
Statistics 222, Spatial Statistics. 

Outline for the day:
1. Old projects and exam on the course website 
http://www.stat.ucla.edu/~frederic/222/S21 . 
2. Integral term in loglikelihood for Hawkes processes. 
3. Analytic nonparametric estimation. 
4. van Lieshout ch3. 
Next time, review and Stoyan Grabarnik statistic and estimation. 



1. Old projects and exam on the course website 
http://www.stat.ucla.edu/~frederic/222/S21 . 
I will give you the answers next class. 

The exam will be Thu May20, 2pm pacific time. 
I will put the exam on the course website at 2pm exactly. 
You should email me your answers by 3:15pm. 3:20pm is ok, but 

after that we have a problem. 
In your email, just write for example 
1a. 2b. 3c. 4c. 5a. etc. Or you can write 
BAB CAD EAE BEB. etc. Be careful about which letter goes with 

which number. 
The questions are all worth the same amount but have very different 

difficulties. Usually the later ones are harder. 



1. The integral term in the loglikelihood for Hawkes processes. 

loglikelihood = ∑i log(l(ti,xi,yi)) - ∫∫∫ l(t,x,y) dxdydt. 

The space-time region is B = [0,T] x S. 

For a Hawkes process, l(t,x,y) = µ r(x,y) + K∑i:ti<t g(t-ti, x-xi, y-yi), where r and g are densities.  

∫0T ∫∫ l(t,x,y) dxdydt = ∫0T ∫∫ µ r(x,y) dxdydt + ∫0T ∫∫ K∑i:ti<t g(t-ti, x-xi, y-yi) dxdydt

= µ T + ∫0T ∫∫  K∫B 1{t'<t} g(t-t', x-x', y-y') dN(t',x',y') dxdydt 

interchanging the integrals

= µ T + K∫B ∫0T ∫∫ 1{t'<t} g(t-t', x-x', y-y') dxdydt dN(t',x',y') 

changing coordinates, letting u = t-t', v = x-x', w = y-y', 

= µ T + K∫B ∫0T-t' ∫∫S-(x',y') g(u, v, w) dudvdw dN(t',x',y') 

~ µ T + K ∫B(1) dN(t',x',y')

= µ T + KN(B). 

This is approximate because typically ∫0∞ ∫-∞∞ ∫-∞∞ g(u,v,w) dudvdw = 1, but instead, we have 

∫0T-t' ∫ ∫S-(x',y') g(u,v,w) dudvdw which is often close to 1. 



2. Nonparametric triggering function estimation. 

Marsan and Lengliné (2008) assume g is a step function, and estimate steps bk as parameters.

Setting the partial derivatives of this loglikelihood with respect to the steps bk to zero yields

where |Uk| is the width of step k, for k = 1,2,..., p. This is a system of p equations in p unknowns. 

However, the equations are nonlinear. They depend on 1/l(ti). 

Gradient descent methods: way too slow for large p. 

Marsan and Lengliné (2008) find approximate maximum likelihood estimates using the E-M

method for point processes. You pick initial values of the parameters, then given those, you

know the probability event i triggered event j. Using these, you can weight each pair of points

by its probability and re-estimate the parameters, and repeat until convergence. 

This method works well but is iterative and time-consuming.



Analytic solution.

Set p = n.  (p = number of steps in the step function, g, and n = # of observed points.)

Setting the derivatives of the loglikelihood to zero we have the p equations

which are p linear equations in terms of 1/l(ti), for i = 1,2, ..., n. (!)

So, if p=n, then we can use these equations to solve for 1/l(ti),

and if we know 1/l(ti), then we know l(ti),

and if we know l(ti), then we can solve for bi because the def. of a Hawkes process is

which results in n linear equations in the p unknowns b1, b2, ..., bp, when g is a step function.   



Analytic solution. 

We can write the resulting estimator in very condensed form.

Let l = {l(t1),l(t2),..., l(tn)}.

Suppose the steps of g have equal widths, |U1| = |U2|, etc. Call this width U.

Let Aij = the number points tk such that tj – tk is in Ui, for i,j in {1,2,...,p}.

Then the loglikelihood derivatives equalling zero can be rewritten

0 = KA(1/l) – Kb,

where b = nU1, with 1 = {1,1,...,1}.

This has solution 1/l = A-1 b, if A is invertible.

Similarly, the Hawkes equation can be rewritten l = µ + KATb, whose solution is

= (KAT)-1(l-µ).

Combining these two underlined formulas yields the estimates

. 

This is very simple, trivial to program, and rapid to compute.



Analytic solution. 

There are problems, however. 

1. Estimating n=p steps. High variance. 

However, if we can assume g is smooth, then we can smooth our estimates for stability.

2. Need to estimate K and µ too. 

We can use Marsan and Lengliné's method or take derivatives for these as well.

3. What about spatially-varying steps and unequally sized steps for g? 

No problem. The estimation generalizes in a completely obvious way.

4. A can be singular. 
We may need better solutions for this.
I let uj = tj-tj-1 , sorted the uj values, and then used [u(1), u(2)), etc. as my binwidths, so 
each row and column of A would have at least one non-zero entry. If it still isn't singular,  
adding in a few random 1's into A often helps.
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Note: take the simple case of a dataset where point i is only influenced by point i-1. This is 
basically a renewal process, and we are just estimating a renewal density. 

Here A = I, K = 1, and we get the density estimator 1/{n(xi – xi-1)}.
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Computation time and performance comparison.

Test of concept. Examples of exponential, truncated normal, uniform, and Pareto g.



Computation time and performance comparison.

Triangles = Marsan and Lengliné (2008) method. Circles = analytic method.


