
Spatial Statistics 28 (2018) 39–58

Contents lists available at ScienceDirect

Spatial Statistics

journal homepage: www.elsevier.com/locate/spasta

Modelling spatial extreme events with
environmental applications
Jonathan Tawn a,*, Rob Shooter b, Ross Towe c, Rob Lamb d,e

a Department of Mathematics and Statistics, Lancaster University, United Kingdom
b STOR-i Centre for Doctoral Training, Department of Mathematics and Statistics, Lancaster University,
United Kingdom
c School of Computing and Communications, Lancaster University, United Kingdom
d JBA Trust, Skipton, United Kingdom
e Lancaster Environment Centre, Lancaster University, United Kingdom

a r t i c l e i n f o

Article history:
Received 31 October 2017
Accepted 24 April 2018
Available online 4 May 2018

Keywords:
Conditional multivariate extreme values
Copula
Gaussian processes
Max-stable processes
Pareto processes
Spatial extremes

a b s t r a c t

Spatial extreme value analysis has been an area of rapid growth
in the last decade. The focus has been on modelling the spatial
componentwise maxima by max-stable processes. Here, we will
explain the limitations of these modelling approaches and show
howspatialmodels canbedeveloped that overcome these deficien-
cies by exploiting the flexible conditional multivariate extremes
models of Heffernan and Tawn (2004). We illustrate the benefits of
these new spatial models through applications to North Sea wave
analysis and to widespread UK river flood risk analysis.
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1. Introduction

In many environmental applications data are collected from a number of spatial locations, for
example numerous locations across an ocean basin or locations across a river network. Historically
interest has been in the extremal behaviour at individual sites. However, our interest lies in developing
a framework in which it is possible to estimate probabilities of joint events over space. For example,
for wave heights we may want to know the probability of no offshore structure being damaged in
a storm, and for river levels the probability that the total damages from a flood exceed £1 billion.
Probabilities of the occurrence of extreme spatial events are of particular interest to the reinsurance
industry for deriving aggregate financial loss distributions, and also to governments in terms of risk
assessment and emergency planning.
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To answer such questions we take an asymptotically justified model for the joint occurrence of
extreme values of an event over space. Our reason for this is that we aim to extrapolate to spatial
events that are larger than any previously observed, so we cannot rely on empirical evidence alone.
Asymptotic theory therefore provides a principled approach to develop our models and understand-
ing. Such a spatial model requires both marginal distributions and the dependence structure of the
spatial process to be explicitly characterised. It is the challenge ofmodelling the extremal dependence
structure thatwill be the primary focus of this paper. As closed formprobabilities cannot be derived for
the spatial events of interest to us, we aim to developmethods that enable straightforward simulation
of extreme spatial events from which probabilities can be derived using Monte Carlo methods.

Let
{
Y (s) : s ∈ S ⊂ R2

}
denote a stationary spatial process indexed by s over a set S withmarginal

distribution function F whichhas upper endpoint yF . In practiceweobserve replicates of {Y (s) : s ∈ S}

at a finite set of points
{
Y (sj) : j = 1, . . . , n

}
, and at times t = 1, . . . , n. Hence Yt (s) denotes the

process observed at time t at location s. We are interested in the extreme values of Y over the entire
set of S. For this paper, we assume that the entire spatial process is independent and identically
distributed in time, i.e., {Yi(s); s ∈ S} is independent of {Yj(s); s ∈ S} for all i, j = 1, . . . , n with i ̸= j.
Thus our focus is on the spatial dependence behaviour of the process only. However, unlike in many
applications of spatial statistics, we have a large number of independent and identically distributed
replicates of the spatial process from which to make our inference.

In many spatial extreme value problems the aim is to characterise the extremal behaviour of the
spatial process Y (s). A complication is that without a natural ordering scheme in more than the one
dimension the definition of an extreme event is not well-defined. A range of approaches can be taken,
as follows.

Max-stable processes Consider componentwise maxima over n independent and identically dis-
tributed copies of {Y (s), s ∈ S}, i.e.,

{Mn(s); s ∈ S} = {max
1≤t≤n

Yt (s); s ∈ S}. (1.1)

Here, and throughout this paper, operations are carried out componentwise, i.e., site specifically.
Pareto processes Consider the process obtained by characterising the limiting behaviour of

{Y (s); s ∈ S | max
s∈S

Y (s) > u} (1.2)

as u → yF .
Conditional extremes processes We propose to characterise the behaviour of

{Y (s); s ∈ S | Y (s0) > u} (1.3)

for any s0 ∈ S as u → yF .

When suitably linearly normalised, {Mn(s); s ∈ S} converges (as n → ∞) to a max-stable process;
see Smith (1990), Schlather (2002), Padoan et al. (2010) and Davison et al. (2012). This is the most
widely used approach to spatial extremes due to its historical link to the families of univariate and
multivariate extreme value distributions (all finite dimensional distributions of a max-stable process
are multivariate extreme distributions) and also for its elegant mathematical properties. However,
this approach cannot be used to answer questions about original events for Y (s) since Mn(s) is a
composition of a number of different events, and hence this formulation cannot be used to answer
our motivating questions. Furthermore, the spatial dependence structure for Mn(s) is restrictive and
so fails to accommodate a wide class of events including Gaussian processes; see the discussion of
χ (τ ) below.

Using the underlying mathematical formulation of max-stable processes, Ferreira and de Haan
(2014) obtain a limiting form of the process (1.2), which we outline in Section 2.3. Note that Dombry
and Ribatet (2015) alternatively condition on other functionals of the process being extreme, and
obtain a class of limiting processes known as ℓ-Pareto processes.

Our proposal differs in two ways from that used for Pareto or ℓ-Pareto processes. We condition
on the extreme event in conditional representation (1.3) being large at a specific site. We also
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exploit the normalisation structure fromHeffernan and Tawn (2004) in the conditional approach (1.3)
that uses a different normalisation of Y (s) to achieve a more general (and more flexible) limiting
representation. We will take the conditional extremes process approach (1.3) which we outline in
Section 3.2. However, we also give further details of max-stable and Pareto processes to help explain
their weaknesses for our needs and to show how our approach differs from them.

To help to first identify the differences between the approaches, let us introduce two pairwise
spatial extremal dependence measures, {χ (τ ), χ̄ (τ )}, which are natural extensions of multivariate
measures defined by Coles et al. (1999) to stationary spatial processes. Consider a pair of sites (s, s+τ ),
each in S. Then χ (τ ) is defined by the following limit probability

χ (τ ) = lim
y→yF

P(Y (s + τ ) > y | Y (s) > y), (1.4)

if it exists. Additionally, χ̄ (τ ) is determined by the following asymptotic equivalence, as y → yF

P(Y (s + τ ) > y | Y (s) > y) ∼ L
(
1/F̄ (y)

)
{F̄ (y)}[1−χ̄ (τ )]/[1+χ̄ (τ )],

where L is a slowly varying function at infinity and F̄ (y) = 1 − F (y). Here 0 ≤ χ (τ ) ≤ 1 and
−1 < χ̄ (τ ) ≤ 1. For each of χ (τ ) and χ̄ (τ ), larger values correspond to stronger levels of extremal
dependence.

If χ (τ ) > 0, then χ̄ (τ ) = 1 and the largest values of the process can occur simultaneously at two
sites τ apart, a property known as asymptotic dependence at lag τ . However, if χ (τ ) = 0 then in
the limit the largest values at sites τ distance apart must occur in different spatial events, and the
process is said to have asymptotic independence at τ . For processes with χ (τ ) = 0, the quantity χ̄ (τ )
is a helpful measure for determining the level of asymptotic independence since it controls the rate
at which P(Y (s + τ ) > y | Y (s) > y) converges to zero. In particular, 0 < χ̄ (τ ) ≤ 1 corresponds
to positive extremal dependence, χ̄ (τ ) = 0 to near extremal independence, and −1 < χ̄ (τ ) < 0 to
negative extremal dependence.

Determining the pair {χ (τ ), χ̄ (τ )}, for all τ , provides a good summary of the extremal properties
of the process. Some spatial extreme value modelling approaches preclude certain types of extremal
dependence. For example, for all non-degenerate max-stable processes or Pareto processes that
are dependent at lag τ then {χ (τ ), χ̄ (τ )} = (cτ , 1), for some 0 < cτ < 1. However, for all
non-degenerate Gaussian processes {χ (τ ), χ̄ (τ )} = (0, ρ(τ )), where ρ(τ ) is the correlation of the
Gaussian process at lag τ . Thus max-stable and Pareto processes are asymptotically dependent,
whereas Gaussian processes are asymptotically independent. These measures show that max-stable
and Pareto processes fail to capture the spatial extremal dependence features of Gaussian processes.
Consequently, if the data were from a Gaussian process but a max-stable process model was fitted
then there will be an over-estimation of the risk of jointly large events. Therefore a broader class of
spatial extreme value models is required if we are to capture the dependence structures of both these
important classes of spatial process. The models we will introduce here have this capability, as well
as having sufficient structure in order to model our applications well.

The conditional multivariate extreme value model of Heffernan and Tawn (2004) estimates the
form of extremal dependence structure (asymptotic dependence or asymptotic independence) as
part of the fitting procedure. The model can handle high dimensional problems (Winter et al.,
2016), extremal temporal dependence (Winter and Tawn, 2017), missing values (Keef et al., 2009)
and negative dependence (Keef et al., 2013). Examples of the environmental applications include
heatwaves, hydrology and oceanography (Jonathan et al., 2013; Keef et al., 2009; Towe et al., 2017;
Winter and Tawn, 2016). Herewe outline how thesemultivariatemethods can be extended to a spatial
framework and clarify what they offer over existing spatial extreme value models.

The layout of the paper is as follows. Section 2 details existing statisticalmodels for spatial extreme
values. Section 3 presents the conditional multivariate extreme value model of Heffernan and Tawn
(2004) and outlines how this model can be extended to handle spatial extreme problems. Finally,
Section 4 details two applications of the methodology to oceanography and hydrology; the first of
these relates to understanding the extremal dependence of significant wave heights over the North
Sea and the second addresses questions onwidespread risk of flooding raised by the UKGovernment’s
2016 National Flood Resilience Review.
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2. Existing methods

2.1. Univariate modelling

Underpinning the two main distributions of univariate extreme value theory are representational
characterisations of max-stability and threshold-stability which uniquely define these distributions.
Here we recap these features in the univariate case, as they provide the core structure for the existing
spatial extremal theory.

Much classical extreme value theory is based on the property of max-stability that leads to the
extremal types theorem of Fisher and Tippett (1928). For independent and identically distributed
univariate random variables {Yi; i = 1, . . . , n}, with continuous but otherwise arbitrary distribution
function F with upper endpoint yF , let Mn = max{Y1, . . ., Yn}. If there are normalising sequences
an > 0 and bn such that

P
(
Mn − bn

an
≤ x

)
→ G(x) (n → ∞), (2.1)

where G is a non-degenerate distribution function, then G is of the form

G(x) = exp

{
−

[
1 + ξ

(
x − µ

σ

)]−
1
ξ

+

}
,

with parameters (µ, σ , ξ ) ∈ R × R+ × R corresponding to location, scale and shape parameters and
{z}+ = max{0, z}. This is known as the generalised extreme value (GEV) distribution, and is denoted
GEV(µ, σ , ξ ). This class of distributions uniquely satisfies the max-stability property which says that
for allm ∈ N and x ∈ R, there are constants Am > 0, Bm such that

{G(Amx + Bm)}m = G(x).

Thus the GEV is the only non-degenerate distribution that is closed to the operation of maximisation.
An alternative approach to modelling univariate extremes is to focus on the exceedances of a

threshold u. Pickands (1975) showed that if there is a non-degenerate limit (2.1), then there exists
a normalising function c(u) > 0 such that as u → yF ,

Y − u
c(u)

| Y > u
d

→ V ,

where convergence is in distribution and V is non-degenerate. Then V follows a generalised Pareto
distribution, which we denote GPD(ψ, ξ ), with distribution function

H(x) = 1 −

(
1 +

ξx
ψ

)−
1
ξ

+

, (x > 0), (2.2)

with scale parameter ψ > 0 and shape parameter ξ ∈ R.
The characterising property of the GPD is that of threshold stability (Davison and Smith, 1990),

that is, for any v > 0, there exists a function c(v) > 0 such that{
V − v

c(v)

}
| V > v

d
= V . (2.3)

Thus scaled excesses of a higher threshold v by V have the same distribution as V . This is illustrated
in Fig. 1. The GPD is the only distribution with this threshold-stability property.

Based on this asymptotic justification, we make the modelling assumption that the distribution of
excesses of Y (s) over a high threshold u follows the limiting distribution for excesses exactly, i.e.,

Y (s) − u | Y (s) > u d
= V (s) | V (s) > 0 (s ∈ S).

Consequently, the margins of Y (s) are GPD(ψ, ξ ) distributed above the threshold u, where ψ and
ξ do not depend on s ∈ S as the Y (s) process is stationary. Since the above assumption provides
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Fig. 1. Illustration of threshold stability property described by relationship (2.3). The left panel shows a sample from V ∼

GPD(ψ, ξ ) with the vertical line representing the threshold v and the red points the exceedances of v; the right panel shows
these same exceedances (shown as excesses in red) after scaling (here the GPD has parameters (ψ, ξ ) = (1, 0), and so cv = 1).
These scaled excesses are compared against a new sample (in grey) from the original distribution of V , we note that these two
samples have the same distribution. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

no information on the marginal behaviour below u, the empirical distribution is used below this
threshold (Coles and Tawn, 1991). The resulting model for the marginal distribution function is

F (x) =

⎧⎪⎨⎪⎩
F̃ (x) if x ≤ u

1 − [1 − F̃ (u)]
[
1 +

ξ (x − u)
ψ

]−
1
ξ

+

if x > u,

where F̃ (x) is the empirical distribution function of all of the data at all sites. Due to stationarity of the
process, data at all locations can be used to estimate F .

The study of dependence structure is typically undertaken via copulas (Nelsen, 2006), which re-
quires themarginal distributions to be identical anduniformly distributed. Althoughwehave identical
margins, we prefer to transform them to non-uniform margins, via the pointwise transformation

Xt (s) = K−1
{F (Yt (s))} (s ∈ S, t = 1, . . . , n),

so that Xt (s) is a spatial process, independent over time, and with marginal distribution function K .
We perform this transformation as the extremal dependence properties of Xt (s) are more simply
expressed for some non-uniform marginal choices.

The most convenient choice of K depends on the context: the Fréchet or Pareto distributions
are typically assumed for max-stable distributions (Resnick, 1987, 2013); for conditional extremes,
Heffernan and Tawn (2004) use Gumbel margins; for joint tail modelling, Wadsworth and Tawn
(2012) used exponential margins while Keef et al. (2013) showed that Laplacemargins allow negative
dependence to be incorporated the most parsimoniously. Critically, Gumbel, Exponential and Laplace
distributions all have exponential upper tails, so if negative dependence is avoided (which is reason-
able inmost spatial extremes applications) they are essentially identical approaches for our purposes.
Herewe take Xt (s) to haveGumbelmarginals, so thatK (x) = exp{− exp(−x)}, as this gives the clearest
link to the max-stable results; since exp{Xt (s)} has Fréchet margins. Thus, results in Fréchet margins
translate to results in Gumbel margins via a log transformation.

We now have that {Xt (s); s ∈ S} is a stationary spatial process with Gumbel margins. Although the
copula/dependence structure of this process is restricted by the stationarity of the process, the range
of choice of models is nonetheless vast. We saw, in the univariate case, that looking at the extremes of
the variable reduced the class of possible continuous distributions to either the GEV or GPD depending
on the extremal feature that is studied. For the dependence structure similar simplifications arise by
imposing max-stability and threshold stability in spatial contexts. We explore these two strategies in
Sections 2.2 and 2.3 respectively.

2.2. Max-stable processes

Given that {Xt (s); s ∈ S} has Gumbel margins, it follows from (1.1) and (2.1) that we can take
an = 1 and bn = log nwhich gives Z(s), defined by

Z(s) d
= lim

n→∞

{
max

t=1,...,n
Xt (s) − log n

}
(s ∈ S),
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to be a max-stable process with Gumbel margins. As a consequence of the Z(s) process being max-
stable, for any d sites {s1, . . . , sd} in S then {Z(s1), . . . , Z(sd)} with distribution function G is max-
stable, i.e., for allm ∈ N and x ∈ Rd,

{G(x + logm)}m = G(x),

so the joint distribution is stable with respect to taking componentwise maxima. From the character-
isation of de Haan (1984) and Schlather (2002), the max-stable process Z(·) takes the form

Z(s) = max
i≥1

{Ri + Wi(s)} (s ∈ S), (2.4)

where {Ri, i ∈ N} are the points of a Poisson process onRwith intensity exp(−x)dx and theWi(s) over
i are independent and identically distributed stochastic processes with continuous sample paths such
that

E[exp{Wi(s)}] = 1 (i ∈ N, s ∈ S).

Note that the additive structure is identical to the usual product structure, with the difference arising
due the change in choice of marginal distributions. WhenW (·) is a Gaussian process with a particular
moment structure, this gives the Brown–Resnick process for Z(·) (Brown and Resnick, 1977; Davison
et al., 2012). Aweaknesswith thismodel is thatG can only be specified via a series of evaluations of the
multivariate normal distribution function (Genton et al., 2011), though reductions in the numerical
difficulties can be achieved using methods of Wadsworth and Tawn (2012) that require additional
information about which segments of Z(s) arise from the same Yt (s) process.

2.3. Pareto processes

An alternative asymptotic characterisation for spatial extremes is to use the threshold exceedance
analogue of max-stable processes, namely generalised Pareto processes (Ferreira and de Haan, 2014).
The strategy behind this development is a spatial extension of the argument that led to the GPD in
the univariate case, i.e., we condition on an extreme event occurring and then study the properties
of this extreme event as the threshold that determines the extreme event tends to a limiting value.
Specifically, define the process T (s) by

{T (s); s ∈ S} :
d
= lim

u→∞

[
{X(s) − u; s ∈ S} | sup

s∈S
X(s) > u

]
.

Then T (s) is a Pareto process,with the property that sups∈ST (s) is distributed as a standard exponential
random variable but that T (s) can be negative for some values of s ∈ S. Critically, for all v > 0, T (s)
then satisfies

{T (s) − v | sup
s∈S

T (s) > v}
d
= T (s),

so that T (·) satisfies the threshold-stability property. Pareto processes are the only such processes
that possess this property. This property is illustrated in Fig. 2, which shows a set of realisations of the
process X(s) in black with a subset (indicated in red) corresponding to realisations with sups∈SX(s) >
u. Thus each of the red realisations is approximately a Pareto process, i.e., u + T (s).

To help study Pareto processes it is helpful to draw on the max-stable characterisation (2.4) of
Ferreira and de Haan (2014). A Pareto process is simply one of the latent processes that underpin the
Z(s) process. It follows that we can represent the Pareto process T (s) by

T (s) = R + W (s), (2.5)

where R is a standard exponential random variable which is independent of a stochastic processW (·),
satisfying sups∈SW (s) = 0. A common choice for this is to set W (·) to be a Gaussian process, such
as the Gaussian process family used for Brown–Resnick processes (Brown and Resnick, 1977). In this
case,W (·) is a conditional Gaussian process, conditional on sups∈SW (s) = 0. A benefit ofworkingwith
Pareto processes over max-stable processes is that the process is derived from a single realisation of
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Fig. 2. Illustration of a Pareto process, showing realisations of a process X(s) (grey lines), where for some chosen threshold
u (blue line), with the realisations where sups∈SX(s) > u (red lines) being approximately distributed as u + T (s). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

W (·) and R. Therefore, conditionally on R, the T (s) process is a conditional Gaussian process which is
massive simplification of inference relative to max-stable processes. However, the conditioning for
W (·) is complex as it applies over all s ∈ S , which makes computation non-trivial.

2.4. Weakness of Pareto processes

Assuming that the process X(s), when it exceeds a threshold u, is exactly a Pareto process means
that for large u, X(s) = u + T (s). Hence, for some s0, s ∈ S , we have

X(s0) = u + R + W (s0) and X(s) = u + R + W (s),

where R is a standard Exponential random variable and W (s) is independent of R, so that when X(s0)
is large,

X(s) = X(s0) + {W (s) − W (s0)}.

Then X(s0) is interpretable as the size of the event and {W (s) − W (s0)} as the spatial profile of the
event. Critically, the shape and size of these extreme events are independent for Pareto processes.
Thus events are equally likely to retain the same type of spatial profile whatever their size at a point
s0. An illustration of this is shown in the top row of panels in Fig. 3, with the profile of the events
unchanged as the size of events increases (left to right panels). As a consequence, Pareto processes
are asymptotically dependent at all lags, as

lim
x→∞

P(X(s) > x|X(s0) > x) > 0 (s0, s ∈ S).

However, in practice we almost never observe such processes. Instead, we often see events becoming
more localised, as seen in the bottom row of panels in Fig. 3. Here we see events of the small initial
magnitude and profile as in the top row become more spatially localised around the maximum
value as the maximum value of the field increases. For this type of process, which include Gaussian
processes,

lim
x→∞

P(X(s) > x|X(s0) > x) = 0 (s0, s ∈ S, s ̸= s0),

so the process is asymptotically independent at all lags.
It may be that both of these formulations are too simplistic and the process is asymptotically

dependent up to a certain lag hAD, then asymptotically independent when the lag exceeds hAD, such
as in the models of Bacro et al. (2016). Consequently, we want an inference method which does not



46 J. Tawn, R. Shooter, R. Towe et al. / Spatial Statistics 28 (2018) 39–58

Fig. 3. Illustration of types of extremal spatial behaviour. The top row shows a process which retains the same spatial
profile as the event becomes more extreme, corresponding to asymptotic dependence. The bottom row depicts the extreme
event becoming more localised as its magnitude increases, commonly seen in practice and corresponding to asymptotic
independence.

pre-determine that the process is asymptotically dependent at all lags, so that hAD = ∞ (like max-
stable and Pareto processes), or asymptotically independent at all lags with hAD = 0 (like Gaussian
processes). In particular, we would like to have the flexibility to determine the lag hAD at which this
transition occurs. The models introduced in Section 3 do precisely that.

3. Conditional extremes

3.1. Asymptotics for conditional multivariate extremes

Consider a vector random variable X = (X1, . . . , Xd) with Gumbel marginals; for i < j, we shall use
the notationXi:j = (Xi, . . . , Xj). For simplicity, wewill assume that all the variables are non-negatively
dependent and that X has a joint density.

Heffernan and Tawn (2004) propose an asymptotically justified conditional multivariate extremes
approach for modelling the extremes of a vector X given X1 is large. To explore the conditional
distributionP {X ≤ x | X1 > u} for large u, we use an asymptotically justified form for this distribution
as u → ∞. If x is fixed, in general the limit distribution will be a degenerate distribution. Hence X
needs to be normalised appropriately so that the limiting conditional distribution is non-degenerate
as u → ∞. Heffernan and Resnick (2007) propose that X2:d is linearly normalised as a function of
either X1 or u. Normalising by X1 leads to simpler limit models, thus we use the approach of Heffernan
and Tawn (2004) and carry out this normalisation.

Heffernan and Tawn (2004) assume that there exist functions a:R → Rd−1 and b:R → Rd−1
+ , such

that for x > 0,

P
(
X2:d − a(X1)

b(X1)
≤ z2:d, X1 − u > x | X1 > u

)
→ G2:d(z2:d) exp(−x), (3.1)

as u → ∞ with z2:d ∈ Rd−1 and where G2:d is a joint distribution function that is non-degenerate in
eachmargin. A key property of the limit (3.1) is that the limiting distribution factorises, corresponding
to large values of X1 being independent of the associated normalised X2:d.

Under weak assumptions on the joint distribution of X, Heffernan and Resnick (2007) show that,
componentwise, a and bmust be regularly varying functions satisfying certain constraints, which for
Gumbel margins corresponds to each of the components of a (respectively b) being regularly varying
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functions of index 1 (respectively less than 1).Within this structure (Heffernan and Tawn, 2004) found
that a simple form for a and b holds for a very broad range of copulas. In particular, they assume that

a(x) = α2:dx and b(x) = xβ2:d

where α2:d = (α2, . . . , αd) ∈ [0, 1]d−1 and β2:d = (β2, . . . , βd) ∈ [0, 1)d−1. This canonical parametric
subfamily of a and b provides a parsimonious, yet flexible, family for statistical modelling.

Different types of extremal dependence lead to different values of the extremal dependence
parameters α2:d and β2:d. For 2 ≤ j ≤ d, when αj = 1 and βj = 0 the variables (X1, Xj) are
asymptotically dependent; when αj < 1, these variables are asymptotically independent. Within
the asymptotic independence case a further resolution of the dependence structure is possible, with
0 < αj < 1 or αj = 0 and βj > 0 corresponding to positive dependence, and near independence
when αj = βj = 0. When there is a multivariate normal copula (with ρij > 0 corresponding to the
correlation parameter between variables i and j), then αj = (ρ1j)2, βj = 1/2 and G2:d is the joint
distribution function of a multivariate Normal distribution which has mean vector 0, variance (for the
jth variable) of 2ρ2

1j(1− ρ2
1j) and a correlation between variables i and j of (ρij − ρ1iρ1j)/[(1− ρ2

1i)(1−

ρ2
1j)]

1/2; see Heffernan and Tawn (2004).
Unfortunately there is no finite parametric form for G2:d or its marginal distributions, so a range of

approaches have been taken. Heffernan and Tawn (2004) use empirical estimates for G2:d; Lugrin et
al. (2016) utilise a mixture of Gaussian distributions, while Towe et al. (2016) use a Gaussian copula
with kernel smoothed marginal distributions. Here, we make the assumption that G2:d is multivariate
normal with margins N(µj, σ

2
j ) for j = 2, . . . , d. Under this assumption,

Xj | {X1 = x} ∼ N
(
αjx + µjxβj , σ 2

j x
2βj
)

(x > u, j = 2, . . . , d), (3.2)

with parameters α2:d,β2:d, µ2:d = (µ2, . . . , µd) and σ2:d = (σ2, . . . , σd).

3.1.1. Inference
In order to estimate the dependence parameters α2:d and β2:d, a pseudo-likelihood is constructed

with X2:d | X1 = x (for x > u) treated as independent with marginals of the joint conditional
distribution stated in Eq. (3.2). The estimation of these dependence parameters is performed through
maximum pseudo-likelihood for the nu pairs for which X1 > u. The likelihood is then

L
(
α2:d,β2:d,µ2:d, σ2:d

)
∝

d∏
i=2

nu∏
j=1

1

xβiij σi
exp

⎧⎪⎨⎪⎩−

(
xij −

[
αix1j + µix

βi
1j

])2
2x2βiij σ

2
i

⎫⎪⎬⎪⎭ ,
for −∞ < µi < ∞, σi > 0, −1 ≤ αi ≤ 1, and −∞ < βi < 1 for i = 2, . . . , d, and where xij
denotes component i for the jth exceedance of u by X1. The maximum pseudo-likelihood estimates
are denoted by α̂, β̂, µ̂ and σ̂. Then realisations of Z2:d ∼ G2:d are given by

z(j)2:d =

(
xij − α̂ix1j
(x1j)β̂i

, i = 2, . . . , d

)
for j = 1, . . . , nu (3.3)

where x1j > u for each j. This sample of Z2:d is used to obtain an empirical estimate of the joint
distribution function G2:d. Consequently, we have a model for the joint tail behaviour of X, when X1
is large. This enables us to make inferences beyond the range of the observed data with large X1; for
more details of fitting these models over different conditioning variables and methods for simulating
jointly rare events see Heffernan and Tawn (2004) and Keef et al. (2013).

A limitation of the inference for models in the conditional multivariate extremes approach is
that self-consistency of the different conditional distributions is not ensured. This may lead to
inconsistencies when calculating joint exceedance probabilities such as

P(X1 > u, X2 > u) = P(X1 > u|X2 > u) · P(X2 > u)
= P(X2 > u|X1 > u) · P(X1 > u),
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since themodels for X1|X2 > u and X2|X1 > u are not necessarily equal. Liu and Tawn (2014) discussed
this problem, making a range of proposals to reduce this problem. One proposal which removes the
issue is to assume that (X1, X2) are exchangeable,which implies for that the associated parameters and
distributions are equal for each conditional distribution. For non-exchangeable pairs though, whilst
removing the self-consistency problems, this induces biased inference.

3.2. Models for conditional spatial extremes

This section gives an indication only of how some aspects of themultivariate conditional extremes
methods could be extended to the spatial setting. For simplicity, it is assumed that X(s) is isotropic as
well as stationary and with Gumbel marginals, and let h = |s − s0| be the distance between two sites
s0, s ∈ S. A consequence of these standard spatial statistics assumptions is that the joint distribution
of pairs {X(s1), X(s2)} are exchangeable variables, for all pairs s1, s2 ∈ S , and hence there are none of
the issues of self-consistency that are present in multivariate cases.

The natural spatial extension of the Heffernan and Tawn (2004) conditional multivariate extremes
representation to the spatial context assumes that there exist normalisation functions α(h) ∈ [0, 1]
and β(h) ∈ [0, 1) for all h > 0, with α(0) = 1, β(0) = 0, such that as u → ∞,{

X(s) − α(h)X(s0)
X(s0)β(h)

: s ∈ S, X(s0) − u > x
}

| X(s0) > u

d
→ {µ(h) + σ (h)Z(s) : s ∈ S, E},

where, µ(·) and σ (·) are deterministic functions with σ (h) > 0 for h ̸= 0 and µ(0) = σ (0) = 0; Z(·)
is a random process with E[Z(s)] = 0 and Var[Z(s)] = 1 for all s ∈ S and E is a standard Exponential
random variable that is independent of the process Z(·).

Assuming that this limit result holds exactly for a large choice of thresholdu gives amodel structure

X(s)|{X(s0) > u} = α(h)X(s0) + X(s0)β(h)W (s − s0) (s ∈ S), (3.4)

where {X(s0) − u}|X(s0) > u follows a standard exponential distribution and is independent of W (·),
where W (s) := µ(h) + σ (h)Z(s) is a spatial isotropic process with W (0) = 0, marginal mean µ(h),
marginal variance σ 2(h) and correlation function ρ(·). As in the multivariate conditional extremes
case,wewillmake amodelling assumption thatW (·) is a Gaussian processwith a correlation structure
to be estimated. This Gaussian assumption may appear to be a very strong assumption but it is the
assumed process for all Brown–Resnick max-stable processes (Davison et al., 2012), for the type of
processes given in Engelke et al. (2015) and in a conditional form for Pareto processes (Ferreira and
de Haan, 2014).

The key is then tomake inference on α(h), β(h), µ(h), σ (h) and the correlation structure ofW (·) so
that inference can be drawn on the process (1.3) (after back transformation from X(s) to Y (s)). There
are some interesting special cases of this model:

Pareto type process If α(h) = 1 and β(h) = 0 for all h ≥ 0, then model (3.4) is exactly that
given by the process of Engelke et al. (2015) and is strongly related to the Pareto process, given
by expression (2.5), as it is essentially the same process but subject to different conditioning
constraints. It is asymptotically dependent at all lags.

Gaussian process From results in Section 3.1 onmultivariate normal copulas, {α(h)}1/2 satisfies the
properties of a valid spatial correlation function and β(h) = 1/2 for h > 0, then model (3.4)
is exactly the limiting conditional extremal process of a Gaussian process; it is asymptotically
independent for all positive lags.

Mixture process If (α(h), β(h)) = (1, 0) for all h ≤ hAD but α(h) < 1 for h > hAD then the process is
asymptotically dependent up to lag hAD and asymptotically independent otherwise.

The aim therefore is to identify if any of these structures is present in an application. To help give
insight into these three different sub-classes of model (3.4), in Fig. 4 we show repeated simulations
of a 1-dimensional process with X(0) equal to the marginal 99.995% quantile, thus all simulations are
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(a) (b)

(c)

Fig. 4. Illustrations of Pareto type, Gaussian andmixture extremal processes on a space S = (−10, 10). In all cases X(0) is in an
extreme state (equal to the 99.995% marginal quantile), and the latent Gaussian process Z(s) has mean and standard deviation
of µ(h) = µc and σ (h) = σc for h > 0 and correlation function ρ(h) = exp(−h/3). Illustration is as follows: (a) Pareto type
process with µc = −0.4, σ 2

c = 1.3; (b) Gaussian process α(h) = exp(−h/3), µc = 0.06, σ 2
c = 0.6; (c) mixture process with

hAD = 3; α(h) = exp(−|h − hAD|/3) for h > 3, β(h) = 0, µc = −0.05, σ 2
c = 1.3.

equal for s = 0. Firstly, we can see that the three types of process behave differently from one another
in the location of a large event, with all replications for a given process type having broadly similar
behaviour. Secondly, note that if X(0) was more or less extreme the only effect would be a vertical
shift of the process when the process is in on-extreme states.

Pareto type processes remain of the same order of magnitude over the space S. Specifically, it
has a mean negative drift away from an extreme level, with here, due to the choice of correlation
function and the Gaussian process for Z(s), in the neighbourhood of s = 0 the extremal process is
a Brownian motion with negative drift in distance |s| from the extreme event. Consequently there
is a positive probability of X(τ ) being large given X(0) is large for all s ∈ S , hence the process is
asymptotically dependent for all lags τ as defined by definition (1.4). In contrast, for the extremal
Gaussian process events decaymuchmore rapidly, essentially geometrically, until the process returns
to a non-extremal state. Thus, it can be seen that the process is asymptotically independent for all lags
τ , but with the rate of convergence of the non-limit probability in definition (1.4) to 0 is dependent on
τ . The mixture type processes behave like Pareto type processes up to lag hAD from the extreme event
at s = 0, but then decay more rapidly to until the process returns to a non-extremal state. Hence the
mixture process is seen to be asymptotically dependent up to lag hAD and asymptotically independent
for larger lags.

4. Applications

4.1. Offshore risk from waves

4.1.1. Background
The accurate modelling of extreme wave heights is of key importance in the design of offshore

structures. Such structures must be constructed adhering to strict guidelines, which themselves rely
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Fig. 5. Map of sampling locations in the North Sea from which the data are collected, with the particular transect used for
model fitting highlighted in red. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

on the assessment of how often extreme events occur. Methods for spatial extremes are useful for
enabling the likelihood over sites to be constructed for improved marginal parameter inference and
for spatial risk assessment over a network of offshore structures. For the former, we need a reliable
spatial dependence model to ensure valid inferences are made for the smoothly varying marginal
parameter models (Randell et al., 2015). For the latter, companies with offshore interests often have
more than one asset to insure and so having a joint risk assessment that gives the probability than
none of the assets will be affected in their lifetime is required.

The aim of our analysis is to test the viability of the conditional spatial extremes methods set out
in Section 3.2 for application to significant wave data (defined as four times the standard deviation
of the sea-surface) in the North Sea region shown in Fig. 5. The data come from a numerical model
driven by observational wind data but have been filtered and transformed to give one observation
per storm event and to have the marginal wave directional effects removed. This leaves 1680 storm
events where the event is extreme for at least one of the 150 locations on the grid. A description of
the data and pre-processing is given in Randell et al. (2016) with these data representing for Shell
Research their test-bed for spatial analysis methods.

Directionality of the waves is found to be present in the spatial dependence structure, so for
simplicity we perform our spatial inference on a directional transect through the grid, reducing the
field to approximately 1 dimension. The transect used is orientated east–west in the centre of the grid
and consists of 7 sites; this is highlighted in Fig. 5. The use of transects for this ocean basin is similar
to that as used in Ross et al. (2017), though max-stable processes are fitted in that case.

4.1.2. Methods
Weapply themultivariate conditional extremesmodel of Section 3.1 to identify the potential struc-

ture for the spatial functions α(h), β(h), µ(h) and σ (h). For illustrative purposes, we only condition on
the west-most site in this transect and then fit the model to the other locations in the transect. This is
not necessary, however, and more information can be extracted by suitably combining the different
conditional distributions. Similar studies using other transects are expected to give weaker levels of
extremal dependence as our selected transect direction aligns with most major storm tracks.

To obtain estimates for the model, some assumptions are made for the form of G2:7 in limit (3.1).
Specifically, to correspond to the Gaussian process formulation in Section 3.2, we take G2:7 to be the
distribution function of amultivariate normalwithmean and standard deviation vectors (µ2, . . . , µ7)
and (σ2, . . . , σ7) and with correlation function at lag h taken to be ρh. This model is fitted jointly over
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Fig. 6. Pointwise estimates of α(h) from the multivariate conditional extremes fit, conditioned on the west-most location in
the transect. Lag h = 0 corresponds to the conditioning site, with h = 6 being the parameter estimate at the most easterly
site. Estimates are for integer values of h and these are shown to be linearly interpolated to show we know that the function is
continuous. The dotted lines show 95% confidence intervals for the pointwise estimates.

sites, with amultivariate normal likelihood, unlike in all previous applications of Heffernan and Tawn
(2004) which use pseudo-likelihood in Section 3.1.1. For each fitted parameter θ , we set θ (i) = θi+1
for i = 1, . . . , 6 so that, for example, α(1) = α2.

In fitting the conditional extremes model, the 0.8 quantile of X(s) has been selected as the condi-
tioning threshold u. This value was chosen for u as this seemed to satisfy the required approximate
independence property of limit (3.1) both for that level and that it holds for all higher threshold
choices. In practice, the threshold choice is a compromise between being sufficiently low to utilise
enough data whilst being suitably high so that the asymptotic argument in (3.1) provides a good
approximation.

4.1.3. Results
Exploratory analysis using themodel described in Section 4.1.2 showed that therewas no evidence

for β(h) to vary with h > 0, and so we take β(h) = βc , where 0 ≤ βc < 1 is some constant,
for h > 0; our estimated model gives β̂c = 0.17. Also, we found ρ̂ = 0.9. The corresponding
α(i), i = 1, . . . , 6, estimates are shown in Fig. 6,with the values presented here as pointwise estimates
of the function α(h). The estimates are consistent with the physical characteristics that may be
expected from extreme waves. For 0 ≤ h < hAD such that α(h) = 1 the process is asymptotically
dependent, then it would be anticipated that a nearby location is likely to experience an extreme
wave of the same order of magnitude if the conditioning site has observed such an event. We see that
if this holds then 0 ≤ hAD < 1 based on the 95% confidence intervals for the pointwise estimates.
We also see that the degree of dependence is estimated to decrease as the distance between sites
increases, which is physically realistic. The decay of the pointwise estimates for α(h), for h > hAD,
seems smooth and the analysis suggests a simple parametric form for α(h) of the form

α(h) =

{
1 if h < hAD
exp{−γ (h − hAD)} if h ≥ hAD.

Previous spatial modelling of significant wave heights has utilisedmodels ofmax-stable processes,
see Section 2.2. However, these are asymptotically dependent, i.e., α(h) = 1 for all h. We can see from
Fig. 6 that this is not a good model for h ≥ 1 for these wave data.

Next, consider the estimated mean and standard deviation functions of the limit process W (·).
Pointwise estimates for µ(h) and σ (h) are given in Fig. 7. Both functions behave very similarly; as the
distance between the two sites increases, the limit process increases in mean and standard deviation
but with decreasing rate for larger distances. This form of σ (h) is as expected since the unpredicted
variability is likely to increase as the extremal dependence weakens, but the former is a feature
that justifies investigation in future research to understand why this property arises. On this initial
analysis, however, it appears that µ(h) ∝ σ (h) would form a good spatial model.

To assesswhether the estimates ofα(h) andβ(h) are reasonable,we simulate using our fittedmodel
realisation of {X(s), X(s + h)}, for h = 1, 3, 6, where X(s) is the standardised (to Gumbel margins)
wave height at the most westerly site of the transect and is above the modelling threshold u. The
observed data (black), 1680 points from these joint distributions with Gumbel margins, together with
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Fig. 7. Pointwise estimates of µ(h) and σ (h) with properties shown identical to Fig. 6.

Fig. 8. Simulations from the fitted multivariate conditional extremes model; black points are the data on Gumbel margins,
whilst red points are simulated data from the fitted model: left, centre and right panels plot shows these data when h = 1, 3, 6
respectively. In each case, the x-axis is the standardisedwave height at the conditioning site (themost westerly in the transect),
with the y-axis being the standardisedwave height at the other site. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

336 simulated points with X(s) > u (red) are shown in Fig. 8. It appears from these simulations
that the fitted model provides a reasonable fit to the data; for each pair of sites, the distribution of
extreme wave data appears to have been captured well. Hence, the model appears to be appropriate
for modelling significant wave height in the North Sea on this particular transect. More work will be
undertaken to establish if this is the case for further transects in this ocean basin and also to determine
how to pool information across transects to estimate the functions α(·), β(·), µ(·), σ (·) that change
smoothly over distance or separation depending on whether isotropy is found to hold for extreme
wave events.

4.2. Understanding widespread flood risk

4.2.1. Background
Understanding flood risk is an important issue for insurance companies, the government, as well

as local communities. Previous events have shown that flood events can affect large spatial areas
and have devastating impacts on transport and infrastructure (Shaw et al., 2010). Therefore, it is of
paramount interest to understand the features of these events and plan future defences to be able to
withstand physically plausible events that we have not yet observed.

Flooding is a continuous spatial process but restricted to the river network; however as is common
with environmental problems we only have access to observations at a finite number of locations.
Therefore, we want to be able to make predictions from these pointwise locations that are consistent
with the underlying spatial process (Davison et al., 2012). Furthermore, the dependence structure of
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measurements of river flow is highly complex; this is because river flow gauges considered spatially
distant through standard metrics such as Euclidean distance can in fact be similar because they lie
within the same catchment (Asadi et al., 2015; Shaw et al., 2010). Previous studies such as Asadi et
al. (2015) have used the max-stable processes (see Section 2.2), however this approach does not suit
large scale studies. Other approaches such as Keef et al. (2009), Lamb et al. (2010) and Towe et al.
(2016) have adopted the conditional multivariate extremesmodel stated in Section 3.1 to understand
widespread flood risk.

4.2.2. National flood resilience review
During winter 2015, consecutive storms Desmond, Eva and Frank hit the UK causing widespread

flooding across large regions of northern England. These storms required significant responses from
the emergency services and in some cases the army to help with the protection of property as well as
infrastructure (Lamb et al., 2015). Due to the unprecedented effect of these storms and often the rapid
response required, the UK government set up the National Flood Resilience Review (NFRR). The aim of
the NFRR was to gain a better understanding of the drivers of flooding in the UK as well as the current
methods to deal with the associated risks and damages caused by flooding (Government, 2016).

In particular, the scientific advisory group of the NFRR wanted to understand more about the
likelihood of flooding in the UK and move towards thinking about risks at a national scale rather than
location by location. To better understand the risk of widespread flooding, a comprehensive analysis
of UK river flow gauges was required. As we are interested in understanding the characteristics of
widespread flooding in the UK, a flexible spatial extreme valuemodel that is able to accommodate the
known features within the data is required. For example, this needs to model that flood events can be
both localised as well as national and not all sites are likely to be extreme concurrently. The Heffernan
and Tawn (2004) conditional multivariate extreme value model, stated in Section 3, satisfies both of
these modelling requirements.

4.2.3. Methods
Observations of river flow gauges were obtained from the National River Flow Archive maintained

by the Centre of Ecology and Hydrology, as well as from Environment Agency records. Before any
statistical modelling was undertaken, a quality assurance of the data was performed. This quality
assurance required the data to have at least 20 years of observationswith a relatively small percentage
of missing values, this requirement enabled robust estimation of the parameters of the associated
statistical models (see Sections 2.1 and 3). Furthermore, gauges were removed from the analysis
if unnatural changes in the time series were observed, for example if a dam was installed further
upstream. This results in unnatural changes of the time series at downstream gauge being present
in the time series (Shaw et al., 2010). This quality assurance process resulted in 916 suitable gauging
records. Tomaintain consistencywith previous studies of UK flooding, an event was defined to last for
a period of time of up to 7 days (Keef et al., 2009). The statistical analysis includes extensions to the
Heffernan and Tawn methodology as stated in Section 3.1 such as the handling of missing values as
well as efficient simulation techniques for high dimensional data sets and methods to model the rate
of the number of extreme events per year (Keef et al., 2013). These aspects are key when modelling
spatial river flow data sets with more details of these methods found in Keef et al. (2013). In order
to assess the validity of the statistical models, comparisons such as those shown in Fig. 8 were made.
From the statistical analysis, 10 000 years worth of events were simulated in Gumbel margins, we
denote these by

{X̃t (si); i = 1, . . . , 916, t = 1, . . . , 10000ny}, (4.1)

where ny is the average number of events in the region per year. This simulated event set includes
events that are larger than those observed in the data for at least one site but with the dependence
structure of these events being consistent with the features from the observed extreme events (Keef
et al., 2009). This simulated event set then allows us to estimate a number of summary statistics for a
range of severities of events to help us characterise the behaviour of flooding across the UK.
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4.2.4. Conditional probability calculation
In order to test the validity of simulations from the conditional extreme value model, we compare

the calculation of conditional probabilities from both the observed and simulated data sets. For all
return levels, the non-limit conditional probability in Eq. (1.4) is calculated relative to a conditioning
gauge, which in this case is situated on the river Severn. For the empirical data, the conditional
probability was calculated relative to the 99th percentile (approximately a 5 month level) as well
as to a level equivalent to the one year return level, the estimates of this can be seen in Fig. 9(a) and
(b) respectively. For the Heffernan and Tawn (2004) model estimates of the conditional probability
the empirical conditional probability from the simulated data set was evaluated for both a 10 and 100
year return level, see Fig. 9(c) and (d) respectively.

In both cases, the strongest dependence is seen with nearby gauges as well as those that lie within
the river Severn catchment. However, the spatial dependence is not stationary, as distant gauges can
still have strong extremal dependence, which is larger than those gauges nearby. This feature is due to
the similarity of their catchments with the catchment of the conditioning gauge. Focusing on Fig. 9(a)
and (b), when we consider higher levels the conditional probability decreases, this suggests that as
events become more severe, they are also becoming more localised. Higher conditional probabilities
from the observed data sets cannot be considered as there is insufficient data to produce stable
estimates. This decaying conditional probability characteristic though is also observed for the higher
levels considered in Fig. 9(c) and (d), which show our model-based estimates. There is also a smooth
transition in Fig. 9 between the estimates of the conditional probabilities from the observed and
simulated data sets.

If the statistical model had assumed asymptotic dependence between river flow gauges, the
conditional probabilities shown in Fig. 9 would be estimated as invariant to conditioning return
level. Therefore, if the 99% quantile was used to fit the model, comparing Fig. 9(a) and (d) shows
that this leads to an error in spatial extremal dependence estimation. In this particular case, there
would be massive over-estimation of the spatial extremal dependence between river flow gauges.
These comparisons confirm that the conditional extreme value model of Heffernan and Tawn (2004)
is accurately capturing the extremal dependence observed in spatially extreme river flows.

4.2.5. Scenario evaluation for the national flood resilience review
The analysis of the observed and simulated data sets in Section 4.2.4 confirmed that the features of

the observed data set are being captured in the models represented by the simulated event set. As a
result, we are able to use the simulated event set as a proxy for a long observational record to answer
fundamental questions for flood risk management posed by the NFRR such as:

What is the chance of an extreme river flow occurring at one or more gauges across England and
Wales, somewhere within the national river gauge network in any one year?

To frame this question in terms of our notation, we need, for an arbitrary year t , to estimate
1 − P

(
MY (si),t < ysi,T ; i = 1, . . . , 916

)
, where MY (s),t is the annual maximum in year t for the river

flow in site s and ys,T is the T year return level at site s. This probability is identical to 1 −

P
(
MX(si),t < xT ; i = 1, . . . , 916

)
, where xT is the T year return level on Gumbel margins. We estimate

the second term in this probability using the simulated sample (4.1) as

P̂
(
MY (si),t < ysi,T ; i = 1, . . . , 916

)
=

1
k

k∑
j=1

1

(
max

i=1,...,916
MX̃(si),j

< xT

)
, (4.2)

where k = 10000ny and 1(A) is the indicator function of event A.
The estimates of 1 − P

(
MY (si),t < ysi,T ; i = 1, . . . , 916

)
are shown as T varies in Fig. 10 using the

modelled dependencewith estimator (4.2) and under the two limiting cases that assume all of the 916
gauges are either completely independent or completely dependent. Here the complete independence
case assumes that there is no association between when flooding occurs at each of the 916 gauges,
whereas the complete dependence assumes that each of the 916 gauges behave identically. The
benefit of the conditional extremes approach is that we are able to estimate the probability whatever
T , i.e., even for events with return periods that are greater than the severity of the events captured
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(a) 99th percentile. (b) 1 year level.

(c) 10 year level. (d) 100 year level.

Fig. 9. Comparisons of the non-limit conditional probability (1.4) for (a) the 99th percentile and (b) the one year return period
from the observed data set; (c) and (d) show this conditional probability estimated using our model for the 10 and 100 year
return periods respectively. The triangle symbol represents the conditioning gauge for the estimate, this gauge is situated in
the river Severn catchment.

in the observed data set. For the NFRR, the key feature of this analysis was that the probability of
observing a 1 in 100 year event at any of the 916 gauging stations in any given year is 0.78, so its very
likely a 100 year event occurs somewhere in this region.

This analysis considered only those locations where there are gauges with river flow measure-
ments; current research is addressing how this question can be answered for every place along the
river network, i.e., to estimate 1 − P

(
MY (s),t < ys,T ; for s ∈ S

)
. It should be also noted that our study

focusses on England andWales, reflecting the scope of the NFRR (flood riskmanagement is a devolved
matter in the United Kingdom, with separate arrangements in place in Scotland).

What is the chance of an extreme river flow occurring in one or more Local Resilience Forums,
somewhere within the national river gauge network in any one year?

The analysis shown in Fig. 10 considered the probability of observing a flood event at any gauge
across the river network. However, for emergency planning purposes, interest lies in determining the
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Fig. 10. Comparison of the three dependencemodels used to estimate probability of observing at least one event above a T -year
return period for a given year: our model for the dependence (black), under a complete independence model (blue) and under
complete dependence (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

spatial extent of potential events. Within the England and Wales, responses to natural hazards are
managed through 42 Local Resilience Forums (LRFs), which we denote by

{
Lp; p = 1, . . . , R = 42

}
.

Therefore, it seems natural to define events in accordance to the number of LRFs that receive a T
year event at some gauge. Let MX,t (Lp) = maxi∈LpMX(si),t , i.e., it is the maximum level, on Gumbel
scale, over the pth LRF and let MX,t (L(r)) be the r largest value of MX,t (Lp), p = 1, . . . , R in year t ,
so MX,t (L(1)) > · · · > MX,t (L(R)). To understand the regional extent of spatial flood events, we are
interested in whether in an arbitrary year t , at least r LRFs have exceedances of the marginal T return
level, i.e., the {MX,t (L(r)) > xT }. We estimate this probability using the simulated sample (4.1) by

P̂
(
MX,t (L(r)) > xT

)
=

1
k

k∑
j=1

1
{
MX̃,j(L(r)) > xT

}
,

where k = 10000ny.
Estimates of the probability for r = 1, . . . , 4 are shown in Fig. 11. As expected the estimates for at

least r = 1 region being above a T -year return period in any given year is consistent with the analysis
shown in Fig. 10. Most interesting is that in any given year there is 0.35 probability of at least a 1 in
100 year event occurring in at least four LRFs.

Both of the questions proposed by the NFRR highlighted that flooding is more common than one
might expect. The typical communication of return period is a single site measure. The conditional
spatial extreme value model of Heffernan and Tawn (2004) allows us to provide robust answers to
these national scale questions through carefully capturing the complex dependence structure of a
high dimensional set of river flow gauges. The uncertainty around the estimates of the conditional
probability aswell as the point estimates shown in Figs. 10 and11 from theNFRR can easily be assessed
by bootstrap methods.

The questions proposed by the NFRR were answered by modelling the spatial dependence of
gauges on the river network. However, ultimate interest lies in estimating the chance of observing
a flood in a given year at any location along the river network. Answering this question is an ongoing
research question,which involves exploiting information about the river network aswell asmodelling
the joint dependence of river flow with that of the process of rainfall.
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Fig. 11. Estimated probability of observing at least r LRF regions above a T -year return period in any given year. The black, red,
green and blue curves show the cases for when r = 1, 2, 3, 4 respectively. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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