

i=1
αiyi + θ

∑

i∼j;i<j

yiyj .

Since the computational effort to calculate

Z(Xβ, θ) =
∑

y∈LT

exp

⎡

⎣
n∑

i=1
(Xβ)iyi + θ

∑

i∼j;i<j

yiyj

⎤

⎦

becomes prohibitive as the cardinality, n, of T gets large, alternative
methods have been proposed to estimate β and θ. Perhaps the simplest
one is to consider the log pseudo-likelihood function

PL(β, θ; y) =
n∑

i=1
log πi(yi | yT \i)

and optimise it over β and θ. For the auto-logistic regression model,

log πi(1 | yT \i)
1 − πi(1 | yT \i)

= αi + θ
∑

j∼i

yj , y ∈ LT ,

so the log pseudo-likelihood is given by

PL(β, θ; y) =
n∑

i=1
yi(αi + θ

∑

j∼i

yj) −
n∑

i=1
log

⎡

⎣1 + exp(αi + θ
∑

j∼i

yj)

⎤

⎦ .

It does not depend on the normalising constant Z(Xβ, θ) and can be
optimised numerically.

Another approach is to consider, for y ∈ LT , the ratio

πY (y; β, θ)
πY (y; β0, θ0) = Z(β0, θ0)

Z(β, θ)
exp

[∑n
i=1 yi(Xβ)i + θ

∑
i∼j;i<j yiyj

]

exp
[∑n

i=1 yi(Xβ0)i + θ0
∑

i∼j;i<j yiyj

]
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with respect to some fixed reference parameter values β0 and θ0. A crucial
observation is that the ratio of partition functions can be written as

Z(β, θ)
Z(β0, θ0) = Eβ0,θ0

⎡

⎣
exp

[∑n
i=1 Yi(Xβ)i + θ

∑
i∼j;i<j YiYj

]

exp
[∑n

i=1 Yi(Xβ0)i + θ0
∑

i∼j;i<j YiYj

]

⎤

⎦ ,

where Eβ0,θ0 denotes the expectation of the random field Y having prob-
ability distribution πY with parameters β0 and θ0. Therefore, the ratio
of normalising constants can be approximated by an empirical average
over a sample from the auto-logistic regression model under the reference
parameters β0 and θ0. We shall discuss in Section 3.6 how to generate
such a sample.

The auto-logistic regression model is an exponential family. For such
models, under mild conditions, maximum likelihood estimators exist.

Theorem 3.5 Let Y be an L-valued random field on a finite collection
T ̸= ∅ of sites whose probability mass function or joint probability density
is of the form

πY (y) = 1
Z(θ) exp [θ′S(y)] , y ∈ LT ,

for some function S : LT → Rp, the sufficient statistic, and parameter
θ ∈ Rp. Provided the moments of the random variable S(Y ) exist up
to second order, the log likelihood function L(θ; y) is twice differentiable
with gradient

S(y) − EθS(Y )
and non-positive definite Hessian −CovθS(Y ).

Proof: For the realisation y ∈ LT the log likelihood function

L(θ; y) = − log Z(θ) + θ′S(y)

is differentiable with gradient

∇L(θ; y) = S(y) − 1
Z(θ)∇Z(θ).

Since Z(θ) = ∑
y∈LT exp [θ′S(y)] , its gradient can be written as

∇Z(θ) =
∑

y∈LT

S(y) exp [θ′S(y)] ,
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from which the expression for the gradient follows. In the absolutely
continous case, the sum is replaced by an integral and the dominated
convergence theorem is invoked to change the order of integration and
differentiation.

To calculate the Hessian, note that

∇2Z(θ) =
∑

y∈LT

S(y)S(y)′ exp [θ′S(y)] ,

so

∇2L(θ; y) = − 1
Z(θ)∇2Z(θ) + 1

Z(θ)2 ∇Z(θ)(∇Z(θ))′ = −CovθS(Y ),

the negative of a covariance matrix and therefore non-positive definite. "

The expectation EθS(Y ) and covariance matrix CovθS(Y ) can
be estimated by their Monte Carlo approximations. For the log
pseudo-likelihood function, Theorem 3.5 applies site-wise because the
local characteristics of an exponential family are exponential families
themselves.

Little is known about the precision of maximum likelihood estimators
and their approximations. One would like to have a central limit theo-
rem to form the basis of asymptotic confidence intervals. A complication
is that when T grows to, say, Zd, there may not be a unique limiting
random field defined on Zd whose conditional specification on T coin-
cides with πY . Similarly, there may not exist a scaling function so that
the rescaled maximum likelihood estimator tends to a normal distribu-
tion. Furthermore, in Monte Carlo maximum likelihood estimation, the
approximation error must be taken into account, but this error can be
controlled by the user and is usually negligable. For the pseudo-likelihood
method, under rather mild conditions, large deviation techniques may
be used to prove a central limit theorem. In general, though, the asymp-
totic variance is intractable and must be estimated, for instance using
parametric bootstrap ideas.

The maximum likelihood estimator, or its Monte Carlo approxima-
tion, may be used to test whether the observations depend significantly
on some covariate. Indeed, the likelihood ratio test statistic for covariate
i is defined as

Λ(Y1, . . . , Yn) = sup{πY (Y1, . . . , Yn; β, θ) : βi = 0}
πY (Y1, . . . , Yn; β̂, θ̂)

.
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Under the null hypothesis of no influence of the i-th covariate, i.e. βi =
0, the transformed likelihood ratio test statistic −2 log Λ(Y1, . . . , Yn) is
approximately χ2-distributed with one degree of freedom.

3.6 MARKOV CHAIN MONTE CARLO SIMULATION

The Monte Carlo maximum likelihood estimation method requires sam-
ples from the model of interest. In this section, we shall describe how
such samples may be obtained. The idea is to run a Markov chain with
the model of interest as its limit distribution. If the chain is run for a
sufficiently long time and sub-sampled, we obtain an approximate sam-
ple from the model of interest. There are many ways to define such a
Markov chain. Here, we will describe a flexible strategy that is widely
used and give sufficient conditions for convergence.

Recall that a sequence M0, M1, . . . of random variables is a Markov
chain with transition kernel p(·, ·) if

P(Mt ∈ At; Mt−1 ∈ At−1; . . . ; M1 ∈ A1 | M0 = m0) =
∫

A1
· · ·

∫

At−1

∫

At

p(m0, m1) · · · p(mt−2, mt−1)p(mt−1, mt)dm1 · · · dmt−1dmt

for all t ∈ N and all measurable Ai ⊆ Ω, i = 1, . . . , t. Note that the fixed
starting state m0 may be replaced by any probability distribution on Ω.
For countable state spaces, the integral is replaced by a sum.

For random fields X, the joint distribution πX may be difficult to
handle but the local characteristics πi(xi | xT \i) are easy to work with. It
therefore makes sense to define transitions by changing the components
Xi one at a time. This idea is implemented by the Metropolis–Hastings
algorithm that runs as follows. Suppose that the current state is Mt =
x ∈ LT . Then

• sample a site i ∈ T and a new label l ∈ L to yield state

y = (yj)j∈T =
{

yj = l, j = i;
yj = xj , j ̸= i,

according to some probability density or mass function q(x, y);

• accept the proposal with probability

A(x, y) =
{

1 if πX(y)q(y, x) ≥ πX(x)q(x, y);
πX (y)q(y,x)
πX (x)q(x,y) otherwise.
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Note that the acceptance probabilities A(x, y) depend on the ratio

πX(y)
πX(x) = πi(l | xT \i)

πi(xi | xT \i)

only. In particular, any normalising constants cancel out. The transition
kernel is obtained by combining the proposal and acceptance probabili-
ties. In particular, p(x, y) = q(x, y)A(x, y) for x ̸= y.

Proposition 3.2 Let X be an L-valued random field on a finite collec-
tion T ̸= ∅ of sites. Then the Metropolis–Hastings algorithm satisfies the
following properties:

• ‘detailed balance’

πX(x)p(x, y) = πX(y)p(y, x);

• πX is an invariant measure, that is, for all measurable A ⊆ LT ,

πX(X ∈ A) =
∫

P(M1 ∈ A | M0 = x)πX(x)dx (L = R);

=
∑

x

P(M1 ∈ A | M0 = x)πX(x) (L countable).

Proof: Without loss of generality, assume that x ̸= y and
πX(x)q(x, y) < πX(y)q(y, x). Then

πX(x)p(x, y) = πX(x)q(x, y) × 1

= πX(x)q(x, y)
πX(y)q(y, x)πX(y)q(y, x)

= A(y, x)πX(y)q(y, x) = πX(y)p(y, x).

Invariance is a consequence of detailed balance. Indeed, for example in
the absolutely continuous case,

∫
P(M1 ∈ A | M0 = x)πX(x)dx =

∫ (∫

A
p(x, y)πX(x)dy

)
dx =

∫ (∫

A
p(y, x)πX(y)dy

)
dx =

∫

A
πX(y)

(∫
p(y, x)dx

)
dy =

∫

A
πX(y)dy.

"

To study the convergence of the Metropolis–Hastings algorithm, re-
call the following key definitions from Markov chain theory.
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Definition 3.8 A Markov chain (Mt)t∈N0 on a countable state space
Ω is irreducible if for all x, y ∈ Ω there exists some t ∈ N such that
P(Mt = y | M0 = x) > 0.

A Markov chain (Mt)t∈N0 with state space Ω = RT is πX-irreducible
if for all x ∈ Ω and all Borel sets A ⊂ RT for which πX(A) > 0 there
exists some t ∈ N such that P(Mt ∈ A | M0 = x) > 0.

The restriction to sets with positive probability is needed in the case
that Ω = RT , since in general the probability of returning to a single
state will be zero. For πX -irreducible Markov chains, it is also possible
to define a concept of periodicity.

Definition 3.9 A πX-irreducible Markov chain (Mt)t∈N0 is aperiodic if
there is no partition into non-empty measurable sets B0, . . . , Br−1, r ≥ 2,
such that for all t ∈ N, P(Mt ∈ Bt mod r | M0 = x ∈ B0) = 1 and the
union of B0, . . . , Br−1 has πX-mass one.

We then have the following result.

Theorem 3.6 (Fundamental convergence theorem) If πX is an
invariant probability measure for a Markov chain (Mt)t∈N0 that is πX-
irreducible and aperiodic, then Mt converges to πX in total variation
from πX-almost all initial states, that is,

lim
t→∞

sup
A

|P(Mt ∈ A | M0 = x) − πX(A)| = 0

for πX-almost all x. The supremum is taken over all measurable sets.

Aperiodicity and irreducibility for the Metropolis–Hastings chain are
inherited from those of the proposal distribution in the following sense.

Theorem 3.7 Let X be an L-valued random field on a finite collection
T ̸= ∅ of sites and (Mt)t∈N0 a Metropolis–Hastings chain on Dπ = {x ∈
LT : πX(x) > 0}. If the Markov chain governed by q is πX-irreducible
and q(x, y) = 0 ⇔ q(y, x) = 0, then (Mt)t∈N0 is πX-irreducible.

Proof: The condition that q(x, y) is zero precisely when q(y, x) is implies
that the acceptance probabilities are strictly positive on Dπ.

Now, let (Qt)t∈N0 denote the Markov chain governed by the q(x, y)
and denote its t-step transition kernel by qt. In other words, all proposed
transitions are accepted. We shall show by induction that qt(x, y) > 0
implies pt(x, y) > 0, where pt is the t-step transition kernel of Mt.
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To do so, let t = 1 and suppose that q(x, y) > 0 for x, y ∈ Dπ. Then,
since A(x, y) > 0, also p(x, y) ≥ q(x, y)A(x, y) > 0. For the step from t to
t + 1, suppose that qt+1(x, z) > 0 for some x and z in Dπ. Additionally,
write St

p(x) for the support of pt(x, ·), St
q(x) for that of qt(x, ·), and

assume that St
q(x) ⊆ St

p(x). Since z ∈ St+1
q (x) by assumption,

∫

St
p(x)

qt(x, y)q(y, z)dy ≥
∫

St
q(x)

qt(x, y)q(y, z)dy > 0.

If z would not be an element of St+1
p (x), then the support of the function

y 0→ pt(x, y)q(y, z) would be a null-set. By the induction assumption, the
support of qt(x, ·)q(·, z) would also have measure zero in contradiction
with the above inequality.

Finally, for any A having positive πX -mass, since q is πX -irreducible,
one may find a t ≥ 1 such that

P(Qt ∈ A | Q0 = x) =
∫

A
qt(x, y)dy > 0.

By the induction result, also P(Mt ∈ A | M0 = x) > 0. "

As a corollary, suppose that Mt is πX -irreducible. Clearly, if there are
self-transitions, P(Mt = Mt−1) > 0 for some t ∈ N, then Mt is aperiodic.
Otherwise, if q is aperiodic, proposals do not cycle. The same is then true
for accepted proposals, implying the Metropolis–Hastings chain inherits
aperiodicity from q.

Example 3.10 In the context of Example 3.1, choose site and label uni-
formly. More formally, q(x, y) = 1

2|T | for those x, y ∈ {0, 1}T that differ
in at most one site. Then the proposal chain, and hence the Metropolis–
Hastings sampler based on it, are irreducible and aperiodic.

3.7 HIERARCHICAL MODELLING

The goal of this section is to introduce the modern hierarchical modelling
approach by means of two concrete examples: image segmentation and
disease mapping.

3.7.1 Image segmentation

Suppose that one is not interested in all details of an image, but only
wishes to partition it into certain areas. For example, a cartographer
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might want to classify the pixels in a satellite image according to its land
use. In another context, an oncologist may wish to distinguish between
healthy tissue and malignancies in a CT-scan of a patient.

Let x denote the target labelled image and y the vector of observed
signals. Each pixel value xi, i ∈ T , belongs to a finite class L of labels,
the signals yi take values in some set S that is not necessarily identical
to L, and the goal is to reconstruct x from y.

In many applications it is reasonable to assume that, given the labels,
the signals are conditionally independent and the signal at site i ∈ T
follows a conditional probability density or mass function g(yi|xi) that
depends only on the label xi at site i. Hence, for x ∈ LT , the forward
model becomes

f(y|x) =
∏

i∈T

g(yi|xi), y ∈ ST .

The parameter of interest is the labelled image x. Its naive maximum
likelihood estimate x̂ = X̂(y) based on the observed signal y is easy to
calculate:

x̂i = argmax {g(yi|xi) : xi ∈ L}, i ∈ T.

However, such estimators do not yield nice and smooth labellings because
they completely ignore the spatial context. In other words, X̂ = (X̂i)i∈T

is sensitive to noise.
To obtain more robust estimators, a Bayesian approach may be

taken. In addition to the forward model f(y|x), a prior distribution
πX(x) is used that assigns low probability to images x that are rough
in the sense of having small connected components. By Bayes’ rule, the
posterior distribution of x given the data image y ∈ ST has probability
mass function

f(x|y) ∝ f(y|x)πX(x) = πX(x)
∏

i∈T

g(yi|xi), x ∈ LT .

Then, the maximum a posteriori estimator (MAP) X̃ of X is chosen
so as to maximise this posterior distribution. More specifically, if the
observed signal image is y, x̃ = X̃(y) is given by

x̃ = argmax {f(y|x)πX(x) : x ∈ LT }. (3.10)

This approach is also known as penalised maximum likelihood estimation,
as optimising (3.10) is equivalent to maximising

log f(y|x) + log πX(x)
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over all possible x. The first term log f(y|x) expresses the ‘goodness of
fit’ of x to the data, the second term the smoothness. Moreover, X̃ is
the Bayes estimator (cf. Section 2.8) for the 0 − 1 loss function. To see
this, note that for any function X(·) of the random field Y ,

E [1{X(Y ) ̸= X}] =
∑

y∈ST

∑

x∈LT

1{X(y) ̸= x}f(x|y)πY (y),

assuming S is countable. Otherwise, simply replace the sum over y by
an integral. Therefore, upon observing Y = y, the Bayes estimator min-
imises the posterior expectation

∑

x∈LT

1{X(y) ̸= x}f(x|y)

and hence coincides with X̃.
The role of the prior distribution is to encourage spatial coherence.

This can be achieved, for example, by a multi-label generalisation of
the auto-logistic regression model of Example 3.1, which has probability
mass function

πX(x) ∝ exp

⎡

⎣−θ
∑

i∼j;i<j

1{xi ̸= xj}

⎤

⎦ , x ∈ LT , (3.11)

for θ > 0. The model is known as the Potts model with label set L.
Under the white noise assumption that the labels are observed subject
to independent zero-mean Gaussian noise with variance σ2, the posterior
probability mass function given y ∈ RT is equal to

f(x|y) ∝ exp

⎛

⎝− 1
2σ2

∑

i∈T

(yi − xi)2 − θ
∑

i∼j;i<j

1{xi ̸= xj}

⎞

⎠ , x ∈ LT .

Direct computation of (3.10) is very difficult in general, but Monte
Carlo ideas apply. Alternatively, and computationally faster, a local op-
timum can be found in a greedy fashion by iterative pointwise optimi-
sation:

x̃i = argmax {g(yi|xi)πi(xi|xT \i) : xi ∈ L},

where the pixels i are visited in a systematic fashion, for example in row
major order. Since the computations are local, this method is very fast.
However, the initial reconstruction may influence which local optimum
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Figure 3.1 Segmentation of a noisy image of heather. From left to right:
data image, MLE and MAP classifiers.

is reached so it is important to start well, for example in the maximum
likelihood estimate x̂.

As a simple illustration, the left-most panel of Figure 3.1 displays a
pattern of heather in Jädråas, Sweden, digitised at 100×200 pixels with
a resolution of 10 pixels to the metre. The data was corrupted by white
noise with variance σ2 = 15. The two right-most panels show greedy
MAP-reconstructions for a Potts model with θ = 0 (corresponding to
the naive maximum likelihood estimator) and with θ = 25. In this case,
using a prior reduces the misclassification error from five to one percent.

3.7.2 Disease mapping

The second example concerns spatially correlated count data arising
from small area sampling of some underlying process. For instance, a
local public health authority may be interested in the reported cases of
some disease. For privacy reasons, these are typically aggregated over
areas that are large enough to ensure that the counts cannot be traced
back to individuals. The goal of the analysis is to estimate the local dis-
ease risk, perhaps based on spatial covariates such as pollution levels or
characteristics of the population.

For counts, it is natural to assume a Poisson distribution and define
a model in the spirit of the auto-logistic regression model. Thus, writ-
ing Y for the vector of counts, the local characteristic at areal unit i
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takes the form

πi(yi | yT \i) = e−µiµyi
i

yi!
, yi ∈ N0,

with
log µi = αi + θ

∑
j∼i,j ̸=i

.

Since L = N0, we must verify that any putative joint distribution (3.2) is
well-defined, which turns out to be true only when θ is non-positive. For
negative values of θ, when the regions surrounding i have high disease
counts, the expected number of incidences in i itself will be low. Such
behaviour is unrealistic for most diseases. Another disadvantage is that
the logarithmic transform does not readily scale with respect to the
size of the areal units (the so-called ‘modifiable area unit’ or ‘change
of support’ problem). In conclusion, Poisson auto-regression models are
not suitable in the current context.

It is possible to model µi in terms of an integrated random field, but
the technical details are beyond the scope of this book. An alternative is
to consider a mixture model for the rates µi directly. As usual, covariate
information is captured by a design matrix X and parameter vector
β ∈ Rp. Set, for α = Xβ,

µi = ci eαi ΛZi ,

where ci is a base rate of expected counts based on the population size
of areal unit i and ΛZi is the area-specific relative risk. In a mixture
model, random allocation variables Zi assign areal unit i to one of k
mixture components λ1, . . . , λk ∈ R+. Spatial coherence can be achieved
by assuming that (Zi)i∈T are distributed according to a Potts model
(3.11). Provided that the covariates do not fluctuate too wildly, µi scales
appropriately with size.

The goal of a statistical analysis is to infer Z, or, equivalently, ΛZ , the
spatial distribution of the relative risks, as well as the model parameters
β, θ and λ1, . . . , λk. In the nomenclature of the previous section, the
forward model is

f(y|z; β, λ1, . . . , λk) =
∏

i∈T

g(yi|(Xβ)i, λzi), y ∈ NT
0 ,

with g(·|αi, λzi) the probability mass function of a Poisson distribution
with mean µi = cieαiλzi . The posterior probability mass function of the
allocations conditional on the observed disease counts is

f(z|y; β, θ, λ1, . . . , λk) ∝ f(y|z; β, λ1, . . . , λk)πZ(z; θ), z ∈ {1, . . . , k}T ,
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for a proportionality constant that depends on the parameters. In a fully
Bayesian framework, additional prior distributions may be placed on θ,
the parameter of the Potts distribution πZ(·; θ), on β, on the mixture
components λj , j = 1, . . . , k, and even on k, leading to a joint distribu-
tion of the form

f(y|z; β, λ1, . . . , λk)πZ(z; θ, k)p(λ1, . . . , λk|k)p(β)p(θ)p(k).

In any case, the posterior distribution can be approximated by Monte
Carlo sampling and optimised numerically.

3.7.3 Synthesis

The two examples discussed in, respectively, Sections 3.7.1 and 3.7.2,
share a common structure that can be found throughout spatial statis-
tics. In both cases, a spatial process of interest – the pixel classification
in Section 3.7.1, the relative risks in Section 3.7.2 – cannot be observed
directly, but only through other random variables (the noisy pixel values
in Section 3.7.1, the counts in Section 3.7.2). Moreover, there may be
unknown parameters. Thus, the joint distribution is of the form

forward model[data | process, parameters] × prior[process |
parameters],

optionally complemented by a hyper prior distribution on the model
parameters. This framework is extremely flexible and may be adapted
to many different contexts.

Inference is usually based on the posterior distribution of the process
and/or the parameters conditional on the observations, which can be
approximated by Monte Carlo methods. Sometimes a reconstruction of
the process is required, as in the segmentation example. However, since
the full posterior distribution is available, histograms of any marginal
distribution of interest can be plotted, e.g. the posterior distribution
of the number of mixture components and allocation probabilities in
the disease mapping example. Further examples will be presented in
Chapter 3. In the meantime, we refer to Section 3.10 for pointers to
modern textbooks in this area.
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3.8 WORKED EXAMPLES WITH R

The package spdep: Spatial dependence: Weighting schemes, statistics
and models can be used to find neighbourhood matrices and for esti-
mating the parameters of Gaussian spatial autoregression schemes. The
package is maintained by R. Bivand. An up-to-date list of contributors
and a reference manual can be found on

https://CRAN.R-project.org/package=spdep.
The results shown below were obtained using version 0.7-4.

Figure 3.2 Map of 49 districts in Columbus. The first district is indicated
by ‘+’.

The package contains a shape file ‘columbus.shp’ which includes a
polygonal approximation of the borders of 49 neighbourhoods in the
city of Columbus, Ohio, in the United States of America as well as the
coordinates of their centroids in arbitrary digitising units. All source
data files were prepared by L. Anselin as described in his 1988 textbook
Spatial Econometrics: Methods and Models. From now on, we assume
that the polygons have been extracted and stored in a data frame, say
columbus.poly.

We are interested in the first of the Columbus neighbourhoods, which
is indicated by a cross in Figure 3.2. Be warned, though, that the labels
in the data frame are ”0” up to ”48”! The following script extracts the
centroids of the neighbourhoods and places a cross to indicate the neigh-
bourhood of interest.
plot(columbus.poly)
columbus.centre <- coordinates(columbus.poly)

https://CRAN.R-project.org/package=spdep
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points(columbus.centre[1,1], columbus.centre[1,2], pch=3)

First, consider the contiguity relation, in which two polygonal regions
are neighbours if and only if they share a common border. The following
script can be used to find the neighbours of the region whose centroid is
indicated by ‘+’ in Figure 3.2. It appears that there are two contiguous
polygons, the centroids of which are indicated by a circle in Figure 3.2.

columbus.nb <- poly2nb(columbus.poly)
columbus.id <- attr(columbus.nb, "region.id")
columbus.id[columbus.nb[[match("0", columbus.id)]]]
[1] "1" "2"

Figure 3.3 Map of 49 districts in Columbus. The colours indicate the rate
of property crime (number per thousand households) in 1980. The rates
are binned in [0, 10), [10, 20), . . . , [50, 60) and [60, 70]. Light colours
correspond to low numbers.

Next, we consider the relation that declares two polygonal regions
to be neighbours if and only if the distance between their centroids does
not exceed some upper bound. The following scripts find the neighbours
for upper bounds of, respectively, 0.62 and 1.24 units.

columbus.dnb <- dnearneigh(columbus.centre, 0, 0.62)
columbus.id[columbus.dnb[[match("0", columbus.id)]]]
[1] "1" "2"
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columbus.dnb <- dnearneigh(columbus.centre, 0, 2*0.62)
columbus.id[columbus.dnb[[match("0", columbus.id)]]]
[1] "1" "2" "3" "4" "7"

It turns out that for the smaller of the upper bounds, the region whose
centroid is indicated by ‘+’ in Figure 3.2 has the same neighbours as it
has with respect to the contiguity relation. Increasing the upper bound
results in three additional neighbouring regions, whose centroids are in-
dicated by a triangle in Figure 3.2.

The data frame columbus.poly contains a column CRIME which lists
the number of residential burglaries and vehicle thefts that occurred in
1980 per thousand households for each of the 49 neighbourhoods. For a
graphical representation, one may use the function

spplot(columbus.poly, "CRIME")

to obtain the plot shown in Figure 3.3; for convenience, we used a
monochrome colour map. Note that higher crime rates tend to be found
in the inner city.

Figure 3.4 Map of 49 districts in Columbus. The colours indicate the val-
ues of explanatory variables. Left: mean property values (in k$) binned
in [0, 20), [20, 40), [40, 60), [60, 80) and [80, 100]. Right: mean household
income (in k$) binned in [0, 5), [5, 10), [10, 15), [15, 20), [20, 25), [25, 30)
and [30, 35]. Light colours correspond to low numbers.

Some explanatory variables are available. Here we select two: mean
property value and mean household income (in thousand dollars). As
can be seen from Figure 3.4, low values of both tend to be found
predominantly in inner city neighbourhoods. Including an offset value,
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we may formulate a conditional autoregression model

Y = Xβ + B(Y − Xβ) + E

where Y = (Y1, . . . , Y49)′ denotes the random field of crime rates, X is
the 49 × 3 design matrix, B = φN is proportional to the neighbourhood
matrix N and the 3 × 1 vector β contains parameters to be estimated.
Specifically, all entries of the first column of X are 1, the second column
lists the mean property values, the third the average household incomes.
Finally, E is spatially correlated noise with mean zero and covariance
matrix σ2(I − B).

The following script fits the model by estimating its five parameters
using the contiguity neighbourhood relation: the components of β, φ
and σ2.

columbus.listw <- nb2listw(columbus.nb, style="B")
car.out <- spautolm(formula= CRIME ˜ HOVAL + INC,

data=columbus.poly, listw=columbus.listw, family="CAR")
columbus.poly$fitted.car <- fitted(car.out)

Figure 3.5 Map of 49 districts in Columbus. The colours indicate the
fitted rate of property crime (number per thousand households) in 1980
for a conditional autoregression model with contiguous neighbours. The
rates are binned in [0, 10), [10, 20), . . . , [50, 60) and [60, 70]. Light colours
correspond to low numbers.
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The estimated values of the parameters can be read off from the
output of the print function:

> print(car.out)

Call:
spautolm(formula = CRIME ˜ HOVAL + INC, data = columbus.poly,

listw = columbus.listw, family = "CAR")
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Figure 3.6 Residuals plotted against quantiles of the standard normal
distribution (left) and against the fitted values (right) for a conditional
autoregression model with contiguous neighbours fitted by maximum
likelihood.

Coefficients:
(Intercept) HOVAL INC lambda
54.3139189 -0.2821969 -0.9882862 0.1589004

Log likelihood: -182.2198

and

> car.out$fit$s2
[1] 87.65356
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In other words, φ̂ = 0.16, σ̂ = 9.36 and β̂ = (54.31, −0.28, −0.99)′.
We conclude that the model predicts less crime in affluent districts.
The fitted model is displayed graphically in Figure 3.5. Note that it is
smoother than the data due to the spatial averaging explicit in the model
formulation.

To validate the model, consider the residuals Y −Xβ̂ − φ̂N(Y −Xβ̂).
If the model were correct, the residuals would be normally distributed.
The QQ-plot

qqnorm(residuals(car.out))

indicates a deviation from normality due to a single negative outlier
corresponding to neighbourhood ”6”. This conclusion is confirmed by
plotting the residuals against the fitted values, cf. Figure 3.6. The outlier
is clearly visible, but otherwise the plot shows no apparent trend.

Neighbourhood ”6” is the neighbourhood just west of the polygons
whose centroids are marked by a triangle in Figure 3.2. This particular
neighbourhood enjoys a crime rate that is markedly smaller than that
of the surrounding neighbourhoods. Although property values there are
rather high, the household incomes are not and after taking into ac-
count the weighted averages over the surrounding neighbourhoods, the
predicted crime rate is higher than the actual one.

As an aside, note that realisations from the fitted model may eas-
ily be obtained by adding multivariate normally distributed noise (with
covariance matrix σ̂2(I − φ̂N)) to the fitted values.

The script for fitting a SAR model is similar to that for fitting a
CAR model. Indeed,

sar.out <- spautolm(formula= CRIME ˜ HOVAL + INC,
data=columbus.poly, listw=columbus.listw, family="SAR")

columbus.poly$fitted.sar <- fitted(sar.out)

results in

> print(sar.out)

Call:
spautolm(formula = CRIME ˜ HOVAL + INC, data = columbus.poly,

listw = columbus.listw, family = "SAR")
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Figure 3.7 Map of 49 districts in Columbus. The colours indicate the
fitted rate of property crime (number per thousand households) in 1980
for a simultaneous autoregression model with contiguous neighbours.
The rates are binned in [0, 10), [10, 20), . . . , [50, 60) and [60, 70]. Light
colours correspond to low numbers.

Coefficients:
(Intercept) HOVAL INC lambda
56.3315730 -0.2998181 -0.9515649 0.1211682

Log likelihood: -182.5554

and

> sar.out$fit$s2
[1] 91.43706

In other words, φ̂ = 0.12, σ̂ = 9.56 and β̂ = (56.33, −0.30, −0.95)′.
A comparison of Figures 3.5 and 3.7 shows that the two models han-
dle sharp discontinuities in the data somewhat differently; in such cases
the fitted crime rates under the conditional autoregression seem a lit-
tle smoother. The diagnostic plots shown in Figure 3.8 suggest the fit
is slightly worse for a simultaneous autoregression but still adequate,
except for neighbourhood ”6”.
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Figure 3.8 Residuals plotted against quantiles of the standard normal
distribution (left) and against the fitted values (right) for a simultaneous
autoregression model with contiguous neighbours fitted by maximum
likelihood.
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3.9 EXERCISES

1. Consider the hard core lattice gas X on a finite grid ∅ ̸= T ⊂ Z2

with value set L = {0, 1}. Write i ∼ j whenever 0 < ||i − j|| ≤ 1
so that sites i and j are neighbours when they are horizontally or
vertically adjacent. The probability mass function is, for x ∈ LT ,
defined by

πX(x) =
{ 1

Z

∏
i∈T axi if xixj = 0 whenever i ∼ j;

0 otherwise.

Here a > 0 and Z is a normalising constant.

• Compute the local characteristics.
• Order the sites in T lexicographically. Show that there ex-

ist x = (xi)i∈T , y = (yi)i∈T and i ∈ T such that πi(yi |
x{j:j<i}, y{j:j>i}) is zero but both πX(x) and πX(y) are posi-
tive.

2. In a conditional autoregression model, show that bij = 0 implies
that Xi and Xj are conditionally independent given (Xt)t∈T \{i,j}.
Are Xi and Xj independent?
Hint: Recall that if A is a symmetric, non-singular block matrix

A =
[

I A12
A21 = A′

12 A22

]

,

then its inverse is given by
[

I + A12(A22 − A21A12)−1A21 −A12(A22 − A21A12)−1

−(A22 − A21A12)−1A21 (A22 − A21A12)−1

]

.

3. Show that the local characteristics

π1(x | y) = π2(y | x) = 1
(2π)1/2 exp

[
−1

2(x − y)2
]

do not define a proper joint distribution on R{1,2}.

4. Suppose that T is a finite set equipped with a symmetric relation
∼ which contains at least two ∼-related elements. Show that the
Poisson auto-regression model with putative local characteristics

{
πi(yi | yT \i) = e−µiµyi

i /yi!
log µi = θ

∑
j∼i,j ̸=i yj

for y ∈ NT
0 is well-defined if and only if θ ≤ 0.
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5. Consider the conditional autoregression model on a finite fam-
ily T ̸= ∅ of sites defined by Gaussian local characteristics with
Var(Xt | XT \t) = 1 and

E(Xt | XT \t) = µ +
∑

s ̸=t

bts(Xs − µ), t ∈ T,

for some unknown parameter µ ∈ R. Propose a two-sided test
for the hypothesis that µ = 0. What assumptions do you need to
impose on the bts?

6. Show that the potential in Example 3.5 is normalised with respect
to a = 0.

7. Suppose that T is a finite set that contains at least two elements
and is equipped with a symmetric relation ∼. For the Poisson
auto-regression model defined by

{
πi(yi | yT \i) = e−µiµyi

i /yi!
log µi = −

∑
j∼i,j ̸=i yj

for y ∈ NT
0 , i ∈ T , find the canonical potential with respect to

a = 0.

8. Let ∅ ̸= T ⊂ Z2 be a finite grid. For i ̸= j ∈ T , write i ∼ j if and
only if 0 < ||i − j|| ≤ 1. Show that if X is a Markov random field
on T with respect to ∼, then the ‘x’ sites in the following picture
are conditionally independent given the ‘o’ sites:

x o x o x o x
o x o x o x o
x o x o x o x
o x o x o x o
x o x o x o x
o x o x o x o
x o x o x o x

9. Let ∼ be a symmetric relation on the finite set ∅ ≠ T and consider
a conditional autoregression model on RT defined by a square non-
singular matrix B whose diagonal entries are zero and a diagonal
matrix K with positive entries κi on the diagonal such that (I −
B)−1K is positive definite.
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Suppose that the entries bij of the matrix B satisfy the property
that bij = 0 if i ̸∼ j, i, j ∈ T . Show that this model is a Markov
random field with respect to ∼ and find an explicit expression for
the interaction functions.

10. Consider the hard core lattice gas X on a finite grid ∅ ̸= T ⊂ Z2

with value set L = {0, 1} and probability mass function

πX(x) =
{ 1

Z(a)
∏

i∈T axi if xixj = 0 whenever i ∼ j

0 otherwise

for a > 0 and x ∈ LT . Here i ∼ j whenever 0 < ||i−j|| ≤ 1. Design
a suitable Monte Carlo method for approximating the maximum
likelihood estimator of a. Prove its convergence.

11. Consider the model

Y = Xβ + B(Y − Xβ) + E

where X is an n×p design matrix, β ∈ Rp an unknown parameter,
B an n × n symmetric positive definite matrix with zero elements
on the diagonal and E normally distributed with mean zero and
covariance matrix σ2(I −B) for unknown parameter σ2 > 0. Com-
pute the maximum pseudo-likelihood estimators for the parame-
ters β and σ2. Compare your answer to the maximum likelihood
estimators β̂ and σ̂2.

12. Suppose that the random field X on a finite index set T ̸= ∅ is
defined by the probability mass function

πX(x) = eθS(x)

Z(θ) , x ∈ {0, 1}T ,

for some function S : {0, 1}T → R. Given a realisation x ∈ {0, 1}T ,
show that the maximum pseudo-likelihood estimator θ̂ satisfies

1
|T |

∑

i∈T

Eθ̂ [S(X) | Xj = xj , j ̸= i] = S(x).

13. Let πX > 0 be a probability distribution on LT for non-empty
finite sets L and T . Consider the Metropolis–Hastings algorithm
with proposal distribution

q(x, y) =
∑

i∈T

1
|T |πi(yi | xT \i)1{yT \i = xT \i}, x, y ∈ LT .
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Show that all proposals for which q(x, y) > 0 are accepted with
probability one.

14. Consider the greedy algorithm for the Gaussian–Potts model used
to obtain Figure 3.1. Describe the updates for θ = 0 and θ → ∞.

15. The spdep package contains a data set nc.sids which contains
information on the number of births as well as the number of deaths
from Sudden Infant Death Syndrome in counties in North Carolina.
Fit an appropriate auto-binomial model.
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3.10 POINTERS TO THE LITERATURE

The mathematical theory of Markov random fields was developed in the
1960s, although specific examples had been studied before. For instance,
the Ising model originates from the 1924 graduate thesis of E. Ising
[1] under supervision of W. Lenz [2]. An early paper on a Gaussian
autoregression is [3] by P. Whittle (1954).

Besag’s factorisation theorem occurs as (2.2) in [4] building on work
by D. Brook [5]. Indeed, Brook appears to be the first author to study
consistency conditions for conditional specifications. The name Markov
random field was coined by P.L. Dobrushin for random fields defined on
infinite lattices that satisfy a spatial Markov property with respect to
a distance based relation [6]. Section 4 of [4] is concerned with spatial
autoregression models including the auto-logistic regression of Exam-
ple 3.1, and the Gaussian models of Section 3.2. Proposition 3.1 and
likelihood based inference can be found in section 5.2 of B.D. Ripley’s
pioneering textbook in spatial statistics [7].

Gibbs states are named after J.W. Gibbs, the founder of modern sta-
tistical physics. The proof of Theorems 3.2 and 3.4 based on the Möbius
inversion theorem of G.-C. Rota [8, Proposition 3.2] is due to G.R. Grim-
mett [9]. Alternative proofs can be found in the paper by J. Moussouris
[10]. Example 3.9 is also taken from this paper. The Hammersley–Clifford
theorem was named after J.M. Hammersley and P.E. Clifford [11] by J.E.
Besag [4, Section 3], who also noted the equivalence of local and spatial
Markov properties established in Corollary 3.2.

For more details on Markov random fields, we refer the reader to the
textbooks by Kinderman and Snell [12] and Y.A. Rozanov [13], or the
more recent one by X. Guyon [14]. For an introduction to the wider class
of graphical models, one may consult S.L. Lauritzen’s monograph [15].

Gaussian autoregression models are discussed in great detail in [16].
The R-package spdep can be used to fit such models to data. Alterna-
tively, the R-INLA package maintained by H. Rue may be used.

For random field models with an intractable likelihood, J.E. Besag
proposed to use maximum pseudo-likelihood estimation instead [17] and
showed that for CAR models, the technique reduces to least squares
estimation. The Monte Carlo maximum likelihood method in the form
presented here is due to Geyer and Thompson [18] and Theorem 3.5 is
taken from this paper.

The study of stochastic processes in which the future and the past
are conditionally independent given the present was inspired by A.A.
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Markov’s 1913 study of the succession of vowels and consonants in the
classic novel Eugene Onegin by Pushkin. An excellent introduction to
the theory of such Markov chains on general state spaces is given in the
textbook by Meyn and Tweedie [19]. Our definition in terms of transition
probability kernels can be found in section 3.4 of the second edition.
The concept of πX -irreducibility dates back to W. Doeblin [20, 21]

and is discussed in chapter 4 of [19]. Cycles were also considered by
Doeblin [21]. The consideration of ergodic theorems for Markov chains
with finite state space is already found in work by A.N. Kolmogoroff [22],
who used contraction principles and differential equations. The proof for
general state spaces may be based on techniques from E. Nummelin [23],
a coherent account of which is given in [19, Section 13]. Theorem 3.7 is
due to Roberts and Smith [24, Theorem 3].

From a computational point of view, the Metropolis–Hastings algo-
rithm was introduced in the paper by Metropolis, the Rosenbluths and
the Tellers [25] and is a special case of a class of methods proposed by
W.K. Hastings [26], designed to satisfy the detailed balance equations in
Proposition 3.2. For an exhaustive overview of these and other Markov
chain Monte Carlo techniques and their applications, we refer the reader
to the Handbook edited by Brooks, Gelman, Jones and Meng [27].

The modern hierarchical modelling approach to image analysis, and
to spatial statistics in general, can be traced back to J.E. Besag’s note
[28] and seminal paper [29] and to the pioneering work by the Geman
brothers [30]. Textbooks on this topic include G. Winkler’s monograph
[31] on Bayesian image analysis and the more general volume by Baner-
jee, Carlin and Gelfand [32]. In particular, the segmentation example is
inspired by [29] which also contains the greedy iterative pointwise opti-
misation algorithm. The heather data that we used as an illustration was
collected by P.J. Diggle [33] and is available in the R-package spatstat.
The prior Potts model was introduced in R.B. Potts’ doctoral thesis [34].
Finally, our account of disease mapping is inspired by a paper by Green
and Richardson [35]. Further details and alternative modelling strategies
can be found in chapter 14 of the Handbook of Spatial Statistics [36].
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C H A P T E R 4

Spatial point processes

4.1 POINT PROCESSES ON EUCLIDEAN SPACES

Up to now, data were collected at fixed locations or regions. Sometimes,
however, the locations at which events occur are random. Typical ex-
amples include the epicentres of earthquakes or the outbreaks of forest
fires. Such random configurations of locations are said to form a point
process.

To exclude pathological cases, the following definition will be needed.

Definition 4.1 The family N lf(Rd) of locally finite point configurations
in Rd consists of all subsets x ⊂ Rd that place finitely many points in
every bounded Borel set A ⊂ Rd.

In particular, locally finite configurations are at most countably in-
finite and do not contain accumulation points. It is possible to find two
points at exactly the same location, though.

Definition 4.2 A point process X ∈ N lf(Rd) on Rd is a random locally
finite configuration of points such that for all bounded Borel sets A ⊂ Rd

the number of points of X that fall in A is a finite random variable which
we shall denote by NX(A).

Example 4.1 Let W be a bounded Borel set in Rd having positive d-
volume |W | > 0, and, for n ∈ N, let X1, . . . , Xn be independent and
uniformly distributed on W . Then, X = {X1, . . . , Xn} is the binomial
point process. Indeed,

NX(A) =
n∑

i=1
1{Xi ∈ A} ≤ n

93
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is a finite random variable for every Borel set A ⊆ W .

As for the random fields studied in Chapter 2, the distribution of a
point process is completely specified by the finite dimensional distribu-
tions (fidi’s)

P(NX(A1) = n1; · · · ; NX(Am) = nm).
Here, for m ∈ N, i = 1, . . . , m, the Ai ⊂ Rd are bounded Borel sets and
ni ∈ N0.

Example 4.2 Consider the binomial point process of Example 4.1. Let
A, B be two Borel subsets of W . Note that A and B partition W in four
disjoint subsets, A ∩ B, A \ B, B \ A and the complement of A ∪ B. The
uniform distribution of the Xi implies that the probability of falling in
A∩B is |A∩B|/|W |, with similar expressions for the hitting probabilities
of the other three sets. Therefore,

P(NX(A \ B) = n1; NX(B \ A) = n2; NX(A ∩ B) = n3)

= n!
n1!n2!n3!(n −

∑
i ni)!

( |A \ B|
|W |

)n1 ( |B \ A|
|W |

)n2 ( |A ∩ B|
|W |

)n3

×

×
(

1 − |A ∪ B|
|W |

)n−
∑

i
ni

.

Summation over appropriate values of n1, n2, n3 yields an explicit ex-
pression for P(NX(A) = nA; NX(B) = nB).

The fidi’s are not very tractable, even for the binomial point process
considered above. However, if one assumes that the point process X is
simple in the sense that its realisations almost surely do not contain
multiple points at exactly the same location, it suffices to consider only
the one-dimensional fidi’s.

Theorem 4.1 The distribution of a simple point process X on Rd is
completely determined by the void probabilities

v(A) = P(NX(A) = 0)

of bounded Borel sets A ⊂ Rd.
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Proof: Define a family of difference operators Sk(·; A1, . . . , Ak) indexed
by bounded Borel sets A1, . . . , Ak, k ∈ N, inductively as follows:

S1(B; A1) = v(B) − v(A1 ∪ B)

and

Sk(B; A1, . . . , Ak) = Sk−1(B; A1, . . . , Ak−1)−Sk−1(B∪Ak; A1, . . . , Ak−1),

where B ⊂ Rd is a bounded Borel set. Note that

Sk(B; A1, . . . , Ak) = P(NX(Ai) > 0, i = 1, . . . , k; NX(B) = 0)

depends only on events that record presence or absence of points and
hence is completely determined by the void probabilities.

By the topological properties of the Euclidean space Rd, there exists
a series of nested partitions Tn,i, i = 0, . . . , kn, such that for large n
distinct points x, y ∈ Rd lie in different members of (Tn,i)i. Here n is the
level in the nesting and i ranges through the members of the partition
at level n. For any bounded Borel set A ⊂ Rd, intersection with the
members of the partition results in a nested partition of A that separates
the points, so the limit

lim
n→∞

∑

i

1{NX(A ∩ Tni) > 0} = NX(A)

exists almost surely. Here we use the fact that X is simple!
The joint distribution of the random variables 1{NX(A ∩ Tn,i)}, i =

0, . . . , kn, can be expressed in terms of the difference operators. Indeed,
since indicator variables take binary values only, for ij ∈ {0, 1},

P(1{NX(A ∩ Tn,0) > 0} = i0; · · · ; 1{NX(A ∩ Tn,kn) > 0} = ikn)

= Sl(∪j:ij=0(A ∩ Tn,j); A ∩ Tn,j , ij = 1)
where l = ∑

j 1{ij = 1}. Hence, writing Hn(A) = ∑
i 1{NX(A ∩ Tn,i) >

0}, the probability that Hn(A) takes the value l is equal to
∑

P(1{NX(A ∩ Tn,0) > 0} = i0; · · · ; 1{NX(A ∩ Tn,kn) > 0} = ikn),

where the sum is taken over all combinations of ijs that sum to l ∈ N0.
Thus, P(Hn(A) = l) can be expressed solely in terms of the difference
operators and hence in terms of the void probabilities. A similar rea-
soning applies to the joint distribution of (Hn(A1), . . . , Hn(Ak)) for any
k ∈ N. Letting n increase to infinity completes the proof. "
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Example 4.3 Let W be a bounded Borel set in Rd having positive
d-volume |W | > 0. For the binomial process on W (cf. Example 4.1),
the void probability of a bounded Borel set A ⊂ Rd is

v(A) = (1 − |A ∩ W |/|W |)n .

To conclude this section, we present a constructive way to define
finite point patterns, namely to specify

• a discrete probability distribution (pn)n∈N0 for the total number of
points;

• a family of symmetric joint probability densities jn(x1, . . . , xn),
n ∈ N, on (Rd)n for the locations of the points given that there
are n of them.

Example 4.4 For the binomial process of Example 4.1, pn = 1 and
pm = 0 for m ̸= n. Moreover, jn ≡ |W |−n is symmetric.

4.2 THE POISSON PROCESS

Recall that the Poisson distribution arises as the limit of binomial distri-
butions with ever more trials having ever smaller success probabilities.
The same idea applies to binomial point processes.

To be specific, fix k ∈ N0 and let Bn ⊂ Rd be a series of growing balls
centred at the origin such that n/|Bn| ≡ λ is constant (0 < λ < ∞).
Then any bounded Borel set A is covered by Bn for n ≥ k sufficiently
large, and, in this case,

P(n)(N(A) = k) =
(

n

k

) ( |A|
|Bn|

)k (
1 − |A|

|Bn|

)n−k

,

where the notation P(n) is used for the distribution of the binomial point
process of n points in Bn. Under the assumptions on n and Bn,

P(n)(N(A) = k) → e−λ|A| (λ|A|)k

k!
as n → ∞. Similarly, for disjoint bounded Borel sets A and B and
k, l ∈ N0,

P(n)(N(A) = k; N(B) = l) =
(

n

k

) ( |A|
|Bn|

)k
(

n − k

l

) ( |B|
|Bn|

)l

×
(

1 − |A ∪ B|
|Bn|

)n−k−l
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for n ≥ k + l large enough for Bn to cover A ∪ B. As n → ∞, the limit

lim
n→∞

P(n)(N(A) = k; N(B) = l) = e−λ|A| (λ|A|)k

k! e−λ|B| (λ|B|)l

l!
is a product of Poisson probabilities with parameters λ|A| and λ|B|,
respectively.

The above calculations suggest the following definition.

Definition 4.3 A point process X on Rd is a homogeneous Poisson
process with intensity λ > 0 if

• NX(A) is Poisson distributed with mean λ|A| for every bounded
Borel set A ⊂ Rd;

• for any k disjoint bounded Borel sets A1, . . . , Ak, k ∈ N, the ran-
dom variables NX(A1), . . . , NX(Ak) are independent.

The void probabilities of a Poisson process are given by

v(A) = exp [−λ|A|] .

At this point, it should be mentioned that the second property in
the definition above is crucial and implies that the restrictions of X to
disjoint sets behave independently. The first property may be relaxed in
the sense that λ|A| may be replaced by

∫

A
λ(x)dx (4.1)

for some function λ : Rd → R+ that is integrable on bounded sets but not
necessarily constant. The resulting point process is an inhomogeneous
Poisson process.

Theorem 4.2 Let X be a homogeneous Poisson process on Rd with
intensity λ > 0 and A ⊂ Rd a bounded Borel set with |A| > 0. Then,
conditional on the event {NX(A) = n}, n ∈ N, the restriction of X to
A is a binomial point process of n points.

Proof: Let B ⊂ A be a bounded Borel set. Its conditional void proba-
bility is given by

P(NX(B) = 0|NX(A) = n) = P(NX(B) = 0; NX(A) = n)
P(NX(A) = n)
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= P(NX(B) = 0; NX(A \ B) = n)
P(NX(A) = n) = e−λ|B|e−λ|A\B|(λ|A \ B|)n/n!

e−λ|A|(λ|A|)n/n!

=
( |A \ B|

|A|

)n

,

since NX(B) and NX(A \ B) are independent and Poisson distributed
with rates λ|B| and λ|A \ B|, respectively. Note that the conditional
void probability of B is equal to the corresponding void probability of
the binomial point process (cf. Example 4.3). Therefore, an appeal to
Theorem 4.1 concludes the proof. "

As a corollary, observe that the joint probability densities jn of a
Poisson process on a bounded window A coincide with those of the bi-
nomial point process.

4.3 MOMENT MEASURES

The moments, especially the first two, are important descriptors of ran-
dom variables, as are the mean and covariance functions of random fields.
For point processes, their analogues are the moment measures.

Definition 4.4 Let X be a point process on Rd. Define, for Borel sets
A, B ⊆ Rd,

α(1)(A) = ENX(A);
µ(2)(A × B) = E [NX(A)NX(B)] ;

α(2)(A × B) = E

⎡

⎣
∑

x∈X

∑ ̸=

y∈X

1{x ∈ A; y ∈ B}

⎤

⎦ .

Here, the notation ∑ ̸= is used to indicate that the sum is taken over all
(x, y) ∈ X2 for which x ̸= y.

The set functions introduced in Definition 4.4 are not necessarily
finite, even for finite point processes. To see this, let, for example, the
number of points be governed by the probability density (pn)n with
pn = 1/(n(n − 1)) for n ≥ 2 and zero otherwise. Then the pn sum to
one, but the expected total number of points is infinite. For finite point
processes, a sufficient condition for µ(2) and, a fortiori, α(1) and α(2) to
take finite values is that E

[
NX(Rd)2]

< ∞. More generally, provided
that they take finite values on bounded Borel sets, classic results from
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measure theory imply that these set functions can be extended to unique
(σ-finite) Borel measures which are necessarily symmetric.

Definition 4.5 Suppose that the set functions defined in Definition 4.4
are finite for bounded Borel sets. Then they can be uniquely extended to
symmetric Borel measures. The resulting measures α(k), k = 1, 2, are
the k-th order factorial moment measures of X, whereas the extension
of µ(2) will be referred to as the second order moment measure.

In fact, for every α(k)-integrable function f : (Rd)k → R,

E

⎡

⎣
∑ ̸=

(x1,...,xk)∈Xk

f(x1, . . . , xk)

⎤

⎦ =
∫

· · ·
∫

f(x1, . . . , xk)dα(k)(x1, . . . , xk).

(4.2)

Example 4.5 Let X be a Poisson process on Rd with intensity function
λ. Then, by definition, NX(A) is Poisson distributed with expectation
Λ(A) =

∫
A λ(x)dx < ∞ for every bounded Borel set A. Hence, α(1)(A) =

Λ(A).
To compute the second order moment measure, use the fact that the

counts in disjoint sets are independent to write, for bounded Borel sets
A, B ⊂ Rd,

µ(2)(A × B) = E [N(A){N(A ∩ B) + N(B \ A)}]
= E [{N(A ∩ B) + N(A \ B)}N(A ∩ B)] + Λ(A)Λ(B \ A)
= Λ(A ∩ B) + Λ(A ∩ B)2 + Λ(A \ B)Λ(A ∩ B) + Λ(A)Λ(B \ A)
= Λ(A ∩ B) + Λ(A ∩ B) [Λ(A ∩ B) + Λ(A \ B)] + Λ(A)Λ(B \ A)

=
∫

A

∫

B
λ(x)λ(y)dxdy +

∫

A∩B
λ(x)dx.

Since
µ(2)(A × B) = α(2)(A × B) + α(1)(A ∩ B),

the second order factorial moment measure is

α(2)(A × B) =
∫

A

∫

B
λ(x)λ(y)dxdy.

In the current context, the covariance is defined in terms of the first
two moments as follows:

Cov(NX(A), NX(B)) = µ(2)(A × B) − α(1)(A)α(1)(B).
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Definition 4.6 Let X be a point process on Rd. If the factorial moment
measure α(k) exists and admits a density in the sense that

α(k)(A1 × · · · × Ak) =
∫

A1
· · ·

∫

Ak

ρ(k)(x1, . . . , xk)dx1 · · · dxk

for all Borel sets A1, . . . , Ak, then ρ(k) is the k-th order product density,
k = 1, 2.

Intuitively speaking, ρ(k)(x1, . . . , xk)dx1 · · · dxk is the infinitesimal
probability of finding points of X at regions dx1, . . . , dxk around
x1, . . . , xk.

Example 4.6 Let X be a Poisson process on Rd with intensity func-
tion λ. Then, for x, y ∈ Rd, ρ(1)(x) = λ(x) and ρ(2)(x, y) =
λ(x)λ(y). When well-defined, the pair correlation function g(x, y) =
ρ(2)(x, y)/(ρ(1)(x)ρ(1)(y)) ≡ 1, reflecting the lack of correlation between
points of X.

4.4 STATIONARITY CONCEPTS AND PRODUCT DENSITIES

In this section, we consider estimation of the product densities of a spa-
tial point process. In order to do so, some stationarity concepts will be
needed.

Definition 4.7 A point process X on Rd is stationary if for all bounded
Borel sets A1, . . . , Ak in Rd, all n1, . . . , nk in N0 and all s ∈ Rd,

P(NX(s + A1) ≤ n1; . . . ; NX(s + Ak) ≤ nk) = P(NX(A1) ≤ n1;
. . . ; NX(Ak) ≤ nk).

In other words, the distribution of X is invariant under translations.
A fortiori, the same is true for the moment measures of X provided that
they exist. A weaker property that allows some spatial variation is the
following.

Definition 4.8 Let X be a point process on Rd for which the first and
second order factorial moment measures exist and admit a product den-
sity ρ(k), k = 1, 2. Then X is said to be second order intensity-reweighted
moment stationary if

ρ(1)(x) ≥ ρmin > 0
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is bounded away from zero and, for all s ∈ Rd, the pair correlation
function

g(x, y) = ρ(2)(x, y)
ρ(1)(x)ρ(1)(y)

satisfies the property that g(x, y) = g(x+s, y+s) for almost all x, y ∈ Rd.

In other words, for a second order intensity-reweighted moment sta-
tionary point process, the pair correlation function g(x, y) is well-defined
and a function of y−x in analogy to the same property of the covariance
function of a weakly stationary random field (cf. Definition 2.4). This
definition may be extended to point processes defined on a subset of Rd.

Example 4.7 The homogeneous Poisson process is stationary since its
fidi’s are defined in terms of d-dimensional volumes that are invariant
under translations.

In Example 4.6, we saw that the pair correlation function of a Pois-
son process is identically one, whenever well-defined. Consequently, an
inhomogeneous Poisson process whose intensity function is bounded away
from zero is second order intensity-reweighted moment stationary.

Next, let us turn to estimation and suppose that a realisation
x = {x1, . . . , xn} of a stationary point process X is observed within
a bounded Borel set W of positive volume |W |. By definition, if the first
order moment measure of X exists, then it is invariant under translations
and therefore of the form

E [NX(A)] = λ|A|

for all Borel subsets A of Rd. The scalar multiplier λ is the intensity of
X. It can be estimated by

λ̂ = NX(W )
|W | . (4.3)

Proposition 4.1 Let X be a stationary point process with intensity
λ > 0 whose factorial moment measures exist up to second order and
admit product densities. Then (4.3) is an unbiased estimator of λ. Its
variance is given by

λ

|W | + λ2

|W |2
∫

W

∫

W
(g(x, y) − 1)dxdy,

where g is the pair correlation function of X.
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Proof: The second moment of (4.3) can be written as

E
[(

NX(W )
|W |

)2]

= 1
|W |2E

⎡

⎣
∑

x∈X

∑

y∈X

1{x ∈ W ; y ∈ W}

⎤

⎦

= 1
|W |2

∫

W

∫

W
ρ(2)(x, y)dxdy + λ

|W |

by (4.2) upon splitting the double sum into tuples of different and iden-
tical points. Hence the variance of λ̂ is given by

1
|W |2

∫

W

∫

W
ρ(2)(x, y)dxdy + λ

|W | − λ2

in accordance with the claim. "

Example 4.8 Let X be a homogeneous Poisson process with intensity
λ > 0 observed in some bounded Borel set W of positive volume |W |.
Then the variance of (4.3) is given by λ/|W |. As one would expect, the
variance is a decreasing function of the volume |W |.

By Proposition 4.1, the intensity estimator has a larger variance for
point processes for which g(x, y) > 1 (x, y ∈ W ), that is, for which
the presence of a point at x increases the probability of finding a point
at y relative to a Poisson process with the same intensity. Such point
processes may be called clustered.

Point processes with pair correlation functions g < 1 are called reg-
ular and their intensity estimator has a smaller variance than that of a
Poisson process with the same intensity.

To estimate the product density ρ(2) or the pair correlation function
g, ideas similar to those that underlie the Matheron estimator (2.5) may
be used. To obtain artificial replication, we assume stationarity and, at
lag t, consider all pairs of points in the observed point pattern x that
are ‘approximately’ t apart:

ρ̂(2)(t) = 1
|B(t, ϵ)|

∑

x∈X∩W

∑ ̸=

y∈X∩W

1{y − x ∈ B(t, ϵ)}
|W ∩ Wy−x| . (4.4)

Here B(t, ϵ) is the closed ball of radius ϵ centered at t ∈ Rd and Wa =
{w + a : w ∈ W} is the set W translated over the vector a ∈ Rd. Not
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all lags t can be chosen, as W ∩ Wy−x will be empty when the distance
between x and y gets large.

Regarding the choice of the bandwidth ϵ, similar considerations as for
(2.5) apply: ϵ should be small enough for ρ(2) not to fluctuate too much
in ϵ-balls but large enough to contain a reasonable number of points.
The term 1/|W ∩ Wy−x| is an edge correction to compensate for the fact
that large lags y − x ≈ t will not be observed frequently in the bounded
window W .

For t small enough, the estimator (4.4) is approximately unbiased.
Indeed, under the stationarity assumption, by (4.2),

Eρ̂(2)(t) = 1
|B(t, ϵ)|

∫

W

∫

W

1{y − x ∈ B(t, ϵ)}
|W ∩ Wy−x| ρ(2)(x, y)dxdy

= 1
|B(t, ϵ)|

∫

W

[∫

W −x

1{z ∈ B(t, ϵ)}
|W ∩ Wz| ρ(2)(0, z)dz

]
dx.

Change the order of integration to obtain

1
|B(t, ϵ)|

∫

Rd

[∫

W ∩W−z

1
|W ∩ Wz|dx

]
1{z ∈ B(t, ϵ)}ρ(2)(0, z)dz

= 1
|B(t, ϵ)|

∫

B(t,ϵ)
ρ(2)(0, z)dz.

In summary, for small t and provided that ρ(2) does not fluctuate too
wildly in B(t, ϵ),

Eρ̂(2)(t) = 1
|B(t, ϵ)|

∫

B(t,ϵ)
ρ(2)(0, z)dz ≈ ρ(2)(0, t).

To conclude this section, a few remarks are in order. Firstly, (4.4)
is by no means the only estimator in common use; there exist many
variations on the themes of edge correction and neighbourhood selection.
Secondly, for second order intensity-reweighted moment stationary point
processes, instead of estimating ρ2, one may consider the pair correlation
function. To do so, the first order product density ρ(1) must be estimated,
for instance by

ρ̂(1)(t) =
∑

x∈X∩W

1{x ∈ B(t, ϵ)}
|B(x, ϵ) ∩ W | , t ∈ W. (4.5)

If, for example, W is open, the volume |B(x, ϵ) ∩ W | is positive for all
x ∈ X ∩W and (4.5) is well-defined. However, as there is no replication –
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artificial or otherwise – such estimators should be interpreted carefully.
In particular, based on a single pattern it is not possible to distinguish
between inhomogeneity and clustering. Anyway, the combination of (4.4)
and (4.5) yields the estimator

ĝ(t) = 1
|B(t, ϵ)|

∑

x∈X∩W

∑ ̸=

y∈X∩W

1{y − x ∈ B(t, ϵ)}
|W ∩ Wy−x|ρ̂(1)(x)ρ̂(1)(y)

(4.6)

for the pair correlation function at lag t. Bear in mind, though, that this
function is sensitive to errors in ρ̂(1).

Finally, both (4.4) and (4.5) suffer from discretisation effects. There-
fore, kernel smoothing ideas are often applied. For example, ignoring
edge effects, an alternative to (4.5) would be the estimator

1
ϵd

∑

x∈X∩W

κ
(

t − x

ϵ

)

where κ : Rd → R+ is a d-dimensional symmetric probability density
function. Of course, kernel smoothing may be combined with edge
correction.

4.5 FINITE POINT PROCESSES

In this section, consider a finite point process X on a bounded Borel
set W ⊂ Rd that is defined by means of a probability distribution for
the total number of points in combination with a family of conditional
probability densities for the locations of the points given their number.

More formally, write pn, n ∈ N0, for the probability that X consists
of n points and jn for the joint conditional probability density governing
the locations of these points. In fact, one may combine the pn and jn in
a single function

f({x1, . . . , xn}) = e|W |n!pnjn(x1, . . . , xn), x1, . . . , xn ∈ W, (4.7)
the probability density of X with respect to the distribution of a unit
rate Poisson process on W . The factor n! in the right-hand side occurs
because f is a function of unordered sets, whereas jn has ordered vectors
as its argument. The constant e|W | is simply a normalisation.

Clearly, f is defined uniquely in terms of pn and jn. The reverse is
also true. Indeed, p0 = exp(−|W |)f(∅) and, for n ∈ N, integration of
both sides of equation (4.7) yields

pn = e−|W |

n!

∫

W
· · ·

∫

W
f({u1, . . . , un})du1 · · · dun.
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Also, if pn > 0,

jn(x1, . . . , xn) = f({x1, . . . , xn})∫
W · · ·

∫
W f({u1, . . . , un})du1 · · · dun

, x1, . . . , xn ∈ W.

If pn = 0, jn may be chosen arbitrarily.

Example 4.9 Let X be a homogeneous Poisson process with intensity
λ on a bounded Borel set W of positive volume. Then the number of
points is Poisson distributed with mean λ|W | and, conditionally on the
number, the points are scattered independently and uniformly according
to Theorem 4.2. Hence

pn = e−λ|W | (λ|W |)n

n!
and jn ≡ 1/|W |n, so (4.7) reads

f({x1, . . . , xn}) = λn exp [(1 − λ)|W |]

for n ∈ N0 and xi ∈ W , i = 1, . . . , n. Similarly, for inhomogeneous
Poisson processes with intensity function λ : W → R+,

f({x1, . . . , xn}) = exp
[∫

W
(1 − λ(u))du

] n∏

i=1
λ(xi). (4.8)

It is also possible to specify the probability density f directly, as in
the following definition.

Definition 4.9 Let W ⊂ Rd be a bounded Borel set. A pairwise inter-
action process X on W is a point process whose probability density is of
the form

f(x) ∝
∏

x∈x
β(x)

∏

{u,v}⊆x
γ(u, v), x ∈ N lf(W ),

with respect to the distribution of a unit rate Poisson process on W for
some measurable function β : W → R+ and some symmetric, measurable
function γ : W × W → R+.

Example 4.10 A pairwise interaction process with

γ(u, v) =
{

γ0 if ||u − v|| ≤ R
1 if ||u − v|| > R
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for γ0 ∈ [0, 1] is called a Strauss process. Setting γ0 = 0, one obtains
the hard core process in which no point is allowed to fall within distance
R of another point. For γ0 = 1, f reduces to the probability density of
a Poisson process. For intermediate values of γ0, points tend to avoid
lying closer than R together, the tendency being stronger for smaller
values of γ0.

Example 4.11 The Lennard–Jones interaction function is defined as

γ(u, v) = exp
[

α
( 1

||u − v||

)6
− β

( 1
||u − v||

)12]

for α, β > 0. In this model for interacting particles in a liquid or dense
gas, the particles avoid coming very close to one another but cluster at
larger scales.

It is important to realise that not all choices of β and γ in Defini-
tion 4.9 give rise to a function f that can be normalised to a probability
density, that is, for which

∞∑

n=0

e−|W |

n!

∫

W
· · ·

∫

W

n∏

i=1
β(xi)

∏

i<j

γ(xi, xj)dx1 · · · dxn < ∞.

A sufficient condition is stated in the next definition.

Definition 4.10 A function f : N lf(Rd) → R+ is said to be locally
stable if there exists some β > 0 such that

f({x1, . . . , xn, xn+1}) ≤ βf({x1, . . . , xn})

for all {x1, . . . , xn} ⊂ Rd, n ∈ N0, and all xn+1 ∈ Rd.

Proposition 4.2 Suppose that the function f : N lf(Rd) → R+ is locally
stable. Then f is hereditary in the sense that f(x) > 0 implies that
f(y) > 0 for all y ⊆ x. If f(∅) ̸= 0, f can be normalised into a probability
density on bounded Borel sets W ⊂ Rd.

Proof: Suppose that f(x) > 0 and that y is a strict subset of x. Let
{z1, . . . , zm} be the collection of points in x that do not belong to y and
write β > 0 for the local stability constant. If f(y) would be equal to
zero, also

f(y ∪ {z1}) ≤ βf(y) = 0.
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Similarly, f(y ∪ {z1, z2}) ≤ βf(y ∪ {z1}) = 0 and, proceeding in this
fashion, f(x) = 0 in contradiction with the assumption. Consequently
f(y) > 0 so f is hereditary.

To show that f may be normalised, we claim that
∫

W
· · ·

∫

W
f(x1, . . . , xn)dx1 · · · dxn ≤ (β|W |)nf(∅).

Then
∞∑

n=0

e−|W |

n!

∫

W
· · ·

∫

W
f({x1, . . . , xn})dx1 · · · dxn

≤ f(∅)
∞∑

n=0

e−|W |

n! βn|W |n = f(∅) exp [(β − 1)|W |] ,

which can be scaled to one provided f(∅) ̸= 0.
The claim can be proved by induction. Obviously f(∅) ≤ β0|W |0f(∅).

Assume that the claim is true for point patterns having at most n ≥ 0
points. Then local stability implies that

∫

W n+1
f(x1, . . . , xn, xn+1)dx1 · · · dxndxn+1

≤
∫

W n+1
βf(x1, . . . , xn)dx1 · · · dxndxn+1,

which, by the induction assumption, is bounded from above by
∫

W
ββn|W |nf(∅)dxn+1 = βn+1|W |n+1f(∅).

Therefore, the claim holds for patterns with at most n + 1 points too,
and the proof is complete. "

Example 4.12 The Strauss process introduced in Example 4.10 is
locally stable whenever β(·) ≤ B is bounded. To see this, let n ∈ N0
and {x1, . . . , xn} ⊂ W . First, suppose that β(xi) > 0 for i = 1, . . . , n
and that γ0 ∈ (0, 1]. Then f({x1, . . . , xn}) > 0 and

f({x1, . . . , xn, xn+1})
f({x1, . . . , xn}) = β(xn+1)γSR(xn+1|{x1,...,xn})

0 ≤ β(xn+1) ≤ B

(4.9)
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where SR(xn+1|{x1, . . . , xn}) = ∑n
i=1 1{||xi − xn+1|| ≤ R}. Secondly,

suppose that β(xi) > 0 for i = 1, . . . , n and γ0 = 0. If f({x1, . . . , xn})= 0,
there is a pair of points, say xi and xj, that violate the hard core
condition. Since these points belong to the set {x1, . . . , xn+1} too,
f({x1, . . . , xn+1}) = 0 as well. If f({x1, . . . , xn}) > 0, (4.9) applies.
Finally, if β(xi) = 0 for some i = 1, . . . , n, then

0 = f({x1, . . . , xn, xn+1}) ≤ Bf({x1, . . . , xn}) = 0.

4.6 THE PAPANGELOU CONDITIONAL INTENSITY

The purpose of this section is to prove an analogue of Besag’s factori-
sation theorem for point processes. To do so, we need to describe the
conditional intensity of finding a point of the process at some fixed
location given the pattern around it.

Definition 4.11 Let X be a finite point process on a bounded Borel set
W ⊂ Rd whose distribution is defined by a probability density f with
respect to the distribution of a unit rate Poisson process and let x ⊂ W
be a finite point pattern. Then the Papangelou conditional intensity at
u ∈ W given x is defined as

λ(u|x) = f(x ∪ {u})
f(x)

for u ̸∈ x provided f(x) ̸= 0. Set λ(u|x) = 0 otherwise.

If the probability density of X is locally stable, then the Papangelou
conditional intensity is bounded.

Example 4.13 For an inhomogeneous Poisson process with density
(4.8),

λ(u|x) = λ(u)
whenever u ̸∈ x, regardless of x. The Papangelou conditional intensity
of the Strauss process considered in Examples 4.10 and 4.12 is given by

λ(u|x) = β(u)γSR(u|x)
0 , u ̸∈ x,

and depends only on points in x that are at most a distance R removed
from u.
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We are now ready to state the analogue of Theorem 3.1. As a corol-
lary, the probability density of a hereditary point process that is abso-
lutely continuous with respect to the distribution of a unit rate Poisson
process is uniquely determined by the Papangelou conditional intensity.

Theorem 4.3 Let X be a finite hereditary point process on a bounded
Borel set W with probability density f with respect to the distribution of
a unit rate Poisson process on W . Then

f({x1, . . . , xn}) = f(∅)
n∏

i=1
λ(xi|{x1, . . . , xi−1})

and the product does not depend on the labelling of the points x1, . . . , xn ∈
W , n ∈ N0.

Proof: Consider a point pattern x = {x1, . . . , xn} of points and fix a
labelling of the points arbitrarily. If f({x1, . . . , xn}) > 0, the assumption
that X is hereditary implies that f({x1, . . . , xi}) > 0 for all i < n and
therefore

f(∅)
n∏

i=1
λ(xi|{x1, . . . , xi−1}) = f(∅)

n∏

i=1

f({x1, . . . , xi})
f({x1, . . . , xi−1})

= f({x1, . . . , xn}).

If f({x1, . . . , xn}) = 0, order the points according to the labelling and
let in be the largest i < n such that f({x1, . . . , xi}) > 0. By definition,
λ(xin+1|{x1, . . . , xin}) = 0 and the claimed equality holds. "

The condition that f is hereditary is needed as demonstrated by the
following example.

Example 4.14 Let W be a bounded Borel set with positive volume
|W | and consider the binomial point process X = {X1} introduced in
Example 4.1, where X1 is uniformly distributed on W . Clearly X is not
hereditary. Now,

f(∅)
n∏

i=1
λ(xi|{x1, . . . , xi−1}) ≡ 0

for all finite point configurations as f(∅) = 0. On the other hand, for
any x ∈ W , f({x}) = e|W |/|W | > 0.
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4.7 MARKOV POINT PROCESSES

As we saw in the previous section, the Papangelou conditional intensity
(cf. Definition 4.11) plays a similar role to the local characteristics for
random fields. This observation suggests that the Papangelou conditional
intensity may be used to define a notion of Markovianity in full analogy
to Definition 3.6.

Definition 4.12 Let ∼ be a symmetric reflexive relation on Rd and de-
fine the boundary of A ⊆ Rd by ∂(A) = {s ∈ Rd \A : s ∼ a for some a ∈
A}. A point process defined by a probability density f with respect to
the distribution of a unit rate Poisson process on a bounded Borel set
W ⊂ Rd is a Markov point process with respect to ∼ if for all finite
configurations x in W such that f(x) > 0,

(a) f(y) > 0 for all y ⊆ x;

(b) for all u ∈ W , u ̸∈ x, λ(u|x) depends only on u and ∂({u}) ∩ x.

Two points x, y ∈ W that are related, x ∼ y, will be called neigh-
bours.

Recalling that a clique is a set whose elements are pairwise neigh-
bours, the analogue of Theorem 3.4 in the current context reads as
follows.

Theorem 4.4 (Hammersley–Clifford) Let X be a finite point pro-
cess on a bounded Borel set W ⊂ Rd whose distribution is defined by a
probability density f with respect to the distribution of a unit rate Pois-
son process. Let ∼ be a symmetric reflexive relation on W . Then X is
a Markov point process with respect to ∼ if and only if f can be written
as a product over ∼-cliques, that is,

f(x) =
∏

cliques y⊆x
ϕ(y)

for some measurable non-negative interaction function ϕ defined on finite
point configurations.

Proof: Suppose that for all x, f(x) is defined by f(x) =∏
cliques y⊆x ϕ(y) for some non-negative function ϕ and that f is a prob-

ability density, that is, integrates to unity. In order to show that f is
Markov, we need to check conditions (a) and (b) of definition 4.12. To
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verify (a), suppose that f(x) ̸= 0. Then ϕ(y) ̸= 0 for all cliques y ⊆ x.
If z ⊆ x, a fortiori ϕ(y) ̸= 0 for any clique y ⊆ z, and therefore

f(z) =
∏

cliques y⊆z
ϕ(y) > 0.

As for (b), let x be a finite point configuration such that f(x) > 0, and
take u ̸∈ x. Then, upon extending ϕ by setting ϕ(z) = 1 whenever z is
no clique,

f(x ∪ {u})
f(x) =

∏
cliques y⊆x ϕ(y) ∏

cliques y⊆x ϕ(y ∪ {u})
∏

cliques y⊆x ϕ(y)
=

∏

cliques y⊆x
ϕ(y ∪ {u}).

Since ϕ(y ∪ {u}) = 1 whenever y ∪ {u} is no clique, the conditional
intensity λ(u|x) depends only on u and its neighbours in x.

Conversely, suppose f is a Markov density. Define an interaction
function ϕ inductively by

ϕ(∅) = f(∅)
ϕ(x) = 1 if x is not a clique
ϕ(x) = f(x)∏

y:x̸=y⊂x ϕ(y) if x is a clique

with the convention 0/0 = 0. Note that if ∏
y:x̸=y⊂x ϕ(y) = 0, necessarily

f(y) = 0 for some y, and therefore f(x) = 0. Hence ϕ is well-defined.
To show that f has the required product form, we use induction on the
number of points. By definition the factorisation holds for the empty set.
Assume that the factorisation holds for configurations with up to n − 1
points and consider a pattern x of cardinality n ≥ 1. We will distinguish
three cases.

First, suppose that x is no clique and that f(x) = 0. Then there exist
v, w ∈ x such that v ̸∼ w. Furthermore, assume ∏

y:x̸=y⊂x ϕ(y) > 0. By
the induction hypothesis, f(y) > 0 for all proper subsets y of x; hence,
with z = x \ {v, w},

0 = f(x)
f(z ∪ {v}) f(z ∪ {v}) = f(z ∪ {w})

f(z) f(z ∪ {v}) > 0

as w ̸∼ v. The assumption ∏
y:x̸=y⊂x ϕ(y) > 0 leads to a contradiction;

hence we conclude that ∏
y:x̸=y⊂x ϕ(y) = 0 = f(x).
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Next, let x be a clique for which f(x) = 0. Then ϕ(x) = 0 by
definition and hence f(x) = ∏

y⊆x ϕ(y).
Finally, consider the case f(x) > 0. If x is a clique, f(x) =

ϕ(x) ∏
y:x̸=y⊂x ϕ(y) = ∏

y⊆x ϕ(y). If x is no clique, write x = z ∪ {v, w}
for some v ̸∼ w. Since f is a Markov density, f(z) > 0, f(z ∪ {v}) > 0
and therefore

f(x) = f(z ∪ {v, w})
f(z ∪ {v}) f(z ∪ {v}) = f(z ∪ {w})

f(z) f(z ∪ {v})

=
∏

y⊆z
ϕ(y ∪ {w})

∏

y⊆z∪{v}
ϕ(y) =

∏

cliques y⊆x

ϕ(y),

using the fact that the interaction function takes the value one for non-
cliques. In particular, ϕ(y) = 1 for any y containing both v and w. "

The Hammersley–Clifford theorem is useful for breaking up a high-
dimensional joint distribution into manageable clique interaction func-
tions. Some care is needed, though, as a particular choice of interaction
functions must result in a density f that is integrable and may be nor-
malised into a probability density. Proposition 4.2 provides one sufficient
condition. Alternatively, imposing a hard core as in Example 4.10 also
guarantees that the number of points is almost surely bounded.

Example 4.15 The Strauss process of Example 4.10 is a Markov point
process with respect to the fixed range relation

u ∼ v ⇔ ||u − v|| ≤ R, u, v ∈ Rd.

Its interaction function is equal to

ϕ({u}) = β(u)
ϕ({u, v}) = γ0 if u ∼ v

For all other patterns x except the empty set, ϕ(x) = 1. The value of
ϕ(∅) serves to normalise the Strauss function into a probability density.

4.8 LIKELIHOOD INFERENCE FOR POISSON PROCESSES

Suppose that a realisation x = {x1, . . . , xn} of a Poisson process X
is observed in some bounded Borel set W ⊂ Rd and that the abun-
dance of points depends on real-valued covariate functions Cj : W → R,
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j = 1, . . . , p, p ∈ N. For specificity, assume that the intensity function
satisfies a log-linear regression model

λ(u) = λβ(u) = exp

⎡

⎣β0 +
p∑

j=1
βjCj(u)

⎤

⎦ , u ∈ W.

Then the log likelihood function L(β; x) reads

L(β; x) = nβ0 +
p∑

j=1

n∑

i=1
βjCj(xi) − eβ0

∫

W
exp

⎡

⎣
p∑

j=1
βjCj(u)

⎤

⎦ du.

The partial derivatives with respect to β yield the score equations
∫

W
Cj(u)λβ(u)du =

n∑

i=1
Cj(xi) (4.10)

for j = 0, . . . , p under the convention that C0 ≡ 1. The Hessian matrix
of second order partial derivatives is

H(β) = −
∫

W
C(u)C(u)′λβ(u)du,

where C(u) ∈ Rp+1 is the (p + 1)-vector (1, C1(u), . . . , Cp(u))′. To be
precise, its ij-th entry is equal to −

∫
W Ci(u)Cj(u)λβ(u)du. The Hes-

sian matrix does not depend on the data pattern. Therefore the Fisher
information can be written as

I(β) = −H(β) =
∫

W
C(u)C(u)′λβ(u)du.

In conclusion: any β̂ that solves the score equations (4.10) and for
which H(β̂) is negative definite is a local maximum of the log likeli-
hood function L(β; x). Little is known about the properties of β̂. Under
suitable regularity conditions1, it can be shown that when W grows
to Rd, β̂ tends to a multivariate normal distribution with mean β and
covariance matrix I(β)−1. For this reason, error estimates in statisti-
cal software packages are based on the estimated covariance matrix
(I(β̂))−1 = (−H(β̂))−1 with numerical approximation of the integral
involved.

1Kutoyants (1998). Statistical Inference for Spatial Poisson Processes.
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The maximum likelihood estimator may be used to test whether the
observations depend significantly on some covariate. Writing f for the
density function with respect to the distribution of a unit rate Poisson
process, the likelihood ratio test statistic for covariate function Cj is
defined by

Λ(X) = sup{f(X; β) : βj = 0}
f(X; β̂)

.

Under the null hypothesis of no influence of the j-th covariate, i.e. βj = 0,
the transformed likelihood ratio test statistic −2 log Λ(X) is approxi-
mately χ2-distributed with one degree of freedom. Similarly, under the
composite null hypothesis that X is a homogeneous Poisson process, or,
in other words, that βj = 0 for all j = 1, . . . , p, the likelihood ratio test
statistic is

Λ(X) = sup{f(X; β) : β1 = · · · = βp = 0}
f(X; β̂)

and −2 log Λ(X) is approximately χ2-distributed with p degrees of
freedom.

4.9 INFERENCE FOR FINITE POINT PROCESSES

From an inference point of view, a Poisson process is very convenient
to work with because its likelihood is available in closed form. For most
other models, this is not the case.

As an illustration, consider the Strauss process X of Example 4.10.
Suppose that a realisation x = {x1, . . . , xn} is observed in some bounded
Borel set W and that the first order interaction function β depends on
real-valued covariate functions Cj : W → R, j = 1, . . . , p, p ∈ N, via a
log-linear regression

log β(u) = β0 +
p∑

j=1
βjCj(u), u ∈ W.

Write
S(x) =

∑

{u,v}⊆x
1{0 < ||u − v|| ≤ R}

for the number of R-close pairs in x. Then the log likelihood function is

L(β, γ0; x) = S(x) log γ0 − log Z(β, γ0) +
n∑

i=1

⎛

⎝β0 +
p∑

j=1
βjCj(xi)

⎞

⎠ .
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The normalising constant Z(β, γ0) depends on the parameter vector θ =
(β, γ0) with β ∈ Rp+1 and γ0 ∈ [0, 1], and cannot be evaluated explicitly.
Consequently, maximum likelihood estimation is not as straightforward
as it was for Poisson models.

In full analogy to similar problems in the context of the areal unit
models discussed in Chapter 3, one may proceed by a pseudo-likelihood
or Monte Carlo approach. To start with the former, replace the intensity
function in (4.8) with the Papangelou conditional intensity to obtain the
log pseudo-likelihood function

PL(θ; x) =
n∑

i=1
log λθ(xi|x \ {xi}) +

∫

W
(1 − λθ(u|x)) du.

For the Strauss process, it reduces to

n∑

i=1

⎛

⎝β0 +
p∑

j=1
βjCj(xi) + SR(xi|x \ {xi}) log γ0

⎞

⎠+
∫

W

(
1 − β(u)γSR(u|x)

0
)

du

where, as before, for u ̸∈ x,

SR(u|x) =
∑

xi∈x
1{||u − xi|| ≤ R}.

The log pseudo-likelihood function is optimised numerically over the
parameter θ to obtain θ̂.

Alternatively, Monte Carlo ideas may be used. To do so, note that
the Strauss density is of the general form

f(x; θ) = 1
Z(θ)g(x; θ)

where the unnormalised density

g(x; θ) = γS(x)
0

∏

xi∈x
β(xi)

is known explicitly and Z(θ) normalises g to integrate to unity. For such
models, the likelihood ratio with respect to θ0 can be written as

f(x; θ)
f(x; θ0) = g(x; θ)

g(x; θ0)/
Z(θ)
Z(θ0) .

Since
Z(θ)
Z(θ0) = Eθ0

[
g(X; θ)
g(X; θ0)

]
,
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the log likelihood ratio can be approximated by the Monte Carlo log
likelihood ratio

log
[

g(x; θ)
g(x; θ0)

]
− log

⎡

⎣ 1
N

N∑

j=1

g(Xj ; θ)
g(Xj ; θ0)

⎤

⎦ .

An analogue of Theorem 3.5 holds for the important special case that f
is the unnormalised density of an exponential family.

With respect to the precision of maximum likelihood estimators and
their approximations, similar remarks as in Chapter 3 apply. When the
window W grows to Rd, there may not be a unique limiting point process
defined on Rd whose conditional specification on W coincides with the
given one and asymptotic normality of estimators has been proved under
strong ergodicity conditions only.

The Monte Carlo approach requires samples Xj from a Strauss pro-
cess under the reference parameter vector θ0. In principle, such samples
could be obtained by a Metropolis–Hastings method. In the current con-
text, however, the state space N lf(W ) is the union of Euclidean spaces
W n of variable dimension. Therefore, the proposal distribution must be
able to change the total number of points, perhaps in addition to chang-
ing the location of an existing point. This can be achieved by ‘birth’
and ‘death’ proposals as follows. In a birth proposal, add a new point
u to the current pattern x uniformly on W ; for deaths select one of the
current points with equal probability and delete it. Then, the accep-
tance probability for, e.g., the birth transition from x = {x1, . . . , xn} to
x ∪ {u} is

min
{

1, λ(u|x) pd|W |
pb(n + 1)

}

where pb, pd ∈ (0, 1) are the selection probabilities for, respectively, birth
and death proposals.
Theorem 4.5 Let X be a finite point process on a bounded Borel set
W ⊂ Rd of positive volume whose distribution is defined by a probability
density f with respect to the distribution of a unit rate Poisson process.
If pb = 1−pd ∈ (0, 1) and the probability density f of X is locally stable,
the Metropolis–Hastings algorithm on the support Df = {x ∈ N lf : f(x)
> 0} is f -irreducible and f defines an invariant measure.
Proof: First, write A(x, y) for the acceptance probability for a transi-
tion from x to y and consider the detailed balance equation

f(x) pb

|W |A(x, x∪{u})= f(x∪{u}) pd

n(x) + 1A(x∪{u}, x), x ∈ Df , u ∈ W.
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If x ∪ {u} ̸∈ Df , then A(x ∪ {u}, x) = 0. Otherwise,

A(x, x ∪ {u})
A(x ∪ {u}, x) = λ(u|x)pd|W |

pb(n(x) + 1) .

Since the Metropolis–Hastings acceptance probabilities satisfy this equa-
tion, indeed f defines an invariant measure.

Next, we show that the Metropolis–Hastings chain is φ-irreducible for
the probability measure φ that places all its mass on the empty pattern.
To do so, note that the probability of accepting a death proposal from
x is at least

pb

(1 − pb)β|W | > 0

where the local stability constant β is chosen large enough for the lower
bound to be less than one. The death proposal probability is 1−pb so, if
the current state x contains m points, the empty pattern can be reached
in m steps with probability

P m(x, {∅}) ≥ (1 − pb)m
(

pb

(1 − pb)β|W |

)m

=
(

pb

β|W |

)m

> 0.

Hence, the Metropolis–Hastings algorithm is φ-irreducible. Finally, re-
call from Markov chain theory that if a chain is φ-irreducible and π is
invariant, then the chain is also π-irreducible2. "

Since self-transitions occur with positive probability, the Metropolis–
Hastings chain is aperiodic. An appeal to Theorem 3.6 leads us to con-
clude that it converges in total variation to the distribution of X from
almost all initial states in Df .

4.10 COX PROCESSES

Not all point process distributions are conveniently expressed by their
density with respect to the distribution of a unit rate Poisson process.
For such models, moment methods may be used to estimate the param-
eters. In this section, we consider two specific models for clustered point
patterns in more detail.

2Meyn and Tweedie (2009). Markov Chains and Stochastic Stability.
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4.10.1 Cluster processes

A cluster process is defined in two steps. In the first step, sample a ‘par-
ent’ point process. Secondly, conditionally on the parents, let each of
them generate a new point process of ‘daughters’ and take the superpo-
sition of all daughters.

The special case in which the parents form a homogeneous Poisson
process with intensity λp and in which a Poisson number of daughters
(with mean λc) are scattered independently around their parent accord-
ing to a probability density f is known as a Neyman–Scott Cox process.

Definition 4.13 Let X be a homogeneous Poisson process on Rd with
intensity λp > 0. For x ∈ Rd, let Zx be an inhomogeneous Poisson
process with intensity function λcf(· − x) for some probability density f
on Rd and λc > 0 such that

∫

Rd

(
1 − exp

[
−λc

∫

A
f(y − x)dy

])
dx < ∞

for every bounded Borel set A ⊂ Rd. Then ∪x∈XZx is a Neyman–Scott
Cox process.

Note that the integrand is the probability that a parent at x places
at least one point in A. The condition is needed to ensure that the re-
sulting process is locally finite. For example, if each parent were to place
its daughters in some neighbourhood A of the origin, the result would
be countably many points in A. As an aside, Definition 4.13 can be ex-
tended to allow parents to be distributed according to an inhomogeneous
Poisson process.

Theorem 4.6 The intensity of a Neyman–Scott Cox process is λpλc and
the pair correlation function is given by

g(x, y) = 1 + 1
λp

∫

Rd
f(x − z)f(y − z)dz

for x, y ∈ Rd.

Since g(x, y) ≥ 1, a Neyman–Scott Cox process indeed models
aggregation.
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Proof: Conditionally on the parent process X, since the superposition
of independent Poisson processes is a Poisson process, the total offspring
form a Poisson process. Its intensity function is

λ(y) = λc

∑

x∈X

f(y − x), y ∈ Rd.

Similarly, conditionally on X, the second order product density ρ(2)(y, z),
y, z ∈ Rd, is given by

λ(y)λ(z) = λ2
c

∑

x1∈X

∑

x2∈X

f(y − x1)f(z − x2)

= λ2
c

∑

x1∈X

∑ ̸=

x2∈X

f(y − x1)f(z − x2) + λ2
c

∑

x1∈X

f(y − x1)f(z − x1).

To obtain the product densities, take the expectation with respect
to the distribution of X aided by (4.2). Doing so, the intensity reads

λcλp

∫

Rd
f(y − x)dx = λcλp.

Similarly, the second order product density is

λ2
cλ2

p

∫

Rd

∫

Rd
f(y − x1)f(z − x2)dx1dx2 + λ2

cλp

∫

Rd
f(y − x1)f(z − x1)dx1

which reduces to

λ2
c

(
λ2

p + λp

∫

Rd
f(y − x1)f(z − x1)dx1

)
.

Finally, the pair correlation function is as claimed. "

Example 4.16 A planar modified Thomas process is a Neyman–Scott
Cox process in which the daughters are located according to a normal
distribution, that is,

f(x) = 1
2πσ2 exp

[
− 1

2σ2 ||x||2
]

for x ∈ R2. Then,
∫

R2
f(x−z)f(y−z)dz = 1

4π2σ4

∫

R2
exp

[
− 1

2σ2 (||x − z||2 + ||y − z||2)
]

dz.
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Now, ∫ ∞

−∞
exp

[
− 1

2σ2 ((x1 − z)2 + (y1 − z)2)
]

dz =

exp
[
− 1

2σ2 (x2
1 + y2

1) + 1
4σ2 (x1 + y1)2

]∫ ∞

−∞
exp

[

− 1
σ2

(
z − x1 + y1

2

)2]

dz.

The first term above is equal to exp
[
− 1

4σ2 (x1 − y1)2]
, the integral is

(2πσ2/2)1/2. Hence, returning to two dimensions,
∫

f(x − z)f(y − z)dz = 1
4π2σ4 πσ2 exp

[
− 1

4σ2 ||x − y||2
]

and the pair correlation function satisfies

g(x, y) = 1 + 1
λp

1
4πσ2 exp

[
− 1

4σ2 ||x − y||2
]

.

4.10.2 Log-Gaussian Cox processes

A log-Gaussian Cox process, like a cluster process, is defined in two steps.
In the first step, specify a Gaussian random field (Xt)t∈T for some Borel
set T ⊆ Rd as in Section 2.2 and define a random Borel measure Λ by

Λ(A) =
∫

A
exp(Xt)dt

for A ⊆ T . In step two, conditional on Xt, generate an inhomogeneous
Poisson process with intensity function exp(Xt). For the above definition
to make sense, it is necessary that exp(Xt) is almost surely integrable
on bounded Borel sets. It is sufficient to assume that (Xt)t∈T admits a
continuous version, cf. Theorem 2.1 and the surrounding discussion.

Theorem 4.7 For a log-Gaussian Cox process defined by the Gaussian
random field (Xt)t∈Rd with mean function m(·) and covariance function
ρ(·, ·),

ρ(1)(t) = exp [m(t) + ρ(t, t)/2] , t ∈ Rd.

The pair correlation function is given by

g(t, s) = exp [ρ(t, s)] , t, s ∈ Rd.

Proof: Conditional on the random field, the first and second order
product densities read, respectively, eXt and eXteXs . Hence

ρ(1)(t) = E exp [Xt] ;
ρ(2)(t, s) = E exp [Xt + Xs] .
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Recall that the moment generating function of a normally distributed
random variable Z with mean µ and variance σ2 is given by

EekZ = exp
[

kµ + k2

2 σ2
]

, k ∈ R.

Therefore,
E exp [Xt] = exp

[
m(t) + 1

2ρ(t, t)
]

.

Similarly, as Xt +Xs is normally distributed with mean m(t)+m(s) and
variance ρ(t, t) + ρ(s, s) + 2ρ(t, s),

E exp [Xt + Xs] = exp
[
m(t) + m(s) + 1

2(ρ(t, t) + ρ(s, s) + 2ρ(t, s))
]

.

The proof is complete upon writing

g(t, s) = ρ(2)(t, s)
ρ(1)(t)ρ(1)(s) = eρ(t,s).

"

4.10.3 Minimum contrast estimation

For point processes that are not defined by means of a probability den-
sity, maximum likelihood estimation cannot be used. Likewise, the Pa-
pangelou conditional intensity, being defined as a ratio of probability
densities, is not available in closed form in such cases, ruling out the
pseudo-likelihood method.

On the other hand, for Cox models the product densities have a
simple form and can be used for estimation purposes. More precisely,
the idea is to look for parameters that minimise the difference between
the theoretical pair correlation function, say, and an estimator of the
same function based on the data.

Definition 4.14 Let X be a second order intensity-reweighted moment
stationary point process on Rd that is observed in the bounded Borel set
W ⊂ Rd. Suppose that the pair correlation function g(·; θ) : (Rd)2 → R
depends on a parameter θ and is rotation-invariant in the sense that
g(x, y; θ) = g(||x − y||; θ) is a function of the norm ||x − y||.
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A minimum contrast estimator of the model parameter vector θ ∈ Rp

minimises the integrated squared error
∫ t1

t0
|ĝ(r) − g(r; θ)|2dr,

where ĝ is an estimator of g(r; θ) and 0 < t0 < t1.
Of course, the integrated squared error may be replaced by the in-

tegrated absolute error, by the maximal absolute error or by weighted
versions thereof.

The selection of t0 and t1 is an art. As a general rule of thumb, t0
may be chosen around the minimal distance between points. The choice
of t1 tends to be less critical as both ĝ(r) and g(r; θ) will be close to
one at large distances. Regarding ĝ(r), since for rotation-invariant pair
correlation functions g in the plane, with slight abuse of notation,

g(r) = 1
2π

∫ 2π

0
g(r cos φ, r sin φ)dφ,

a rotational average of (4.6) would serve to estimate g(r), r > 0.
Example 4.17 Let X be a log-Gaussian Cox process defined by a Gaus-
sian random field with Gaussian covariance function

ρ(x, y) = σ2 exp
[
−β||x − y||2

]
, x, y ∈ Rd,

for σ2 > 0 and β > 0. Note that ρ is a function of ||x − y||. By Theo-
rem 4.7, X has rotation-invariant pair correlation function

g(r) = exp
[
σ2e−βr2

]
, r > 0,

so the minimum contrast estimator minimises
∫ t1

t0

(
exp

[
σ2e−βr2

]
− ĝ(r)

)2
dr

numerically over β > 0 and σ2 > 0. It is worth noticing that g(r) ≥ 1;
that is, X is clustered. Furthermore, as a function of the interpoint dis-
tance r, g(·) is decreasing. In other words, as points lie further apart,
they influence each other less.

In closing, it should be emphasised that the minimum contrast idea
applies equally to other summary statistics such as the empty space func-
tion

F (r) = P(X ∩ B(0, r) ̸= ∅), r ≥ 0,

based on the void probability of closed balls B(0, r) centred at the origin.
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4.11 HIERARCHICAL MODELLING

In the previous section, we met Cox processes and discussed the min-
imum contrast method for estimating their parameters. However, from
the perspective outlined in Section 3.7, one may also be interested in
estimating the ‘process’, that is, the driving random intensity. For ex-
ample for a Neyman–Scott Cox process, the random intensity takes the
form

λc

∑

x∈X

f(y − x), y ∈ Rd.

Here, X is the point process of parents, λc > 0 is the mean number
of daughters per parent and f(· − x) is the probability density for the
daughter locations relative to their parent at x. Hence, estimating the
process amounts to estimating X.

In practice, there is sampling bias in that the offspring process is
observed within some bounded window W . Also, there may be noise in
the sense of points that cannot be regarded as offspring, for example
because they are far away from the parents. We model the ensemble of
noise points by means of a homogeneous Poisson process with intensity
ϵ > 0, independently of the cluster process. With these assumptions,
given parents X = x, the forward model is a Poisson process on W with
intensity function

λx(y) = ϵ + λc

∑

x∈x
f(y − x) (4.11)

for y ∈ W .
To complete a hierarchical model, specify a prior distribution pX(x)

on the parent point process, for example a hard core or Strauss process to
avoid ‘over-fitting’. After observing y = {y1, . . . , ym}, inference is based
on the posterior probability density

f(x|y) = c(y)pX(x) exp
[∫

W
(1 − λx(y))dy

] m∏

j=1
λx(yj) (4.12)

with respect to the distribution of a unit rate Poisson process on the par-
ent space. Provided that f(x|y) is locally stable, realisations of the par-
ent point process can be obtained by the Metropolis–Hastings method.

Proposition 4.3 Consider the posterior probability density (4.12). If
the prior pX is hereditary, so is the posterior. If the scatter density f(y−
x) is uniformly bounded in both arguments x and y and pX is locally
stable, so is the posterior.
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Proof: To show that the posterior is hereditary, suppose that f(x|y) >
0 for some x and consider a subset x′ ⊆ x. Since λx′(yj) ≥ ϵ > 0 for
all j = 1, . . . , m, f(x′|y) can only take the value zero if pX(x′) = 0. But
this would contradict the assumption that pX is hereditary.

For local stability, note that the posterior Papangelou conditional
intensity f(x ∪ {u}|y)/f(x|y) is given by

pX(x ∪ {u})
pX(x) exp

[
−λc

∫

W
f(y − u)dy

] m∏

j=1

[

1 + λcf(yj − u)
λx(yj)

]

for all u ̸∈ x and pX(x) > 0. Now, since pX is locally stable, there exists
some β > 0 such that pX(x ∪ {u})/pX(x) ≤ β. Moreover, the exponen-
tial term exp[−λc

∫
f(· − u)] is bounded by one and, since f(yj − u) is

uniformly bounded by, say, F ,
m∏

j=1

[

1 + λcf(yj − u)
λx(yj)

]

≤
(

1 + λcF

ϵ

)m

.

In summary, the posterior Papangelou conditional intensity is bounded.
"

Figure 4.1 Cluster detection for a pattern of 62 redwood seedlings. Data
(dots) and realisation from the posterior distribution of cluster centres
(grey squares). The radius of the circles around the cluster centres is
Rc = 0.061.

As an illustration, consider the mapped pattern consisting of 62 red-
wood seedlings in a rectangle with sides of approximately 23 metres
renormalised to the unit square that is displayed in Figure 4.1. It is be-
lieved that the seedlings are clustered around the stumps of felled trees.
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To reconstruct these stumps, let us adopt model (4.11) with a uniform
scatter density f supported in a ball of radius Rc. This density is in-
variant under rotations with respect to the centre of the ball, and, by
Theorem 4.6, the pair correlation function g(x, y) = g(||y − x||) depends
only on the distance ||y − x|| between its arguments. The radius Rc

may be estimated by the minimum contrast method. For the summary
statistic log K(t), where

K(t) = 2π
∫ t

0
rg(r)dr

is the integrated pair correlation function g over a ball of radius t > 0,
and the discrepancy measured by integrated absolute error, we obtain
Rc = 0.061.

For the prior, we choose the hard core model of Example 4.10 with
parameters β ≡ 1 and R = 0.03. The forward model parameters may be
estimated by Monte Carlo maximum likelihood, resulting in ϵ̂ = 19.65
and λ̂c = 4.14. Having all ingredients at hand, realisations from the
posterior distribution (4.12) of the stumps can be generated. A typical
one is shown in Figure 4.1.

We conclude this section with a few remarks on log-Gaussian Cox
processes. Recall that such a Cox process is defined by a random Borel
measure of the form

Λ(A) =
∫

A
exp(Xt)dt

for some Gaussian random field (Xt)t∈Rd for which the integral is well-
defined. Based on an observation y of the Cox process in some bounded
Borel set W ⊂ Rd, it is possible to write down an expression for the
posterior finite dimensional distributions. Indeed, given y, Bayes’ rule
implies that the conditional joint probability density of (Xt1 , . . . , Xtn)
at (xt1 , . . . , xtn) is proportional to

E

⎡

⎣exp(−Λ(W ))
m∏

j=1
Λ(yj)|Xt1 = xt1 , . . . , Xtn = xtn

⎤

⎦ f(xt1 , . . . , xtn),

where f(xt1 , . . . , xtn) is a Gaussian probability density. However, the
expression above is not tractable. A further complication is that Λ(W )
is an integral which must be discretised. Hence, advanced Monte Carlo
methods are called for that fall beyond the scope of this book.
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4.12 WORKED EXAMPLES WITH R

The package spatstat: Spatial point pattern analysis, model-fitting, sim-
ulation, tests provides a large toolbox for working with planar point
patterns. The package is maintained by A. Baddeley. An up-to-date list
of contributors and a reference manual can be found on

https://CRAN.R-project.org/package=spatstat.
The analyses reported here were carried out using version 1.54.0.

Figure 4.2 Realisation of a binomial point process with 100 points in the
unit square [0, 1]2.

A realisation from a binomial point process can be obtained by the
script
X <- runifpoint(n=100)
plot(X, main="", pch=19)

A typical result is shown in Figure 4.2.
As we saw in Section 4.2, the distribution of a Poisson process is

completely specified by its intensity function. For example,

λ(x, y) = 250x, (x, y) ∈ [0, 1]2,

models a trend in the horizontal direction,

λ(x, y) = 1000
(

1/2 −
√

(x − 1/2)2 + (y − 1/2)2
)

for (x, y) ∈ {(u, v) ∈ R2 : (u − 1/2)2 + (v − 1/2)2 ≤ 1/4}, a drop in the
expected number of points as the distance from (1/2, 1/2) increases.

The functions may be implemented in R by

https://CRAN.R-project.org/package=spatstat
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Figure 4.3 Realisations of a Poisson point process. Left: intensity function
λ(x, y) = 250x on the unit square. Right: intensity function λ(x, y) =
1000

(
1/2 −

√
(x − 1/2)2 + (y − 1/2)2

)
on the ball of radius 1/2 centred

at (1/2, 1/2).

lambda1 <- function(x,y) {
return( 250 * x )

}

for the linear trend model, and by

lambda2 <- function(x,y) {
dist <- sqrt( ( x - 0.5 )ˆ2 + ( y - 0.5 )ˆ2 )
return ( 1000 * ( 0.5 - dist ) )

}

for the radial decay function. To generate realisations of Poisson pro-
cesses with the intensity functions defined above, type

X1 <- rpoispp(lambda=lambda1, lmax=250, win=owin(c(0,1),
c(0,1)))
X2 <- rpoispp(lambda=lambda2, lmax=500,

win=disc(radius=1/2, centre=c(1/2, 1/2)))

The argument lmax for the maximal value of the intensity function is
optional, but results in faster simulation.

The package includes the data set ‘redwood’ which lists the locations
of 62 seedlings and saplings of California redwood trees. These data orig-
inate from a paper by D. Strauss (Biometrika, 1975). The pattern shown
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in Figure 4.4 is a subset of the original data that was extracted by B.D.
Ripley (Journal of the Royal Statistical Society, 1977) in a subregion of
about 23 metres rescaled to a unit square.

The estimator ρ̂(1)(·) for the first order product density or intensity
function presented in Section 4.4 is implemented by the spatstat function
density.ppp, e.g.
density.ppp(redwood, sigma=epsilon, kernel="disc",

leaveoneout=FALSE, at="pixels", edge=TRUE,
diggle=TRUE)

The default setting kernel="gaussian" applies a Gaussian smoothing
kernel. A good initial value for its standard deviation σ can be found by
applying formula (4.2) to the function f(x) = 1/ρ(1)(x). Indeed,

E
{

∑

x∈X∩W

1
ρ(1)(x)

}

=
∫

W

1
ρ(1)(x)ρ(1)(x) dx = |W |,

the area of W . Replacing ρ(1) by ρ̂(1) and solving for σ often gives a
plausible value (Cronie and Van Lieshout. Biometrika, 2018).

For the redwood data, the method described above leads to σ = 0.14.
The resulting intensity function is displayed in the bottom right panel
in Figure 4.4. For comparison, the top row shows the intensity function
obtained with a Gaussian kernel for σ = 0.07 (left-most panel) and
σ = 0.28 (right-most panel). Note that the mass is spread more evenly
when σ is increased, whilst if one lowers the value of σ, the mass is more
concentrated around the points in the pattern. The figure also shows the
estimated intensity function using a disc kernel for the same choice of
bandwidth (half radius ϵ = 0.14). The discontinuities inherited from the
indicator function are clearly visible. Furthermore, mass from different
clumps tends to build up in the voids between the clumps.

Moving on to the second order moment characteristics, assume that
the redwood tree pattern is a realisation from a stationary point process
with intensity λ. The script
pcfr <- pcf.ppp(redwood, kernel="rectangular",

bw=epsilon, correction="trans")
then estimates the pair correlation function. Commonly, Stoyan and
Stoyan’s rule of thumb (Wiley, 1994), which recommends use of an
Epanechnikov kernel

κϵ(t) = 3
4ϵ

(

1 − t2

ϵ2

)

, −ϵ ≤ t ≤ ϵ,
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Figure 4.4 Kernel estimates ρ̂(1)(·) for the redwood data. Top row: Gaus-
sian kernel with standard deviation σ = 0.07 (left) and 0.28 (right). In
the bottom row, estimates for ϵ = σ = 0.14 are displayed using a disc
(left) and Gaussian kernel (right).

with bandwidth 0.15(5λ̂)−1/2, is followed and is also the default setting
in spatstat. For the redwood data, ϵ ≈ 0.0085. The results for rectangular
and Epanechnikov kernels are given in Figure 4.5. Both pictures suggest
clustered behaviour up to range 0.15. As expected, the graph is rougher
for the rectangular kernel. Do experiment with larger and smaller values
for ϵ!

The empirical pair correlation function suggests clustering. More-
over, it seems plausible from a biological point of view that seedlings
grow up around mature trees. Therefore, one might try to fit a clus-
ter process. In Section 4.11, we assumed that seedlings were scattered
around the stumps of mature trees uniformly in a ball of radius Rc. The
corresponding Neyman-Scott Cox process is known as a Matérn cluster
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Figure 4.5 Kernel estimates ĝ(·) for the redwood data using a rectangu-
lar (left-most panel) and Epanechnikov kernel (right-most panel) with
bandwidth ϵ = 0.0085.

process. We estimated Rc by minimum contrast based on the logarithm
of the K-function. Here we use the pair correlation function, which can
be shown to be given by

g(r; θ) = 1 + 4
λpπ2rRc

(
r

2Rc
arccos

(
r

2Rc

)
− r2

4R2
c

√

1 − r2

4R2
c

)

,

r ∈ [0, 2Rc],

to estimate the parameter vector θ = (λp, λc, Rc). The minimum contrast
method requires the optimisation of the function

∫ t1

t0
|ĝ(r) − g(r; θ)|2dr

over θ. A complication is that g(r; θ) does not depend on λc. Neverthe-
less, since the intensity is equal to λpλc and |W | = 1, we may set

λ̂c = N(W )
λ̂p

.

The script

range(nndist(redwood))
[1] 0.02 0.12
fitMatern <- matclust.estpcf(redwood, q=1, rmin=0.02)
plot(fitMatern)
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Figure 4.6 Kernel estimates ĝ(·) for the redwood data using an Epanech-
nikov kernel with bandwidth ϵ = 0.0085 (broken line) and pair corre-
lation function of the fitted Matérn cluster process with λ̂p = 25.01,
λ̂c = 2.48 and R̂c = 0.063 (dotted line).

carries out this procedure. The parameter estimates are λ̂p = 25.01 and
R̂c = 0.063 and therefore λ̂c = 2.48.

To validate the model, one may plot the fitted pair correlation func-
tion (or some other statistic) and compare it to the empirical one using
the command plot(fitMatern) as in Figure 4.6. An alternative is to
generate a few realisations of the fitted model,

rMatClust(kappa=fitMatern$par[1], scale=fitMatern$par[2],
mu=redwood$n/fitMatern$par[1], win=redwood$window,
nsim=3)

Three such realisations are displayed in Figure 4.7. Under the fitted
model, on average 25 parents each generate an average of 2.48 children.
Taking into account the size of mature redwood trees, the high parent
number seems unrealistic. Indeed, the hierarchical model described in
Section 4.11 uses a hard core distance for the parents to reduce their
number and provides a more plausible fit.

Another data set provided in spatstat is ‘bei’, shown in Figure 4.8,
which gives the positions of 3,605 Beilschmiedia trees in a 1,000 by 500
metre rectangular stand in a tropical rain forest at Barro Colorado Is-
land, Panama. These data were supplied by R. Waagepetersen and taken
from a larger data set described in the chapter by Hubbell and Foster
in the 1983 textbook Tropical Rain Forest: Ecology and Management
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Figure 4.7 Realisations of a Matérn cluster process with parameters λp =
25.01, λc = 2.48 and Rc = 0.063 in a unit square.

edited by S. Sutton, T. Whitmore and A. Chadwick. The extended data
may be accessed at

https://dx.doi.org/10.5479/data.bci.20130603
The research at Barro Colorado Island is financially supported by
the U.S. National Science Foundation, the John D. and Catherine T.
MacArthur Foundation and the Smithsonian Tropical Research Insti-
tute.

A visual inspection of the data suggests a lack of homogeneity. We
therefore try to fit an inhomogeneous Poisson process with a polynomial
approximation

log λ(x, y) = θ0+θ1x+θ2y+θ3x2+θ4xy+θ5y2+θ6x3+θ7x2y+θ8xy2+θ9y3

+θ10x4 + θ11x3y + θ12x2y2 + θ13xy3 + θ14y4, (x, y) ∈ R2,

to the log intensity function by means of the commands

fitbeiXY <- ppm(bei˜polynom(x,y,4))
plot(predict(fitbeiXY))

The ppm function calculates the parameter estimates, the function
predict returns the corresponding intensity function. The result is
shown in the left-most panel of Figure 4.9.

To validate the model, one may compare a kernel estimator of the
intensity function to that of the fitted model. More formally, write x for
the observed pattern in stand W . Then the smoothed residual at x ∈ W
is defined by

s(x) = 1
ϵ2

∑

y∈x
κ

(
x − y

ϵ

)
wϵ(x, y)−1− 1

ϵ2

∫

W
κ

(
x − w

ϵ

)
wϵ(x, w)−1λ̂(w)dw,

https://dx.doi.org/10.5479/data.bci.20130603
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Figure 4.8 The positions of Beilschmiedia trees in a 1,000 by 500 metre
stand in Barro Colorado Island, Panama.

where κ is a symmetric probability density function and wϵ an edge
correction factor. These residuals may be calculated using the function
diagnose.ppm(fitbeiXY, which="smooth", sigma=100)
and are plotted in the right-most panel of Figure 4.9.

Figure 4.9 Left: fitted intensity function λ̂(x, y) for Beilschmiedia trees in
Barro Colorado Island using a fourth order polynomial approximation
to the log intensity function. Right: smoothed residual surface using a
Gaussian kernel with σ = 100.

To test for homogeneity, apply the likelihood ratio test using the
script
hombei <- ppm(bei˜1)
anova(hombei, fitbeiXY, test = "LR")
and find that the null hypothesis is emphatically rejected.

For further details, we refer to the vignettes of spatstat that are
available on the CRAN website
https://cran.r-project.org.

https://cran.r-project.org
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4.13 EXERCISES

1. Let X1, X2, . . . be independent and exponentially distributed with
parameter λ > 0 and define a point process on R+ by X =
{X1, X1 + X2, X1 + X2 + X3, . . . }. Calculate P(NX((0, t]) = 0)
for t ∈ R+.

2. Let X be a homogeneous Poisson process on the plane. Show that
the squared distance from the origin to the nearest point of X
follows an exponential distribution.

3. Let X be a Poisson process on Rd with intensity function λX , Y a
Poisson process with intensity function λY . If X and Y are inde-
pendent, show that the superposition X ∪ Y is a Poisson process.

4. Let X be a binomial point process of n ∈ N points on the unit
square [0, 1]2. Calculate its factorial moment measures up to sec-
ond order. Derive the covariance and pair correlation functions.
Is X stationary and/or second order intensity-reweighted moment
stationary?

5. Let W be a rectangle [a1, b1] × · · · × [ad, bd] ⊂ Rd for ai < bi ∈ R,
i = 1, . . . , d. Give an explicit expression for the volume of W ∩ Wx

as a function of x ∈ Rd.

6. Let X be a point process on Rd for which product densities exist up
to second order. In particular, assume that the first order moment
measure exists and is absolutely continuous with density λ : Rd →
R+. Denote by B(x, ϵ) the closed ball centred at x ∈ Rd with
radius ϵ > 0 and write

λ̂(x0) =
∑

x∈X∩W

1{x ∈ B(x0, ϵ)}
|B(x, ϵ) ∩ W | , x0 ∈ W,

for some open bounded Borel set W such that |W | > 0.

• Compute the expectation and variance of λ̂(x0).
• Suppose that n independent samples from the distribution of

X ∩ W are available. How would you estimate λ(x0)? What
are the expectation and variance of your estimator?

7. Let X be a Poisson process on [0, 1]2 with intensity function
λ(x, y) = βeαy for α, β ≥ 0.
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• Estimate the parameters α and β based on an observed pat-
tern x = {(xi, yi) : i = 1, . . . , 10} for which ∑

i yi = 5.82.
• Test the composite null hypothesis that X is homogeneous.

8. Is the Lennard–Jones interaction function of Example 4.11 locally
stable? Is it hereditary?

9. For any finite point pattern x ⊂ W in the bounded Borel set W , let

Cx(w) =
∑

x∈x
1{w ∈ B(x, R)}, w ∈ W,

be the coverage function of x. Here B(x, R) = {w ∈ W : ||x −
w|| ≤ R}. Additionally, let V be a potential, that is, a function
V : N → R such that V (0) = 0. We would like to define a shot
noise-weighted point process X on W by means of an unnormalised
density of the form

f(x) ∝ exp
[
−

∫

W
V (Cx(w))dw

]

with respect to the distribution of a unit rate Poisson process
on W .

• Give a sufficient condition on the potential V for f to be
integrable.

• Show that X is a Markov point process with respect to the
relation ∼ defined by x ∼ y if and only if ||x − y|| ≤ 2R,
x, y ∈ W . Find an explicit expression for the clique interac-
tion functions.
Hint: Proceed as in the proof of the Hammersley–Clifford
theorem.

10. Let X be a hard core process on some bounded Borel set W ⊂ Rd

with probability density

f(x = {x1, . . . , xn}) ∝ βn
∏

{u,v}∈x
1{||u − v|| ≥ R}

with respect to the distribution of a unit rate Poisson process.
Estimate the interaction range R ≥ 0 and the parameter β ≥ 0.

11. Show that the pair correlation function of a planar Neyman–Scott
process in which the daughters are located uniformly in a ball of
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radius R > 0 around their parent depends only on the distance r
between its arguments and is given by

g(r) = 1 + 4
λpπ2rR

⎛

⎝ r

2R
arccos

(
r

2R

)
− r2

4R2

√

1 − r2

4R2

⎞

⎠

whenever 0 ≤ r ≤ 2R. This model is known as the Matérn cluster
process.
Hint: use that the intersection area A(r, R) of two balls of radius
R whose centres are r apart is given by

A(r, R) = 2R2 arccos(r/(2R)) − r(4R2 − r2)1/2/2
for r ∈ [0, 2R].

12. Let the random variable Λ be exponentially distributed with pa-
rameter m > 0. Let X be a Cox process on Rd driven by Λ; that is,
given Λ = λ, X is a homogeneous Poisson process with intensity λ.

• Give an explicit expression for the empty space function of
X in terms of the parameter m.

• How can you use your result to estimate m?

13. Let X be an inhomogeneous Poisson process on a bounded Borel
set A ⊂ Rd defined by the intensity function λ : A → R+. As-
sume that

∫
A λ(a)da > 0. Prove that conditional on the number of

points, they are independent and identically distributed according
to the probability density function

λ(a)∫
A λ(a)da

on A. Compare the result to Theorem 4.2 and specialise to (4.11).

14. Let the random variable Λ be exponentially distributed with pa-
rameter m > 0. Let Y be a Cox process on the bounded Borel set
W ⊂ Rd driven by Λ; that is, given Λ = λ, Y is a homogeneous
Poisson process on W with intensity λ. Compute the posterior
distribution of Λ given a realisation y of Y and its mean E [Λ | y].

15. The spatstat package contains a data set bei that contains tree
locations in a tropical rain forest. Covariate information about the
altitude and slope in the study region is available in the accompa-
nying data set bei.extra. Investigate whether altitude and slope
affect the abundance of trees.
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4.14 POINTERS TO THE LITERATURE

It is difficult to point to the first documented use of the Poisson process.
The name was probably coined in the late 1930s at the University of
Stockholm and appears in the 1940 paper [1] by W. Feller who worked
in Stockholm from 1934 until 1939. The phrase ‘point process’ is due to
C. Palm [2]. This early work is mostly concerned with point processes
on the real line. The foundations of a mathematically rigorous theory of
point processes on general state spaces were laid in the early 1960s by
J.E. Moyal [3] who used the now obsolete term ‘stochastic population
process’ in his title. We refer to a paper by Guttorp and Thorarinsdottir
[4] for a more detailed historical overview and to the two volumes by
Daley and Vere–Jones [5] for an exhaustive account of the theory of
point processes on Polish spaces.

The definition of a point process given in Section 4.1 can be found in
[3]. In [6], A. Rényi proved that the void probabilities determine the dis-
tribution of a Poisson process with diffuse intensity function, a result that
was generalised to all simple point processes by G. Mőnch [7]. The basic
facts concerning a Poisson process are summarised in the monograph by
J.F.C. Kingman [8]. For example, his section 2.4 is devoted to a more
general version of Theorem 4.2. Perhaps confusingly, the name ‘Bernoulli
process’ is used for the binomial point process, which is usually reserved
for sequences of binary valued random variables. Moment measures are
defined in Section 3 of [3]. Earlier work in the context of point processes
on the real line includes that by A. Ramakrishnan [9], who advocated
the use of product densities. The implications of various concepts of
stationarity, including homogeneity of the moments, are discussed ex-
haustively in Chapter 12 of [5]. Definition 4.8 is adapted from a slightly
more general one due to Baddeley, Møller and Waagepetersen [10].

The consideration of stability can be traced back to L. Onsager [11]
who called a probability density function f stable if the energy of a con-
figuration x satisfies a linear lower bound in the number of points, that
is, − log(f(x)/f(∅)) ≥ −βn(x) for some β > 0. Additionally, Onsager
showed that the so-called hard core condition, which states that no two
points can occur within a given positive distance of one another, im-
plies stability. We refer to the textbook by D. Ruelle [12] for a rigorous
treatment of this and other notions of stability, their implications and
mutual relations. The local stability condition, being defined in terms of
the Papangelou conditional intensity [13], has become popular following
Ripley and Kelly’s introduction of Markov point processes [14] specified
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by their unnormalised densities. It implies the Onsager–Ruelle stability
condition. As an aside, unnormalised densities of the form exp(−|W |)f
with f given by (4.7) are known as Jánossy densities to honour pioneering
work [15]. The Strauss model was proposed in [16], the Lennard–Jones
interaction function in [17]. Further examples of pairwise interaction
models can be found in the textbooks [5] or [18].

Markov point processes were introduced in the statistical literature
by Ripley and Kelly [14], and our proof of Theorem 4.4 is taken from their
paper. It should be noted, though, that the similar concept of a Gibbs
point process was already known in statistical physics; see for example
the textbooks by C. Preston [19] and by D. Ruelle [12]. More recent de-
velopments are reviewed in the monograph by M.N.M. van Lieshout [18].

Turning to statistics, the edge correction weight 1/|W ∩Wy−x|, com-
monly known as the translation correction, in the kernel estimator (4.4)
was proposed by Ohser and Stoyan [20]. For a fuller discussion of edge
effects and ways to correct for them, we refer to Chapter 3 in the Adams
prize winning essay [21] by B.D. Ripley. Kernel estimators for the first
order product density were introduced by P.J. Diggle [22], although with
a focus on point processes on the real line. The mass-preserving kernel
estimator (4.5) was suggested by M.N.M. van Lieshout [23].

Inference for Poisson processes based on their likelihood is treated in
great detail in the book by Y.A. Kutoyants [24]. For non-Poisson models,
the Monte Carlo maximum likelihood method of C.J. Geyer and E.A.
Thompson [25] may be used. This method is generally applicable when
an unnormalised density function is explicitly available. The details for
finite point patterns are spelled out in [26], including Theorem 4.5 and
the Metropolis–Hastings sampler with birth and death proposals due to
C.J. Geyer and J. Møller [27].

The idea to use maximum pseudo-likelihood for point processes can
be traced back to J.E. Besag, who, in [28], considered the special case
of the Strauss process. His approach is to approximate a spatial point
process by a series of random fields on finer and finer grids [29], with
labels in L = {0, 1} to denote presence or absence of points, and apply
pseudo-likelihood to the approximation. Our direct definition is taken
from Jensen and Møller [30]. The method is implemented as the default
parameter estimation technique in the R-package spatstat, the most
complete R-package devoted to spatial point pattern analysis [31]. Its
error estimates are based on a paper by Cœurjolly and Rubak [32]. The
smoothed residuals implemented in the package are taken from an article
by Baddeley, Turner, Møller and Hazelton [33], which generalises earlier
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ideas of Stoyan and Grabarnik [34]. Core functions are also implemented
in the R-package spatial that comes with the default R implementation
and in splancs.

A historical account on the introduction of Cox processes is given
by Guttorp and Thorarinsdottir [4]. They trace the Neyman–Scott clus-
ter process to [35] and note that the special case where the daughters
are scattered according to a bivariate normal distribution (cf. Exam-
ple 4.16) is called a modified Thomas process after work by M. Thomas
[36] on a doubly stochastic model for the number of potato beetle lar-
vae, even though their spatial location is not taken into account. The
Matérn cluster process can be found in Section 3.6 of [37]. The product
densities up to second order were calculated by D. Vere–Jones [38] us-
ing generating functional techniques. Although they are quite natural,
log-Gaussian Cox processes seem to have been introduced as recently as
1991 by Coles and Jones [39], who derived the pair correlation function
heuristically. The proof of Theorem 4.7 given here follows that in [40].
Parameter estimation for such models by means of a minimum contrast
method was proposed by P.J. Diggle [41]. The estimate of Rc in the
cluster detection example of Section 4.11 is taken from this paper; the
hierarchical analysis with a hard core prior follows Van Lieshout and
Baddeley [42].

In closing, we recommend the textbooks by Møller and Waagepetersen
[43], Illian, Penttinen, Stoyan and Stoyan [44] and Diggle [45] or part IV
in [46] for further reading.
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Appendix: Solutions to
theoretical exercises

EXERCISES IN CHAPTER 2

1. For k and m in N, without loss of generality suppose that
t1, . . . , tk ∈ A and tk+1, . . . , tk+m ̸∈ A. Pick x1, . . . , xk+m ∈ R.
Then

Ft1,...,tk+m(x1, . . . , xk+m) = P(Z ≤ min{x1, . . . , xk}; 0
≤ min{xk+1, . . . , xk+m}),

which in terms of the cumulative distribution function FZ of Z
reads

FZ(min{x1, . . . , xk})
if 0 ≤ min{xk+1, . . . , xk+m} and zero otherwise. If m = 0 and
k ∈ N, then Ft1,...,tk(x1, . . . , xk) = FZ(min{x1, . . . , xk}). Finally, if
k = 0 and m ∈ N, then

Ft1,...,tm(x1, . . . , xm) =
{

1 if 0 ≤ min{x1, . . . , xm};
0 otherwise.

2. Since
Cov(Xs, Xt) =

n∑

i=1

n∑

j=1
Cov(Zifi(s), Zjfj(t)),

the covariance function ρ of X is given by

ρ(s, t) =
n∑

i=1

n∑

j=1
fi(s)fj(t)Cov(Zi, Zj).

143
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3. First, note that mY (t) = EYt = EX2
t = ρ(t, t) + m(t)2. Moreover

ρY (s, t) = E(X2
s X2

t ) − mY (s)mY (t).

It remains to calculate E(X2
s X2

t ). Now,

E(X2
s X2

t ) = E
[
(Xs − m(s) + m(s))2(Xt − m(t) + m(t))2

]

= E
[
(Xs − m(s))2(Xt − m(t))2

]

+ E
[
(Xs − m(s))2m(t)2 + (Xt − m(t))2m(s)2

]

+ E [4m(s)m(t)(Xs − m(s))(Xt − m(t))] + m(s)2m(t)2

since the odd central moments of a multivariate normal distribu-
tion are zero. Hence

E(X2
s X2

t ) = E
[
(Xs − m(s))2(Xt − m(t))2

]
+ m(t)2ρ(s, s)

+ m(s)2ρ(t, t) + m(s)2m(t)2 + 4m(s)m(t)ρ(s, t).

By the hint, if Z = (Zs, Zt) is bivariate normally distributed with
mean zero,

E(Z2
s Z2

t ) = ρZ(s, s)ρZ(t, t) + 2ρZ(s, t)2,

where ρZ is the covariance function of Z, so

E(X2
s X2

t ) = ρ(s, s)ρ(t, t) + 2ρ(s, t)2 + m(t)2ρ(s, s)
+ m(s)2ρ(t, t) + m(s)2m(t)2 + 4m(s)m(t)ρ(s, t)

= ρ(s, s)mY (t) + m(s)2mY (t) + 2ρ(s, t)2

+ 4m(s)m(t)ρ(s, t)
= mY (s)mY (t) + 2ρ(s, t)2 + 4m(s)m(t)ρ(s, t).

In conclusion,

ρY (s, t) = E(X2
s X2

t ) − mY (s)mY (t) = 2ρ(s, t)2 + 4m(s)m(t)ρ(s, t).

4. Regarding the first claim note that, for a1, . . . , an ∈ R, n ∈ N, the
double sum

n∑

i=1

n∑

i=1
aiaj (αρ1(ti, tj) + βρ2(ti, tj))

= α
n∑

i=1

n∑

j=1
aiajρ1(ti, tj) + β

n∑

i=1

n∑

j=1
aiajρ2(ti, tj)
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is non-negative when α and β are non-negative.
To prove the second claim, let X and Y be independent zero mean
Gaussian random fields with covariance functions ρ1 and ρ2 re-
spectively (cf. Proposition 2.1). Then the covariance function of
the random field Z defined by Zt = XtYt, t ∈ Rd, is equal to

Cov(Z(t1), Z(t2)) = E [X(t1)Y (t1)X(t2)Y (t2)] = ρ1(t1, t2)ρ2(t1, t2)

by the assumed independence. In other words, the product ρ1ρ2 is
the covariance function of Z and therefore non-negative definite.

5. For n ∈ N and 0 < t1 < · · · < tn, consider the n × n matrix Σn

with entries ρ(ti, tj), i, j ∈ {1, . . . , n}:

Σn =

⎛

⎜⎜⎜⎜⎜⎝

t1 t1 · · · t1 t1
t1 t2 · · · t2 t2

· · · · · · · · · · · · · · ·
t1 t2 · · · tn−1 tn−1
t1 t2 · · · tn−1 tn

⎞

⎟⎟⎟⎟⎟⎠
.

We proceed to show that Σn is non-negative definite. Using the
Sylvester criterion, we shall show that the determinants of all
upper-left sub-blocks are positive. Note that they take the same
shape as the matrix Σn itself. Equivalently therefore, it suffices to
show that the determinant of Σn is positive for all n ∈ N.
For n = 1, the matrix (t1) has determinant t1 > 0. For n = 2, the
matrix (

t1 t1
t1 t2

)

has determinant t1(t2 − t1) > 0. We claim that the determinant of
Σn is t1(t2 − t1) · · · (tn − tn−1) > 0 by the chronological ordering.
The claim may be proven by induction and the fact that

detΣn = det

⎛

⎜⎜⎜⎜⎜⎝

t1 t1 · · · t1 t1
0 t2 − t1 · · · t2 − t1 t2 − t1
0 · · · · · · · · · · · ·
0 t2 − t1 · · · tn−1 − t1 tn−1 − t1
0 t2 − t1 · · · tn−1 − t1 tn − t1

⎞

⎟⎟⎟⎟⎟⎠

= t1det

⎛

⎜⎜⎜⎝

t2 − t1 · · · t2 − t1 t2 − t1
· · · · · · · · · · · ·

t2 − t1 · · · tn−1 − t1 tn−1 − t1
t2 − t1 · · · tn−1 − t1 tn − t1

⎞

⎟⎟⎟⎠ ,
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which has the same form as Σn−1.

6. By Bochner’s theorem, the spectral density reads, for w ∈ R,

f(w) = 1
2π

∫ ∞

−∞

1
2β

e−β|t|e−iwtdt.

Split f(w) in integrals over R+ and R−. Then, noting that the
function t → et is a primitive of itself,

∫ ∞

0
e−β|t|e−iwtdt = 1

β + iw
= 1

β + iw

β − iw

β − iw
= β − iw

β2 + w2 .

Similarly,
∫ 0

−∞
e−β|t|e−iwtdt = 1

β − iw
= β + iw

β2 + w2 .

Hence

f(w) = 1
4πβ

1
β2 + w2 (β − iw + β + iw) = 1

2π

1
β2 + w2 , w ∈ R.

To verify the existence of a continuous version, note that the inte-
gral ∫ ∞

−∞
|w|ϵf(w)dw = 1

2π

∫ ∞

−∞

|w|ϵ

β2 + w2 dw

is finite for ϵ < 1.

7. First, let us calculate the Fourier transform of the box function φ.
Now,

∫

R
φ(s)e−iξsds =

∫ 1/2

−1/2
e−iξsds = e−iξ/2 − eiξ/2

−iξ
= sin(ξ/2)

ξ/2 .

The convolution of φ with itself is, for t ∈ R, given by

φ ∗ φ(t) =
∫ ∞

−∞
φ(s)φ(t − s)ds =

∫ 1/2

−1/2
1

{
t − 1

2 ≤ s ≤ t + 1
2

}
ds,

the length of the intersection
[
−1

2 ,
1
2

]
∩

[
t − 1

2 , t + 1
2

]
.

The intersection length is equal to min(1/2, t+1/2)−max(−1/2, t−
1/2) provided that the intersection is not empty. Hence, for |t| ≤ 1,
φ ∗ φ(t) = θ(t). Recalling that the Fourier transform of a convo-
lution is the product of the Fourier transforms, one obtains the
desired result for the function θ.
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8. Note that
ρ(θ) =

∞∑

j=0
σ2

j

[
eijθ + e−ijθ

2

]

is in the spectral form of Bochner’s theorem with µ(j) = σ2
j /2 for

j ∈ Z. Clearly µ is non-negative and symmetric. It takes finite
values whenever ∞∑

j=0
σ2

j < ∞.

The cosine is uniformly continuous on its compact domain, so ρ is
continuous as a limit of uniformly continuous functions.
Continuous versions exist if

∞∑

j=0
jϵσ2

j < ∞

for some ϵ ∈ (0, 1). Plug in σ2
j = (α+βj2p)−1. Then for 2p − ϵ > 1,

that is, for p > 1/2, ρ is well-defined and the corresponding Gaus-
sian field admits a continuous version.

9. The sill is
lim

|t|→∞
γ(t) = α + β,

the nugget
lim

|t|→0
γ(t) = α.

The partial sill is the difference between the two limits, β.

10. By Theorem 2.2, the general expression is

X̂t0 = 1
σ2

[
ρ(t0, t1) ρ(t0, t2)

] [
1 ρ
ρ 1

]−1 [
Xt1

Xt2

]

= 1
σ2

1
1 − ρ2

[
ρ(t0, t1) ρ(t0, t2)

] [
1 −ρ

−ρ 1

] [
Xt1

Xt2

]

= 1
σ2

1
1 − ρ2 {(ρ(t0, t1) − ρρ(t0, t2))Xt1 + (ρ(t0, t2) − ρρ(t0, t1))Xt2}.

For the special cases one obtains the following expressions:

• 1
σ2

1
1−ρ2 {ρ(t0, t1)Xt1 − ρρ(t0, t1)Xt2}, which does depend

on Xt2 ;
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• 0 as Xt1 and Xt2 do not provide any information;
• 1

σ2 {ρ(t0, t1)Xt1 + ρ(t0, t2)Xt2} .

The mean squared prediction error is

ρ(t0, t0) − 1
σ2

1
1 − ρ2

[
ρ(t0, t1) ρ(t0, t2)

] [
1 −ρ

−ρ 1

] [
ρ(t0, t1)
ρ(t0, t2)

]

= ρ(t0, t0) − 1
σ2

1
1 − ρ2

{
ρ(t0, t1)2 + ρ(t0, t2)2 − 2ρρ(t0, t1)ρ(t0, t2)

}
.

For the special cases one gets the following:

• ρ(t0, t0) − 1
σ2

ρ(t0,t1)2

1−ρ2 ;
• ρ(t0, t0);
• ρ(t0, t0) − 1

σ2
{
ρ(t0, t1)2 + ρ(t0, t2)2}

.

11. Assume that the covariance structure of (Et)t∈Rd is known as well
as β and m. Write Σ for the covariance matrix of Eti , i = 1, . . . , n,
and K for the n × 1 vector with entries Cov(Et0 , Eti). Then

X̂t0 = m(t0)′β + K ′Σ−1(Xti − m(ti)′β)n×1

according to Theorem 2.2.
If β were unknown one might try to estimate it, for instance by
the maximum likelihood method. The log likelihood of the obser-
vations is proportional to

−(Xti − m(ti)′β)1×nΣ−1(Xti − m(ti)′β)n×1,

so the score equations are

2M ′Σ−1(Xti − m(ti)′β)n×1 = 0,

where M is the n × p matrix whose rows are the m(ti)′. Hence,
provided that the matrix M ′Σ−1M is invertible,

β̂ = (M ′Σ−1M)−1M ′Σ−1Z,

writing Z for the n × 1 vector of observations Xti . Finally, plug β̂
into the expression for the kriging estimator.
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12. First compute

m̂ =

1
σ2(1−ρ2)

[
1 1

] [
1 −ρ

−ρ 1

] [
Xt1

Xt2

]

1
σ2(1−ρ2)

[
1 1

] [
1 −ρ

−ρ 1

] [
1
1

] = Xt1 + Xt2

2 ,

the mean. Then plug m̂ into the simple kriging estimator (cf. Ex-
ercise 10) to obtain

X̂t0 = m̂ + 1
σ2

1
1 − ρ2 (ρ(t0, t1) − ρρ(t0, t2))(Xt1 − m̂)

+ 1
σ2

1
1 − ρ2 (ρ(t0, t2) − ρρ(t0, t1))(Xt2 − m̂)

= Xt1 + Xt2

2 + 1
2σ2

1
1 − ρ2 (ρ(t0, t1) − ρρ(t0, t2))(Xt1 − Xt2)

+ 1
2σ2

1
1 − ρ2 (ρ(t0, t2) − ρρ(t0, t1))(Xt2 − Xt1)

= Xt1 + Xt2

2 + (ρ(t0, t1) − ρ(t0, t2))(Xt1 − Xt2)
2σ2(1 − ρ) .

When ρ(t0, t2) = 0, X̂t0 is given by
Xt1 + Xt2

2 + ρ(t0, t1)(Xt1 − Xt2)
2σ2(1 − ρ) .

If additionally ρ(t0, t1) = 0 then

X̂t0 = Xt1 + Xt2

2 ,

the mean of Xt1 and Xt2 . In both cases the expression for X̂t0

involves both Xt1 and Xt2 .
If ρ = 0,

X̂t0 = Xt1 + Xt2

2 + (ρ(t0, t1) − ρ(t0, t2))(Xt1 − Xt2)
2σ2 .

The mean squared prediction error exceeds that of simple kriging
by a term

(1 − 1′Σ−1K)2

1′Σ−11 =
(
σ2(1 + ρ) − ρ(t0, t1) − ρ(t0, t2)

)2

2σ2(1 + ρ)
according to Theorem 2.4.
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13. Since the null-space is non-trivial, one can find an n-vector a such
that Σa = 0 and Var(a′Z) = a′Σa = 0. Then Cov(c′Z, a′Z) =
c′Σa = 0 for all vectors c. Also 0 = Cov(Xt0 , a′Z) = K ′a. We have
shown that K is orthogonal to the null space of Σ. Therefore, by
the symmetry of Σ, K lies in its column space.

14. Write
(

n∑

i=1
ciXti − Xt0

)2

=
(

n∑

i=1
ci(Xti − m(ti)′β) − (Xt0 − m(t0)′β)

+
{

n∑

i=1
cim(ti)′ − m(t0)′

}

β

)2

.

The last term is zero under the constraint and may be omitted.
Consequently the mean squared error is equal to

EE2
t0 +E

(
n∑

i=1
ciEti

)2

−2E
(

Et0

n∑

i=1
ciEti

)

= ρ(t0, t0)+c′Σc−2c′K.

The p-dimensional Euler–Lagrange multiplier λ ∈ Rp adds a term

λ′
(

n∑

i=1
cim(ti) − m(t0)

)

= λ′(M ′c − m(t0)).

Hence, the score equations are

2Σc − 2K + Mλ = 0

and
M ′c = m(t0).

Pre-multiplication of the first score equation by M ′Σ−1 and the
fact that M ′c = m(t0) yield λ = 2(M ′Σ−1M)−1(M ′Σ−1K −m(t0))
and consequently

Σc = K − M(M ′Σ−1M)−1(M ′Σ−1K − m(t0)),

from which the desired result follows.
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EXERCISES IN CHAPTER 3

1. Suppose that (xj)j ̸=i is feasible in the sense that xjxk = 0 whenever
j ∼ k. Then

πi(1 | xj , j ̸= i)
πi(0 | xj , j ̸= i) =

{
a if xj = 0 for j ∼ i
0 otherwise

depends on the neighbours of i only, so X is Markov with respect
to ∼. Furthermore, if xj = 0 for all j ∼ i then πi(1 | xj , j ̸= i) =
1 − πi(0 | xj , j ̸= i) = a/(1 + a). If xj = 1 for some j ∼ i then
πi(0 | xj , j ̸= i) = 1.
Consider a lattice that consists of two adjacent sites labelled 1 and
2 and take y = (0, 1), x = (1, 0). Then both x and y have positive
probability of occurring, but π2(y2 | x1) = π2(1 | 1) = 0.

2. Without loss of generality, consider the first two elements of X.
If the joint covariance matrix is Σ = (I − B)−1K, we know that
the conditional covariance matrix of the first block consisting of
X1 and X2 is Σ11 − Σ12Σ−1

22 Σ21. To find an explicit expression, use
the hint applied to I − B. Thus, A12 = −B12, A21 = −B21 and
A22 = I − B22. Partition the matrix K in four blocks too, say
K1, K2 on the diagonal, 0 off the diagonal.
Now,

(A−1)11 = I + B12(I − B22 − B21B12)−1B21,

(A−1)12 = B12(I − B22 − B21B12)−1,

(A−1)21 = (I − B22 − B21B12)−1B21,

(A−1)22 = (I − B22 − B21B12)−1.

Hence the conditional covariance matrix Σ11 − Σ12Σ−1
22 Σ21 reads

(A−1)11K1 − (A−1)12K2(K2)−1((A−1)22)−1(A−1)21K1

= K1 + B12(I − B22 − B21B12)−1B21K1 − B12(I − B22

− B21B12)−1B21K1 = K1.

Since K1 is diagonal, X1 and X2 are uncorrelated and therefore,
being normally distributed, independent.
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Unconditionally, the covariance between X1 and X2 is Σ11 =
(A−1)11K1, that is,

(I − B12(I − B22)−1B21)−1
[

κ1 0
0 κ2

]

.

Here we use the simplification (A−1)11 = (I − B12(I − B22)−1

B21)−1. As this matrix is not necessarily diagonal, X1 and X2 may
be dependent.

3. The local characteristics are well-defined normal densities. Using
Besag’s factorisation theorem, the joint density would be propor-
tional to

π1(x | 0)π2(y | x)
π1(0 | 0)π2(0 | x) = exp

[
−1

2(y − x)2
]

, (x, y) ∈ R2.

However, this function is not integrable.

4. Since πi(0 | yT \i) = e−µi , respectively πi(l | yT \i) = e−µiµl
i/l! for

l ∈ N, by the factorisation theorem,

πY (y)
πY (0) = exp

⎡

⎣θ
∑

i∼j;i<j

yiyj −
∑

i∈T

log yi!

⎤

⎦ .

Now θ
∑

i∼j;i<j yiyj ≤ 0 for θ ≤ 0 and therefore

∑

y∈(N0)T

πY (y)
πY (0) ≤

∑

y∈(N0)T

exp
[

−
∑

i∈T

log yi!
]

=
( ∞∑

l=0

1
l!

)|T |

< ∞.

For θ > 0, without loss of generality consider the first two sites
and suppose that 1 ∼ 2. Then

πY (y1, y2, 0, . . . , 0)
πY (0) = eθy1y2

y1!y2!

should be summable. However, the series
∞∑

y1=0

∞∑

y2=0

eθy1y2

y1!y2!

diverges as the general term does not go to zero.
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5. The first task is to find the maximum likelihood estimator for µ.
Assume that B is a symmetric matrix with zeroes on the diago-
nal such that I − B is positive definite. Then the log likelihood
L(µ; X) is

−1
2(X − µ1)′(I − B)(X − µ1).

The score equations is given by

0 = 1′(I − B)(X − µ1).

Therefore

µ̂ = 1′(I − B)X
1′(I − B)1 =

∑
t∈T Xt(1 −

∑
s∈T bst)

|T | −
∑

s∈T

∑
t∈T bst

is a linear function of X, hence normally distributed with mean µ
and variance (1′(I −B)1)−1, that is, 1/(|T |−

∑
s∈T

∑
t∈T bst). The

variance does not depend on µ. A two-sided test rejects if

|µ̂| >
ξ1−α/2

(|T | −
∑

s∈T

∑
t∈T bst)1/2

or, equivalently, if
∣∣∣∣∣
∑

t∈T

Xt(1 −
∑

s∈T

bst)
∣∣∣∣∣ >

(

|T | −
∑

s∈T

∑

t∈T

bst

)1/2

ξ1−α/2.

Here ξ1−α/2 is the 1 − α/2 quantile of the standard normal distri-
bution and α ∈ (0, 1) the desired level of the test.
An alternative would be to use the likelihood ratio test statistic

Λ(X) = exp [L(0; X) − L(µ̂; X)] = exp
[1

2 µ̂21′(I − B)1 − µ̂1′(I − B)X
]

= exp
[
− (1′(I − B)X)2

2(1′(I − B)1

]
.

The likelihood ratio test rejects the null hypothesis for large val-
ues of

−2 log Λ(X) = (1′(I − B)X)2

1′(I − B)1 = (µ̂)2

Var(µ̂) .

Under the null hypothesis, −2 log Λ(X), as the square of a stan-
dard normally distributed random variable, is χ2-distributed with
one degree of freedom. It is interesting to observe that the two
approaches lead to the same test!
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6. A potential V is normalised with respect to 0 if VA(x) = 0 when-
ever xi = 0 for some i ∈ A. This is clearly the case for sets A of
cardinality one or two. For larger A, VA(x) = 0 too.

7. By definition, V∅ = 0. For A = {i}, by Theorem 3.2,

V{i}(y) = − log πi(0 | 0, . . . , 0) + log πi(yi | 0, . . . , 0) = − log yi!

and for A = {i, j}, again by Theorem 3.2, V{i,j}(y) is equal to

log πi(0 | 0, . . . , 0) − log πi(yi | 0, . . . , 0)

− log πi(0 | yj , 0, . . . , 0) + log πi(yi | yj , 0, . . . , 0),
so

V{i,j}(y) = −yiyj1{i ∼ j}.

Since the joint distribution is proportional to

exp

⎡

⎣−
∑

i∼j;i<j

yiyj −
∑

i∈T

log yi!

⎤

⎦

(cf. Exercise 4), all other potentials vanish.

8. Write x for the realisation on the set A of crossed sites, y for that on
dotted sites. Then, reasoning as in the proof of the spatial Markov
property,

πA(x | y) ∝
∏

A∩C ̸=∅
ϕC(xA∩C , yC\A),

where C runs through the family of cliques with respect to ∼. Now,
the cliques with respect to ∼ are the empty set, singletons and
pairs of horizontally or vertically adjacent sites. The latter always
combine a crossed and dotted site. Hence the factorisation does
not contain terms with two different xis and the proof is complete.

9. As mentioned in Example 3.4, the local characteristics at i ∈ T
are normally distributed with variance κi and mean

∑

j ̸=i

bijxj =
∑

j∼i

bijxj .

Therefore, the local characteristic at i depends on xT \i only
through xj at sites j that are neighbours of i. Hence the CAR
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model is a Markov random field. Its joint probability density func-
tion satisfies

log π(x) ∝ −1
2x′K−1(I − B)x = −1

2
∑

i∈T

x2
i

κi
+ 1

2
∑

i∈T

∑

j∈T

bijxixj

κi
.

Hence ϕ(xi) = exp(−x2
i /(2κi)) and

ϕ({xi, xj}) = exp(bijxixj/(2κi)) = exp(bjixixj/(2κj)),

recalling that K−1(I −B) is symmetric by definition. If i ̸∼ j, then
bij = 0 and consequently ϕ({xi, xj}) = 1.

10. The proposal mechanism in a Metropolis–Hastings sampler could
be to select a site uniformly at random. If site i is selected, a new
label could be chosen according to πi(· | xj , j ̸= i).
To prove convergence, observe that the chain restricted to feasi-
ble states is aperiodic due to self-transitions. It is also irreducible,
since to get from feasible state x to feasible state y, one may change
all 1s in x to 0 first, then change those sites with label 1 in y to 1.
By Proposition 3.2, πX defines an invariant probability measure.
An appeal to the fundamental convergence theorem completes the
proof.
To find a Monte Carlo maximum likelihood estimator for a, con-
sider the ratio πX(x; a)/πX(x; a0), for example with respect to the
reference parameter a0 = 1, and note that the ratio of normalising
constants can be written as an expectation. Finally, approximate
the expectation by an average over a sample from πX(·; a0) ob-
tained by the method just described.

11. The maximum likelihood estimators that optimise

L(β, σ2; Y ) = − 1
2σ2 (Y − Xβ)′(I − B)(Y − Xβ) − n log σ

are

β̂ = (X ′(I − B)X)−1X ′(I − B)Y

σ̂2 = 1
n

(Y − Xβ̂)′(I − B)(Y − Xβ̂).

To see this, proceed as in Section 3.5 for the SAR model with
(I − B′)(I − B) replaced by I − B.
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Regarding maximum pseudo-likelihood estimation, the local char-
acteristics are Gaussians with mean

E(Yi|YT \i) = (Xβ)i +
∑

j ̸=i

bij(Yj − (Xβ)j), i ∈ T,

and variance σ2. Therefore

PL(β, σ2; Y ) = −
∑

i∈T

1
2σ2

⎛

⎝Yi − (Xβ)i −
∑

j ̸=i

bij(Yj − (Xβ)j)

⎞

⎠
2

− n log σ

= − 1
2σ2 (Y − Xβ)′(I − B)2(Y − Xβ) − n log σ.

Note that PL(β, σ2; Y ) is equal to the log likelihood of the SAR
model. Hence the maximum pseudo-likelihood estimators β̃ and σ̃2

are given by

β̃ = (X ′(I − B)2X)−1X ′(I − B)2Y

σ̃2 = 1
n

(Y − Xβ̂)′(I − B)2(Y − Xβ̂).

12. Write Si
l (x) for S evaluated at the configuration y that takes the

value l at site i and is equal to x at all other sites. Then the local
characteristics can be written as

πi(xi | xT \i) = exp(θS(x))
∑

l∈{0,1} exp
(
θSi

l (x)
) , i ∈ T, x ∈ {0, 1}T .

Therefore,

log πi(xi | xT \i) = θS(x) − log

⎛

⎝
∑

l∈{0,1}
exp(θSi

l (x))

⎞

⎠ .

Take the derivative with respect to the parameter θ to obtain

S(x) − 1
∑

l∈{0,1} exp(θSi
l (x))

∑

l∈{0,1}
Si

l (x) exp(θSi
l (x)).

The second term is equal to Eθ

[
S(X) | XT \i = xT \i

]
. To complete

the proof, sum over all sites and equate the pseudo-likelihood score
equation thus obtained to zero.
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13. We claim that
πX(x)q(x, y) = πX(y)q(y, x)

for all x, y ∈ LT . To see this, note that q(x, y) = 0 = q(y, x) if
x and y differ in two or more sites. For such x and y the claim
obviously holds as it does for y = x.
Thus, assume that x and y differ in exactly one site, say i ∈ T .
Then,

πX(x)q(x, y) = πX(x) 1
|T |πi(yi | xT \i)

= πi(xi | xT \i)P(XT \i = xT \i)
1

|T |πi(yi | xT \i)

= πi(xi | xT \i)
1

|T |πX(y) = q(y, x)πX(y).

It follows that A(x, y) = 1 and the detailed balance equations
coincide with the claim.

14. The greedy algorithm optimises, iteratively over i ∈ T ,

−1
2σ2 (yi − l)2 + θ

∑

j∼i

1{xj = l}

as a function of l ∈ L. For θ = 0, the optimal l is that label in L
that is closest to yi. For θ → ∞, l is chosen by a majority vote
under the labels of sites that are neighbours of i.
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EXERCISES IN CHAPTER 4

1. For k = 0, 1, . . . ,

P(NX((0, t]) = k) = P(X1 + · · · + Xk ≤ t; X1 + · · · + Xk+1 > t)

=
∫ t

0

λkrk−1

(k − 1)!e
−λre−λ(t−r)dr = e−λt (λt)k

k!

using the fact that the sum X1 + · · · + Xk is Erlang distributed.
Therefore NX((0, t]) is Poisson distributed with parameter λt. Plug
in k = 0 to see that the void probability of (0, t] is equal to
exp(−λt).

2. The cumulative distribution function of the squared distance
d(0, X)2 of X to the origin can be written in terms of a void prob-
ability. Indeed,

P(d(0, X)2 ≤ r) = 1−P(d(0, X)2 > r) = 1−P(X ∩B(0,
√

r) = ∅),

where B(0,
√

r) is the closed ball centred at 0 with radius √
r.

Since 1 − v(B(0,
√

r)) = 1 − exp(−λπr), d(0, X)2 is exponentially
distributed.

3. Observe that for any bounded Borel set A ⊂ Rd,

P((X ∪ Y ) ∩ A = ∅) = P(X ∩ A = ∅; Y ∩ A = ∅)
= P(X ∩ A = ∅)P(Y ∩ A = ∅)

by the independence of X and Y . Since X and Y are Poisson
processes, the product of the two void probabilities is

exp
[
−

∫

A
λX(z)dz

]
exp

[
−

∫

A
λY (z)dz

]

= exp
[
−

∫

A
(λX(z) + λY (z))dz

]
,

the void probability v(A) of a Poisson process with intensity func-
tion λX + λY . An appeal to Theorem 4.1 completes the proof.

4. For a Borel set A ⊆ [0, 1]2,

α(1)(A) = nP(X1 ∈ A) = n|A|
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is absolutely continuous with product density ρ(1)(x) = n for all
x ∈ [0, 1]2. Similarly, for two Borel sets A, B ⊆ [0, 1]2,

α(2)(A × B) = E

⎡

⎣
n∑

i=1

∑

j ̸=i

1{Xi ∈ A; Xj ∈ B}

⎤

⎦

= n(n − 1)|A||B|

since Xi and Xj are independent when i ̸= j. Moreover, α(2) is ab-
solutely continuous with second order product density ρ(2)(x, y) =
n(n − 1) on [0, 1]2. Turning to derived statistics, the second order
moment measure is

µ(2)(A×B) = α(2)(A×B)+α(1)(A∩B) = n(n−1)|A||B|+n|A∩B|,

the covariance reads

µ(2)(A × B) − α(1)(A)α(1)(B) = n|A ∩ B| − n|A||B|

and the pair correlation function is

g(x, y) = ρ(2)(x, y)
ρ(1)(x)ρ(1)(y) = 1 − 1

n
, x, y ∈ [0, 1]2.

Since the point process is defined on the unit square only, it cannot
be stationary. The pair correlation function and first order product
density are constant. The latter is also strictly positive, so X is
second order intensity-reweighted moment stationary.

5. First consider the one-dimensional case. For x > 0,

[a, b] ∩ [a + x, b + x] = [a + x, b]

if x ≤ b − a and empty otherwise. Similarly for x < 0,

[a, b] ∩ [a + x, b + x] = [a, b + x]

provided −x ≤ b − a. In both cases, the length is b − a − |x| if
|x| < b − a and zero otherwise. Repeating these arguments for all
components in d dimensions, one obtains

|W ∩ Wx| =
d∏

i=1
(bi − ai − |xi|)+.
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6. By (4.2), the first two moments are given by

E
[
λ̂(x0)

]
=

∫

B(x0,ϵ)∩W

λ(x)
|B(x, ϵ) ∩ W |dx

and

E
[(

λ̂(x0)
)2]

= E

⎡

⎣
∑ ̸=

(x,y)∈(X∩W )2

1{x ∈ B(x0, ϵ)}
|B(x, ϵ) ∩ W |

1{y ∈ B(x0, ϵ)}
|B(y, ϵ) ∩ W |

⎤

⎦

+ E
[

∑

x∈X∩W

1{x ∈ B(x0, ϵ)}
|B(x, ϵ) ∩ W |2

]

=
∫

B(x0,ϵ)∩W

∫

B(x0,ϵ)∩W

ρ(2)(x, y)
|B(x, ϵ) ∩ W ||B(y, ϵ) ∩ W |dxdy

+
∫

B(x0,ϵ)∩W

λ(x)
|B(x, ϵ) ∩ W |2 dx.

Provided λ(·) > 0, the variance is
∫

B(x0,ϵ)∩W

∫

B(x0,ϵ)∩W

(g(x, y) − 1)λ(x)λ(y)
|B(x, ϵ) ∩ W ||B(y, ϵ) ∩ W |dxdy

+
∫

B(x0,ϵ)∩W

λ(x)
|B(x, ϵ) ∩ W |2 dx.

If there is replication, write Ti(Xi) for the estimator λ̂(x0) applied
to Xi. The combined estimator is then the average ∑n

i=1 Ti(Xi)/n.
The expectation is not altered by replication. The variance however
is much reduced, by a factor 1/n. (Also the problem of distinguish-
ing between inhomogeneity and clustering disappears).

7. The log likelihood function based on x = {(x1, y1), . . . , (xn, yn)} is
given by

n log β + α
n∑

i=1
yi − β

∫ 1

0
eαydy.

The score equations read

0 = n

β
−

∫ 1

0
eαydy = 10

β
−

∫ 1

0
eαydy;

0 =
n∑

i=1
yi − β

∫ 1

0
yeαydy = 5.82 − β

∫ 1

0
yeαydy.
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Numerical optimisation yields α̂ = 1.00, β̂ = 5.82. The determi-
nant

n

β̂

∫ 1

0
y2eα̂ydy −

(∫ 1

0
yeα̂ydy

)2

of the Hessian matrix H(α̂, β̂) is positive. Since the principal minor
−n/(β̂2) is negative, (α̂, β̂) maximises the log likelihood function.
To test the null hypothesis that α = 0, use the likelihood ratio
test. Under the null hypothesis, the maximum likelihood estimator
is β̂0 = 10. Therefore, the likelihood ratio test statistic is

Λ(x) = f(x; 0, β̂0)
f(x; α̂, β̂)

=
(β̂0)n exp

[
−β̂0

]

(β̂)n exp
[
α̂

∑n
i=1 yi − β̂

∫ 1
0 eα̂ydy

]

≈ exp(−0.41)

and −2 log Λ(X) ≈ 0.81 should be compared to an appropriate
quantile of a χ2 distribution with one degree of freedom.

8. The interaction function is strictly positive and hence hereditary. It
is not locally stable. To see this, note that γ(u, v) is strictly larger
than one if ||u − v|| > (β/α)1/6 and has an asymptote at one for
||u − v|| → ∞. The continuity of the interaction function implies
that there exists a constant γ > 1 such that γ(u, v) > γ if ||u − v||
lies in an appropriately chosen interval [r1, r2], (β/α)1/6 < r1 <
r2 < ∞. Consequently the conditional intensity λ(u|x) is larger
than γn for point patterns x containing n points xi ∈ x such that
||u − xi|| ∈ [r1, r2]. Since γn → ∞ as n → ∞, the conditional
intensity cannot be bounded.

9. A sufficient condition for integrability is that there exists some
β > 0 such that

|V (n)| ≤ βn for all n ∈ N0.

Use induction with respect to the number of points as in the proof
of the Hammersley–Clifford theorem to show that for x ̸= ∅ the
interaction functions satisfy

ϕ(x) = exp

⎡

⎣−
∫

W

∑

y⊆x
(−1)n(x\y)V (Cy(w))dw

⎤

⎦
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= exp

⎡

⎣−|
⋂

x∈x
B(x, R)|

n(x)∑

i=1

(
n(x)

i

)

(−1)n(x)−iV (i)

⎤

⎦ ,

using the notation n(x) for the cardinality of x.
The first equation in the claim clearly holds when x is a singleton.
Assume that ϕ has this form for configurations with up to n ≥ 1
points and let x be such that n(x) = n. Then, for u ̸∈ x,

ϕ(x ∪ {u}) = f(x ∪ {u})
∏

x∪{u} ̸=y⊂x∪{u} ϕ(y)

= exp
[
−

∫

W

{
V (Cx∪{u}(w))

−
∑

x∪{u}̸=y⊂x∪{u}

∑

z⊆y
(−1)n(y\z)V (Cz(w))

⎫
⎬

⎭ dw

⎤

⎦ .

Change the order of integration in the double sum in the integrand
above and note that

n((x∪{u})\z)−1∑

k=0

(
n((x ∪ {u}) \ z)

k

)

(−1)k = −(−1)n((x∪{u})\z)

to see that the first equation in the claim holds for configurations
with n + 1 points too.
The expression can be simplified by considering the Venn diagram
of the balls B(xi, R), xi ∈ x, i = 1, . . . , n = n(x). A point w ∈ W
that is covered by B(xi, R), i = 1, . . . , k, but not by B(xi, R) for
i = k + 1, . . . , n contributes

−
k∑

i=1
V (i)

(
k

i

)

(−1)k−i
n−k∑

j=0
(−1)n−k−j

(
n − k

j

)

to log ϕ(x). The second sum is zero except when n = k. Hence only
points that are covered by all B(xi, R), i = 1, . . . , n, contribute,
and their contribution is equal to

−
n∑

i=1
V (i)

(
n

i

)

(−1)n−i.
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To show Markovianity, suppose that the point pattern x contains
two points x, y such that ||x−y|| > 2R. Then B(x, R)∩B(y, R) = ∅
and a fortiori ∩z∈xB(z, R) = ∅. Therefore ϕ(x) = 1 if x is no ∼-
clique. By the Hammersley–Clifford theorem, the point process is
Markov with respect to ∼.

10. Fix β and consider estimation of R. Note that, for x =
{x1, . . . , xn},

f(x) = βn(x) 1{||xi − xj || ≥ R, xi, xj ∈ x, i ̸= j}
Z(β, R)

with

Z(β, R) =
∞∑

m=0

e−|W |

m! βm
∫

W
· · ·

∫

W
1{||ui − uj ||

≥ R, i ̸= j}du1 · · · dum.

In particular, f(x) = 0 for R > mini̸=j ||xi − xj ||. Moreover,
Z(β, R) is the probability that a Poisson process on W with inten-
sity β does not place points closer than R together. Hence Z(β, R)
is decreasing in R and f(x) increases in R on [0, mini̸=j ||xi −xj ||].
Thus, the maximum likelihood estimator

R̂ = min
i̸=j

||xi − xj ||

is the smallest inter-point distance and does not depend on the
unknown β.
Having estimated R, optimise the Monte Carlo log likelihood ratio
for the parameter β, which is given by

n log
(

β

β0

)
− log

⎡

⎣ 1
N

N∑

j=1

(
β

β0

)n(Xj)
⎤

⎦

with respect to the reference parameter β0 > 0. Here X1, . . . , XN

is a sample from the hard core model on W with parameter β0 and
n(Xj) denotes the cardinality of Xj , j = 1, . . . , N . The alternative
maximum pseudo-likelihood estimation method was discussed in
Section 4.9 for the more general Strauss model.
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11. Since f(z) = 1{z ∈ B(0, R)}/(πR2), by Theorem 4.6,

g(x, y) = 1 + 1
λp

∫
f(x − z)f(y − z)dz

= 1 + 1
λp

( 1
πR2

)2 ∫
1{z ∈ B(x, R) ∩ B(y, R)}dz

= 1 + 1
λp

( 1
πR2

)2
A(||x − y||, R).

Finally, use the hint.

12. Write ωd for the volume of the unit ball in Rd. Then, for r ≥ 0,

P(X ∩ B(0, r) = ∅) = EΛ exp[−Λωdrd] =
∫ ∞

0
me−mλe−λωdrd

dλ

= m

m + ωdrd
.

Hence Fm(r) = ωdrd/(m + ωdrd). To estimate m, suppose that
X is observed in a compact set W ⊂ Rd and use the minimum
contrast method that compares the function Fm to the empirical
empty space function

F̂ (r) = 1
|L ∩ W⊖r|

∑

li∈L∩W⊖r

1{X ∩ B(li, r) ̸= ∅}, r ∈ [0, r0],

over a finite set L ⊂ W of points. The average is restricted to the
set W⊖r of points in W that are further than r away from the
boundary ∂W to compensate for edge effects and r0 should be set
smaller than the diameter of W .

13. Let B ⊆ A be a bounded Borel set. The conditional void proba-
bility is given by

P(NX(B) = 0 | NX(A) = n) = P(NX(B) = 0; NX(A \ B) = n)
P(NX(A) = n) .

Since NX(B) and NX(A \ B) are independent and Poisson dis-
tributed, the right hand side reduces to

e−Λ(B)e−Λ(A\B)Λ(A \ B)n/n!
e−Λ(A)Λ(A)n/n! = Λ(A \ B)n

Λ(A)n
,

using the notation Λ(A) =
∫

A λ(a)da.
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Next, consider the point process Y that consists of n independent
and identically distributed random points scattered on A according
to the probability density λ(·)/Λ(A). Then

P(NY (B) = 0) = Λ(A \ B)n

Λ(A)n
.

An appeal to Theorem 4.1 concludes the proof.
Theorem 4.2 is the special case that λ(·) ≡ λ. For the Neyman–
Scott model (4.11), one obtains the mixture model

λ(a)
Λ(A) = ϵ + λc

∑
x∈x f(a − x)

ϵ|A| + λc
∑

x∈x
∫

A f(a − x)da
.

14. The posterior distribution given y with n(y) = n is

c(y)E

⎡

⎣e−Λ|W |
n∏

j=1
Λ | Λ = λ

⎤

⎦ f(λ) = c(y)e−λ|W |λnme−mλ

∝ λne−λ(|W |+m),

an Erlang distribution with parameters n + 1 and |W | + m. Its
mean is

E [Λ | y] = n + 1
|W | + m

.
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