
Statistics 222, Spatial Statistics. 

Outline for the day:
1. Integrals for the exam. 

2. Purely spatial processes, Papangelou intensity, 

and the Georgii-Zessin-Nguyen formula. 

3. Exercises and code. 

4. Discuss Van Lieshout pp 11-15, 23-26. 



1. Integrals for the exam. 

For the exam, you need to know the very basics of integrals, 

like ∫ (f(x)+g(x))dx = ∫ f(x)dx + ∫ g(x)dx, 

and be able to compute the integral of f(x) dx, where f(x) is 

f(x) = c, 

f(x) = log(x), 

f(x) = xa where a is any real number, 

f(x) = eax. 

What is ∫13 ∫ 13 (4+3/x) dx dy? 

2(4x + 3log(x)]1
3) = 2(12 + 3log(3) – 4 – 3log(1)) = 2(8 + 3log(3)). 



2. Purely spatial processes, Papangelou intensity and the Georgii-Zessin Nguyen 
formula. 
For point processes in R2, there is no natural ordering as there is in time. One could 
just use the x-coordinate in place of time and define a conditional intensity, but most 
models for spatial processes would be very awkward to define this way. 
Instead, a more natural and useful tool is the Papangelou intensity, l(x,y), which is 
the conditional rate of points around location (x,y), given information on everywhere 
else. Letting 
L(q) = ∑ log(l(ti)) - ∫ l(x,y) dx dy, 
where l(x,y) is the Papangelou intensity, 
L(q) is called the pseudo-loglikelihood. 

A key formula for space-time point processes is called the martingale formula:
for any predictable function f(t,x,y), 
E ∫ f(t,x,y) dN = E ∫ f(t,x,y) l(t,x,y) dµ. 
= E ∑i f(t i,x i,y i) = E ∫ f(t,x,y) l(t,x,y) dt dx dy
For spatial point processes the corresponding formula, 
E ∫ f(x,y) dN = E ∫ f(x,y) l(x,y) dx dy
is called the Georgii-Zessin-Nguyen formula. 
When f = 1, this means EN(B) = E ∫ l dµ. 



3. exercises. 

a. Suppose N is a Poisson process with intensity l(t,x,y) = exp(-3t) over 
t in [0,10], x in [0,1], y in [0,5]. 
N happens to have points at (1.5,  .4,   2.7)

(2,   .52, 4.1)
(4,   .1,  2.9)
(5,    .71, 0.5).

What is the log-likelihood of this realization?
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What is the log-likelihood of this realization?

-4.5-6-12-15 - ∫∫∫ exp(-3t) dt dx dy
= -37.5 - 5∫0 10 exp(-3t) dt, because x goes from 0 to 1 and y goes from 0 to 5, 
= -37.5 - 5exp(-3t) / (-3)] 0

10

= -37.5 + 5exp(-30)/3 - 5exp(0)/3
= -37.5 + 5exp(-30)/3 – 5/3 
~ -39.2. 



exercises. 

Which of the following is not typically true of the MLE of a spatial-temporal point 
process? 

a. It is unbiased. 
b. It is consistent. 
c. It is asymptotically normal.
d. It is asymptotically efficient. 
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