
1. Examples of spatial-temporal point processes 
1a. ​ A point process is a random collection of points falling in some metric space. For a 
spatial-temporal point process, the metric space is a portion of space-time, .S = Rd × R   

1b.​ Examples include incidence of disease, sightings or births of a species, occurrences of fires, 
earthquakes, lightning strikes, tsunamis, or volcanic eruptions. 

1c. ​ For a marked point process, each point has some mark or random variable associated with it. 
 

2. Characterizations of point processes. 
2a. ​ STOCHASTIC PROCESS. 
Point processes on the line were originally characterized as examples of stochastic processes on 
the line, that are: 
* ​Non-decreasing ​, 
* ​Z+ valued ​.                      ​non-negative integer value 
So define a point process as any non-decreasing, Z+ valued stochastic process. 
N(x,y) = the number of points ( ) with  ≤ x and  ≤ y.,x1  y1 x1  y1  

2b.​ A LIST OF POINTS. 
For any finite collection of points, simply as a finite list of points, N = { }., x , ...x1  2   

2c. ​ RANDOM MEASURE. 
A Z+ valued random measure includes a wide range of processes on the line and extends readily 
to space-time. 
The measure N(A) represents the number of points falling in the region A of space-time. 
 

3. Integration. 
N(B) = dN is the number of points in B.∫B  
∫t ∫x ∫y f(t,x,y) dN is simply                    f (t , , ).∑i i xi yi N (t, , )dt dx dyd = λ x y  
 
Exercise 1 
1.​ Suppose the spatial-temporal point process ​N ​has points at  
time 1.2, x=2, y=3. 
time 2.4, x=3, y=0.5. 
time 8.7, x=2, y=1. 
Let ​B ​= [0, 10] (time) x ​[1.5, 2.5] ​ x [0, 5]. 

What is dN?       ​          =# of  points in domain B, 2.∫B  
 
2.​ Suppose the spatial-temporal point process ​N ​has points at  
time 1.2, x=2, y=3. 
time 2.4, x=3, y=0.5. 
time 8.7, x=2, y=1. 
Let ​B ​= [0,10] (time) x [0,5] x [0,5]. 
What is (t+ ) dN?                  ​  ∫t ∫x ∫y f(t,x,y) dN = .∫B yx2  f (t , , )∑i i xi yi  
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Sum up all points in domain B using the function t+ : ​13.2 + 6.9 + 12.7 = 32.8.yx2  
 

4. Simple and orderly point processes. 
4a. ​ A point process is ​stationary ​(or ​homogeneous) ​if, for any k and any collection of measurable 
sets, , the joint distribution of the collection {N( ), N( ),, B , ..., B ) (intervals)B1  2   k B1 + Δ B2 + Δ  
..., N( )} doesn't depend on .Bk + Δ Δ  
Stationary = no region of data has more features than other regions 

4b.​ A point process is called ​simple ​if all the points are distinct,  
i.e. P(there are indices i and j where ) = 0.τ i = τ j  
Simple = all points happen in different time and location, time cannot overlap. 

4c. ​ A point process is ​orderly ​if for any time t and any spatial interval B,  
 P(N([t, t+ ) B)>1)/( |B|)=0.lim

Δt→0
tΔ × tΔ   

Orderly = no cluster of points, no a bunch of points in a time, no same prob. mass of two points. 

4d.​ If ​N ​is simple and stationary, then it is orderly. 
All points distinct and same everywhere (homogenous), no cluster of points.λ  

4e. ​ The times { } are sometimes said to form the ​ground ​process., t , ..., tt1  2   n   
N ​has a ​simple ground process ​if all the ​times ​are distinct, with prob. 1. 
 

5. Conditional intensity, .λ  
5a. ​ Fix any space-time location (t, x, y). (t,x,y) is the limiting expected rate of accumulation ofλ  
points around (t,x,y), given all points prior to t. 

(t,x,y) = E​ (N([t, t+ t) x B(x, y, )) | ) / ( t π ), where B(x,y, ) is a circle ofλ lim
Δt, δ→ 0

Δ δ Ht Δ δ2 δ  

radius  around (x,y), and  is the history of the process up to but not including time t.δ Ht  
➔ If N is ​orderly ​, then (t,x,y) = P ​ (N([t, t+ t) x B(x, y, )) > 0 | ) / ( t π ).λ lim

Δt, δ→ 0
Δ δ Ht Δ δ2  

Note that  is random, depending on what points have occurred previously, and might beλ  
different with every realization. 

5b.​ Fix some spatial interval, B. The integral of , A(t) = ∫t ∫  (t,x,y) dx dy dt, is called theλ ∫B λ  
compensator ​of ​N​. For any B, N(t, B) – A(t) is a ​martingale​. 
➔ define as a derivative of A, if it exists.        ​ A(t) = ∫t ∫ (t,x,y) dx dy dt ∫B λ ⇒ λ = ∂A(t)

∂t ∂x ∂y  

5c. ​  is ​predictable​. ​Predictable = not know # points happened, but know # points expected toλ  
happen, rate predictable ​. Predictable: slight generalization of left-continuous. 

5d.​ If for any (t,x,y), the limit doesn't exist or is ∞, then  doesn't exist.λ  
 ​uniquely determines the distributions of any simple point process.λ  

 
6. Poisson processes. ​              ​poisson random variable: rare prob. among large population 

6a. ​ If ​N ​is a simple point process with conditional intensity , where  does not depend on whatλ λ  
points have occurred previously, then ​N ​is a ​Poisson process ​(most basic models for point 
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processes). 
For such a process, for any set B, N(B) has a Poisson distribution. (assume that B is measurable 
for N(B)), , for k = 0, 1, 2, ...,(N (B) ) A  /k!P = k = e−A k  
where A = (t,x,y) dt dx dy                         ​A is the total rate (expected points) of set B∫B λ  

6b.​ The mean of N(B) is A and the variance is also A.           ​E(N(B)) = A , var(N(B)) = A 
Note that a Poisson process does not have to be stationary. 

6c. ​ If  is constant for all t,x,y, and ​N ​is simple, then ​N ​is a stationary Poisson process, and isλ  
sometimes called ​completely random. 

6d.​ A stationary poisson process with (t,x) = 2.5 on [0,1] x [0,10].        ​completely randomλ  
2.5 points per subspace,  same everywhere.λ  
A Poisson process with (t,x) = 1.5 + 10t + 2x.λ   
As t and x go up, rate higher, not depend on what happened before.  

6e. ​ The key thing about poisson processes is their complete independence. 
For a Poisson process ​N​, ​N( ) ​and ​N( ) ​are independent for any disjoint sets and .B1 B2 B1 B2  
complete independence: ​any subsets of points are indep of others, completely indep in any 
dimensions. 
 
Exercise 2 
1.​ Suppose ​N ​is generated as follows. For each integer i = 1,2,..., ​N ​has a point at (i, i, i) with 
probability 1/i, ​ independently of the other points, and ​N ​has ​no other points ​. 
What is (2,2,2)?λ  
a) 2. b) 1. c) 1⁄2. ​d) does not exist. 

(t,x,y) = E (N([t, t+ t) x B(x, y, )) | ) / ( t π )λ lim
Δt, δ→ 0

Δ δ Ht Δ δ2  

 = expected # points per unit space; a point there or no point, with prob. of ½, so E = ½λ  
Size of the region ( t π ) goes to 0 for the specific point (2, 2, 2). ½ / 0 = infinity.Δ δ2  
If for any (t,x,y), the limit doesn't exist or is ∞, then  doesn't exist.λ  
Usually, on some specific point, then  doesn’t exist.λ λ  
 
2.​ Suppose ​N ​is generated as follows. For each integer i = 1,2,..., ​N ​has a point at (i, i, i) with 
probability 1/i, independently of the other points, and ​N ​has no other points. 
N ​is 
a) simple but not orderly.   b) orderly but not simple. 
c) simple and orderly. ​      d) neither simple nor orderly.    ​Simple = distinct, orderly = no cluster 

All points are well spread out, no two points overlapped. 
 
3.​ Suppose ​N ​is a ​Poisson process ​ with (t,x,y) = 1.5 + 10t + 2x on B = [0,1] x [0,10] x [0,1].λ  
What is EN(B)?                              ​expected points in domain B 

(t,x,y) dt dx dy = 1.5(10) + 10(10)( )/2 + 2(1)( )/2 = 15+50+100=165.∫B λ 12 01 2  

3 



EN(B) = A ​ = (t,x,y) dt dx dy, ​take integral of over time and space ​.∫B λ λ  
 

7. Mixed Poisson processes. 
7a. ​ Suppose (t,x,y) = c​, where c is a random variable. For example, c might be Poisson orλ  
exponential, or half normal, or something constrained to be positive. Then conditional on c, ​N​(B) 
is Poisson distributed. Then ​N ​is a ​mixed Poisson process. 

 
c fixed, rate keeps the same every subspace. 

 
E( ​N​(B)|c) = V(​N​(B)|c) = c|B|,                     ate |size of  region B|r ×   
but unconditionally, ​N​(B) is not Poisson distributed. 

7b.​ E( ​N​(B)) = ∫ E( ​N​(B)|c) f(c) dc = ∫ c|B| f(c) dc = |B|E(c).               ​ E(N(B)) = A 
E( ) = ∫ E f(c) dc = ∫ [  + c|B|] f(c) dc =  E( ) + |B|E(c),(B)N 2 N (B)|c)( 2 c2 B|| 2 B|| 2 c2  
E( ) = E( ) + |B|E(c)(B)N 2 A2 + A = B|| 2 c2  
so V(​N​(B)) = E( ) + |B|E(c) -  = E( ​N​(B)) + V(c).B|| 2 c2 B|| 2 E(c)][ 2 B|| 2   
So, V(​N​(B)) ≥ E( ​N​(B)).             ​V ≥ E for mixed poisson process, V = E for poisson process 
 

8. Compound Poisson process.​                      ​e.g. bread available in supermarket 
8a. ​ Suppose ​N ​is ​not simple​ ( ​points not distinct, overlap ​). First generate a stationary Poisson 
process ​M ​with intensity c, and then for each point of ​M ​, ​N ​will have some non-negativeτ i  
number  ​of points right at , where  ​are all iid and independent of ​M ​. Then ​N ​is aZi τ i Zi  
compound Poisson process. 
Start with M (location of markets), each point generated, there are Z points come along.mi  
For a compound Poisson process, again the ​variance ≥ the mean ​.

 
 
8b.​ Variance of the compound Poisson process. 
Fix B. Let M denote M(B). For a compound Poisson process,  
EN(B) = , where the sum is from m = 0, 1, 2, … E(N (B)|m) f (m)Σ  
=                     ​   E(Z ... ) f (m)Σ 1 + Z2 +  + Zm (B) (Z .. ) Σ  ZN =  1 + Z2 + . + Zm =  i i  
=                             ​ start with stationary poisson process M with rate c, for (m E(Z)) f (m) Σ   
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=                            ​  each point m, put random points ,  have the same dist.(Z) Σ m f (m)E Zi sZi′  
= E(Z) ​E(M) ​ = ​c|B| ​ E(Z). 
E( ) = (B)N 2  E(N (B) |m) f (m)Σ 2  
=  E(Z .. )  f (m) Σ 1 + Z2 + . + Zm

2  
=  [ mE(Z ) m ) E(Z) ] f (m)Σ 2 + ( 2 − m 2  
= (Z ) Σ m f (m) (Z)  Σ m f (m) (Z) Σ m  f (m) (Z)  Σ m  f (m)E 2 − E 2 + E 2  + E 2 2  
= (Z ) E(M ) (Z) E(M ) (Z) E(M )E 2 − E 2 + E 2 2  
= (Z) E(M ) (Z) E(M )V + E 2 2  
 
So V(N(B)) = E( (B) ) EN (B)]N 2 − [ 2  
= (Z) E(M ) (Z) E(M ) (Z) E(M )V + E 2 2 − E 2 2  
= (Z) E(M ) (Z) [E(M ) (M ) ]V + E 2 2 − E 2  
= (Z) E(M ) E(Z)  V (M )V +  2  
 
M is ​Poisson​, so E(M) = V(M) = ​c|B| ​, so

 since (N (B)) c|B| V (Z) E(Z) ] c|B| E(Z ) ≥ EN (B),V =  · [ +  2 =  2 (Z ) ≥ E(Z).E 2  
  

9. Poisson cluster processes. ​                         ​ e.g. earthquakes 
Another extension of the Poisson process is the Poisson cluster process.  
First generating ​parent ​points ​M ​according to a Poisson process. Then for each parent point ,τ i  
generate some random number  of offspring points, and these offspring points are scatteredZi  
spatially and temporally, independently of each other, with some distribution centered at .τ i   
Let ​N ​be the collection of just the offspring, not the parents. ​N ​is called ​Poisson cluster process. 
Usually ​M ​is assumed ​stationary ​Poisson.  
Parent points assumed stationary poisson; offspring points are in poisson cluster process 
➔ In the particular case where the  are iid Poisson random variables independent of ​M ​,Zi  

the process is called a ​Neyman-Scott cluster process ​. 
 
Parent points uniformly scattered, as red 
dots, like main shocks. 
Child points cluster around parents, 
aftershocks generated randomly. 
 
 
 
 

 
 

10. Cox process. 
Suppose generate a stochastic process (t,x,y) such that (t,x,y) ≥ 0 for all t, x, and y. Then letλ λ  
N ​be a Poisson process with intensity (t,x,y).λ   
So (t,x,y) can be random, but conditional on , ​N ​is a Poisson process.λ λ   
So ​N ​is a ​Cox ​process or equivalently a ​doubly stochastic Poisson process. 
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Cox processes arise in practice when modeling events depending on some other random 
phenomenon. For instance, the points of N might be the times and locations of flu epidemics, 
which might depend on the temperature and might in turn be modeled as evolving stochastically. 

 
 

like temperature (grey dots) isλ  
random. 
 
 
 

11. Gibbs process.  ​                    ​e.g. look for some specific species in forest 
For any finite collection ( ) of points in space-time, if the joint density is, τ , ..., ττ 1  2    n  

 , then N is a Gibbs process.(θ) exp[−  {∑ Ψ (τ ) ∑ Ψ (τ , )}]C θ i 1 i +  i, j 2 i τ j  
Often can be written , where .               ​ interaction term(τ , )Ψ2 i τ j (r)Ψ x |r = | i − xj  

high when points are not close, density small, making clusters of points less likely.(τ , )Ψ2 i τ j  
low, density high.(τ , )Ψ2 i τ j  

11a. ​ When , there are no interactions, and the process is an inhomogeneous Poisson(r)Ψ = 0  
process with intensity                    ​  mean term(x).Ψ1  

11b.​ defines a ​soft-core ​model. ​Weak repulsion.(r) − og[1 ]Ψ = l − e−(r/σ)2
 

 is called the ​interaction potential ​.                     ​Joint density small, less likely(r)Ψ2  

11c. ​ = ∞ for r ≤                    some #(r)Ψ σ σ  
                  = 0 for r >                     ​can’t have 2 points super close togetherσ  
defines a ​hard-core​ ​process.  

11d.​  is an intermediate choice between the soft-core and hard-core models.(r) σ/r)Ψ = ( n  
Unlikely to get many points close together, but a little possible. 

11e. ​ ​Strauss ​ process. , and  for  r ≤ R,                some positive #(r)Ψ1 = α (r) ,Ψ2 = β β  
                                                             = 0, for r > R.(r)Ψ2   
less likely to have paired points, rare compared with poisson process; unlikely to have 2 points 
together, but possible 

 
Intermediate choice                                strauss process 
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12. Matern process. 
12a. ​ The Matern(I) process is generated as                    ​e.g. large trees can’t really close to others 
a) Generate M according to a stationary Poisson process.             ​must be spread out, well-spaced 
b) Let N be ​all​ points of M that are ​not​ within some fixed distance r of any other point of M. 
Two points close, get rid of both 

12b.​ The Matern(II) process is generated a bit differently. 
a) Generate points  according to a stationary Poisson process., τ , ...τ 1  2   
b) For i = 1, 2, ..., keep point i if there is no ​previous ​kept point with τ j τ | .| i − τ j ≤ r  
Two points close, get rid of one of them 

 
Matern I                                       Matern II 

 
Exercise 3 
1.​ A ​mixed ​ Poisson process is a ​Cox​ process where 
a.  = E( ) in every realization.λ λ  
b. (t,x,y) = (t',x',y'), for any locations (t,x,y) and (t',x',y').λ λ   
c. The cluster sizes are Poisson distributed with mean .λ  
d.  = 1.λ  

a. means  is a constant, so ​N ​is a stationary Poisson process.λ   
d. Also defines a stationary Poisson process, with rate 1. 
Mixed process, conditional on c, N(B) poisson dist.; roll a dice to generate  r.v ,λ (t, x, y) ;λ   = c   

 same everywhere, same in every subspace.,λ = c  
Cox process, conditional on (random), N poisson process; more varying in space, spatiallyλ λ  
variate,  not the same for every subspace ​.λ   
The difference of these two processes is .λ  
 

13.  ​Hawkes process. 
A Hawkes process or ​self-exciting ​ ​process             ​branching process with branching behavior 

has conditional intensity (t,x,y) = μ(x,y) + ​k g(t-t',x-x',y-y') dN(t',x',y')λ ∫
 

t <t′
 

                                                      = μ(x,y) + ​k​ g​(t-t',x-x',y-y').Σ{t , x  ,y : t  < t}′ ′ ′ ′  
g ​is called the ​triggering ​ function ​or ​triggering density ​and k is the ​productivity ​. 
If g is a density function, then k is the ​expected number of points triggered directly by each 
point. ​ Each background point, associated with μ(x,y), is expected to generate ..k + k2 + k3 + .  
= 1/(1-k) -1 triggered points, so the ​exp. fraction of background pts is 1-k. 

7 



percent/portion of background points out of total points is 1- k; percent/portion of triggered 
points out of total points is k. 
background rate μ(x,y) only depends on location, like mainshocks, mainshocks trigger 
aftershocks, aftershocks trigger aftershocks. 

 
14.  ETAS process. 

An​ ETAS ​process is a marked version of the Hawkes process, where points have different 
productivities depending on their magnitudes. 

(t,x,y) = μ(x,y) + g(t-t',x-x',y-y') ​h(m')λ Σ{t ,x ,y : t  < t}′ ′ ′ ′  
where μ(x,y) is estimated by smoothing observed large earthquakes, h(m) = ​k eα(m−m )0  
where  is the catalog cutoff magnitude, and g(t,x,y) = , where m0 (t)g (r )g1 2

2 ||(x, )||r2 =  y 2  
 

15.  Likelihood. 
In the spatial-temporal case, the ​log likelihood ​ is simply ​∑ log( ) - ∫ (t,x,y) dt dx dy ​.(τ )λ i λ  
 

16. Maximum likelihood estimation. 
16a. ​ Find ( ) maximizing = ∑ log( ) - ∫ (t,x,y) dt dx dy.θ

︿
(θ)l (τ )λ i λ  

under standard conditions, is ​asymptotically unbiased ​, ,,θ
︿

(θ)E
︿

→ θ  
consistent​,  as , for any  > 0,(|θ | )P

︿
− θ > ε → 0 T → ∞ ε   

asymptotically normal ​,  Normal as ,→θ
︿

D T → ∞  
and ​asymptotically efficient ​, min. variance among asymptotically unbiased estimators. 

16b.​ Even if the process is ​not Poisson​, under some circumstances the parameters 
governing the unconditional intensity, E , can be consistently estimated by ​maximizingλ   

 Basically pretend the process is Poisson.(θ)  log(Eλ(τ ))  E λ(t, , ) dt dx dy.LP = ∑ i − ∫ x y  

16c. ​ λ is ​completely separable ​ if .(t, , ; θ) θ λ (t; θ ) (t, x; θ )  (t, y; θ )λ x y  =  3 0  0 · λ1   1 · λ2   2   
Suppose N has marks too. λ is separable in mark (or coordinate) ​i ​if 

(t, x, y, λ , .., m ; θ) θ  λ (t, m ; θ ) λ (t, x, y, m  ; θ )m1 .  k  =  2 i  i  i −i    −i  −i  

16d.​ In maximizing (θ) ∑ log(λ(τ )) ∫ λ(t, , ) dt dx dy,l =  i −  x y  
Typically straightforward to compute the sum, but the integral can be tricky esp. when the 
conditional intensity is very volatile.  
For a ​Hawkes process ​ where , where g is a(t, , ) (x, )  Σ  g(t , , )λ x y = μ y + k {t ,x ,y : t  < t}′ ′ ′ ′ − t′ x − x′ y − y′  
density, and ∫μ(x,y)dxdy = μ,                                                 ​  how far away from space and time 
 λ(t, , ) dt dx dy μT  k ∫ ∑ g(t , , ) dt dx dy∫ x y =  +  − t′ x − x′ y − y′  

                              μT  k ∑ ∫ g(t , , ) dt dx dy T  k N .=  +  − t′ x − x′ y − y′ ~ μ +   
 
Proof: assume the space-time region B = [0,T] x S. 

 where  and g are densities ​.(t, , ) μ ρ(x, ) K∑  g(t , , ),λ x y =  y +  i:t <ti
− ti x − xi y − yi ρ  

∫ λ(t, , )dx dy dt ∫ μ ρ(x, )dx dy dt ∫ K ∑  g(t , , ) dxdydt∫
T

0
∫ x y = ∫

T

0
∫ y + ∫

T

0
∫ i:t <ti

− ti x − xi y − yi  

= μ T +    ​interchanging the integrals∫∫ K∫  1  g(t , x , y ) dN (t , , ) dxdydt ∫0
T

B {t <t}′ − t′  − x′  − y′ ′ x′ y′  
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= μ T + K   ​changing coordinates ​, letting u∫ ∫∫ 1  g(t , x , y ) dxdydt dN (t , , )∫B 0
T

{t <t}′ − t′  − x′  − y′ ′ x′ y′  
= t-t', v = x-x', w = y-y', 
= μ T + K ~ μ T + K dN(t',x',y')∫ ∫∫ g(u, , ) dudvdw dN (t , , )∫B 0

T
S−(x , y )′ ′ v w ′ x′ y′ (1)∫B  

= μ T + K ​N(B)​. 
approximate because typically  g(u,v,w) du dv dw = 1, but instead, we have∫

∞

0
∫
∞

−∞
∫
∞

−∞
  

which is often close to 1 ​.∫∫ g(u, , ) dudvdw,∫0
T −t′

S−(x , y )′ ′ v w  
 
Exercise 4 
1.​ The difference between ​ETAS ​ and a ​Hawkes ​ process is ... 
a) an ETAS process is more strongly clustered. 
b) the points of an ETAS process occur at different locations. 
c) the points of an ETAS process have different productivities.  
d) the points of an ETAS process have different triggering functions. 

ETAS: marked version of Hawkes; different productivitives depend on magnitude 
 
2.​ Which of the following can possibly have ​ two points within distance .01 of each other ​? 
a) a hardcore process with  = .01.          ​b) a Strauss process with R = .01.σ   
c) a Matern I process with r = .01.            d) a Matern II process with r = .01. 

a. not possible, for (r)Ψ2 = ∞  ≤ R 01r = .  
b. make the two points close less likely, but still possible, for (r)Ψ2 = β  ≤ R 01r = .  
c,d. two points too close, get rid of one or both of them 
 

17.  Purely spatial processes, Papangelou intensity and Georgii-Zessin Nguyen formula. 
17a. ​ the Papangelou intensity, (x,y), is the conditional rate of points around location (x,y),λ  
given information on everywhere else. Letting = ∑ log( ) - ∫ (t, x, y) dt dx dy,(θ)l (τ )λ i λ  
where (x, y) is the Papangelou intensity ​, is called the ​pseudo-loglikelihood ​.λ (θ)l  

17b.​ A key formula for space-time point processes is called the ​martingale formula ​: for any 
predictable function f(t,x,y),                       ​ ∫t ∫x ∫y f(t,x,y) dN =  f (t , , )∑i i xi yi  
E ∫ f(t,x,y) ​dN ​ = E ∫ f(t,x,y) (t,x,y) dμ ​= E  = E ∫ f(t,x,y) (t,x,y) dt dx dyλ  f (t , , )Σi i xi yi λ  

17c. ​ For spatial point processes the corresponding formula,  
E ∫ f(x,y) dN = E ∫ f(x,y) (x,y) dx dy is called the Georgii-Zessin-Nguyen formula.λ  
When f = 1, means EN(B) = E ∫ l dμ. 
 
Exercise 5 
1.​ Suppose N is a ​Poisson process ​ with intensity (t,x,y) = exp(-3t) over t in [0,10], x in [0,1], yλ  
in [0,1].N happens to have points at (1.5, .4, .2), (2, .52, .31), (4, .1, .33), (5, .71, .29). 
What is the ​log-likelihood ​ of this realization? 

-4.5-6-12-15 ​ - ∫∫∫ exp(-3t) dt dx dy                  = ​∑ log( ) ​ - ∫ (t,x,y) dt dx dy(θ)l (τ )λ i λ  
= -37.5 -  exp(-3t) dt​, because x and y go from 0 to 1,        ​ ​no relation to each specific point∫0

10  
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= -37.5 - ​exp(-3t) / (-3)                                       ​ ​- ⅓ exp(-3t)                  ​because of integrals|0
10 |0

10  
= -37.5 + exp(-30)/3 - exp(0)/3 
= -37.5 + exp(-30)/3 – 1/3 
~ -37.83. 
 
2.​ Which of the following is ​not typically true ​ of the MLE of a spatial-temporal point process? 
a. It is unbiased.                                       ​asymptotically unbiased 
b. It is consistent.                                    ​consistent includes asymptotically 
c. It is asymptotically normal.                           ​MLE = θ

︿
 

d. It is asymptotically efficient. 
 

18.  Kernel smoothing.  ​                     ​ summarize the main feature of data ​, ​density 
A simple way to start summarizing a spatial point process is by kernel smoothing. 
Suppose observation region is B. Let k(x,y) be a spatial density function, called a kernel, and 
construct, for each location (x,y), (x,y) = k((x',y') – (x,y)) dN(x',y') / (x,y),λ

︿
 ∫ B ρ  

where (x,y) =  k((x',y') – (x,y)) dx' dy' is an edge correction term.ρ  ∫ B  
 

19. F, G, J, K, and L functions. 
Let F(r) be the probability that the distance from a ​ randomly chosen location ​ to its nearest ​point 
of the process is ≤ r. 
Let G(r) be the probability that the distance from a ​randomly chosen ​point​ ​to its nearest neighbor 
is ≤ r. 
F is the empty space function and G is the nearest neighbor distribution function. 
For a homogeneous Poisson process, F(r) = G(r) = 1 – exp .−  r )( λ · π 2  
Let J(r) = (1-G(r)) / (1-F(r)), for any r such that F(r) <1. 
J > 1 indicates inhibition, and J < 1 indicates clustering. 

 
Lower F, Higher G or Lower J ​ ​indicate ​ ​clustering ​, ​compared with stationary poisson process 

red line is stationary poisson, ​ for J-function1  
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For a stationary Poisson process with rate μ, let K(r) = 1/μ E(# of other points within distance ​r·  
of a randomly chosen point). 
For a stationary Poisson process in , K(r) = , so one may consider L(r) = = rR2  rπ 2  √(K(r)/π  
For a stationary Poisson process in , L(r) – r ​= 0​ and -r should be approx. 0 ​.R2 (r)L

︿
 

 
Higher K or Higher L indicate clustering, compared with stationary poisson process 

red line is stationary poisson, ​ for K-function, ​ ​0​ ​for L-function rπ 2  
choose L over K, L is more powerful than K, making difference between two lines more obvious 
 
Exercise 6 
1. Suppose N is a spatial point process ​with clustering ​ for distances ≤ d. 
Let F(r) be the empty space function and let G(r) be the nearest neighbor distribution function. 
Which of the following is true?            ​mean G larger, F smaller compared to stationary poisson 
a. F(d) = G(d).  
b. F(d) < G(d).  
c. F(d) > G(d) 

F is the empty space function and G is the nearest neighbor distribution function. 
F and G are prob. F(r) is abouts some random space, G(r) is about space that origin at some point  
 

20. Marked G and J functions.    ​                ​e.g. bears in forest, mark be bear species (about 
association, magnitude), different kinds of bears affect each other (cluster or inhibit) 

G(r) = (point within r), where means given a point 0, estimated withP 0 P 0   
(r) Σ 1(there is j τ | ) Σ 1(min  |τ | )G

︿
= n

1
i : | i − τ j ≤ r = n

1
i i=j/ i − τ j ≤ r  

Could alternatively compute a ​marked ​G-function Σ 1(min  |τ | )1
n1 i j i − τ j ≤ r  

where the sum is over the points with mark in some range (bear 1 area) ​, and then1 τ i M 1  
minimum is over the points with mark in some range (bear 2 are) ​. This is the ​marked ​orτ j M 2  
cross ​G-function. 
Similarly define a marked or cross J-function as J(r) = (1-G(r)) / (1-F(r)) accordingly, plugging in 
the corresponding G function.                                            ↓ ↑   
 

21.  Weighted K function. 
For a stationary Poisson process with rate μ, K(r) = 1/μ E(# of other points within distance ​r ​of a 
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randomly chosen point). 
Estimated via where  = n/|S|, and  =(r) 1/(λ n) ∑  (|τ | ) w(τ , ),K4 =  

︿
i=j/ i − τ j ≤ r i τ j λ

︿
(τ , )w i τ j  

1/proportion of circle centered at i going through j that is in S = border correction term. 
If N is inhomogeneous, can instead weight each point by 1/λ, obtaining  

(r) /n ∑  (|τ | ) w(τ , τ ) / λ(τ ) / λ(τ ).Kw = 1 i=j/ i − τ j ≤ r i  j i j  
, if inf  = 1.(r) N (π r , 2π r |S| / E(n) )Kw ~  2  2 2 λ  

orderly K-function: ata points uniformly scattered outH0 : d  
vs ​. ow model f itted the cluster/inhibition (test cluster/inhibition out by the model)H0 : h   
weighted K-function should plot as curve if model correct rπ 2  
 

22. , for 2nd order stationary processes. ​Why?(t) (0) (t)γ = ρ − ρ   
2nd order stationary = weakly stationary and means 

(X ) , E(X ) (X ) .. (X ) for all t,E t
2 < ∞  0 = E 1 = . = E t  

and , etc., for any t.ov(X , X ) ov(X , X ) ov(X , X )C 0  t = C 1  t+1 = C 2  t+2  
Cov for two points at every t distance is the same 
If 2nd order stat., then letting t = 0,  for all t.ar(X ) ar(X ) .. ar(X )V 0 = V 1 = . = V t   
The semivariogram .(t) ar(X – X )/2γ = V t 0  
The covariogram .(t) ov(X , X )ρ = C 0  t  
So (0) (t) ov(X , X ) ov(X , X ) ar(X ) ov(X , X ).ρ − ρ = C 0  0 − C 0  t = V 0 − C 0  t  

(t) ar(X – X )/2 ov(X  – X , X  – X )/2γ = V t 0 = C t 0  t 0  
Cov(X , X ) ov(X , X ) Cov(X , X )}/2= { t  t + C 0  0 − 2 0  t  
ar(X )/2 ar(X )/2 ov(X , X ) ar(X ) ov(X , X )= V t + V 0 − C 0  t = V 0 − C 0  t  

(0) (t)= ρ − ρ  
 

23. Nonparametric estimation of Hawkes and ETAS processes. 
Let ​x ​mean spatial coordinates = (x,y). 
Hawkes processes have .(t, ) μ(x) K ∑  g(t , x )λ x =  +  i − ti  − xi
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Instead of estimating g parametrically, one can ​estimate g nonparametrically ​, using the method 
of Marsan and Lengliné (2008), which call Model Independent Stochastic Declustering (MISD).

 

 
Exercise 7 
1.​ Suppose you observe a ​Poisson process ​with ​rate μ ​ on the space-time window [0,1]x[0,1] x 
[0,10], and it happens to have ​5 points ​.                                                                              S × T  
What is the log-likelihood, (μ)?l  
a) 5 μ + 10 exp(μ). 
b) 5 log(μ) - 10 μ. 
c) 5 + 10 log(μ). 
d) 5 exp(μ) + 5 log(μ). 

= ∑ log( ) - ∫ (t,x,y) dt dx dy(θ)l (τ )λ i λ  log(μ)  |  |  |  log(μ) 0 μ= 5 − μ 1
0

1
0 0

10 = 5 − 1  
 
2.​ Suppose observe a ​Poisson process ​ with ​ rate 3t​ on space-time window [0,1]x[0,1] x [0,10]. 
How many points do you expect to observe?                                                             S × T  
a) 50. b) 100. ​c) 150. ​d) 200. 

∫ ∫ ∫ 3t dx dy dt = ∫ 3t dt =  = 300/2 – 0 = 150.t /2|3 2
0
10  

E(N(B)) = A, Var(N(B)) = A for poisson process 

so A = (t,x,y) dt dx dy∫
 

B
λ t dt dx dy t /2 |  |  | (10 )/2 50= ∫

1

0
∫
1

0
∫
10

0
3 = 3 2 1

0
1
0 0

10 = 3 2 − 0 = 1  

3.​ Suppose you observe a ​Hawkes process ​ with conditional intensity 
(t,x,y) = ​2​ + ​0.6​ ∫ f(t-t') g(x-x',y-y') dN(t',x',y'), on the space-time window [0,1]x[0,1] x [0,10],λ  

where f(t) is a density like f(t) = 4exp(-4t), and g(x,y) is a planar density like  
g(x,y) = 3 exp(-3r) / (2π r), where .                                    ​ μ=2, k=0.6 r = √x2 + y2  
How many points do you expect to observe? 
a) 50. ​b) 100. c) 150. d) 200. 

   ​      ​  0 0 6 0 6 0 6  ... 0/(1 6) 0/.4 02 + 2 × . + 2 × . 2 + 2 × . 3 +  = 2 − . = 2 = 5  T 0 0μ = 2 × 1 = 2  
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Alternatively, ​60% of the pts are expected to be triggered (k=.6 interpretation) ​, so 40% are 
background, and we expect 20 background points, so 20 = 40% of x, so x = 20/.4 = 50. 
Hawkes process: (t, , ) (x, )  Σ  g(t , , )λ x y = μ y + k {t ,x ,y : t  < t}′ ′ ′ ′ − t′ x − x′ y − y′  
 λ(t, , ) dt dx dy μT  k ∫ ∑ g(t , , ) dt dx dy∫ x y =  +  − t′ x − x′ y − y′  

                              μT  k ∑ ∫ g(t , , ) dt dx dy T  k N .=  +  − t′ x − x′ y − y′ ~ μ +   
 
4.​ Suppose you observe a ​Hawkes process ​with conditional intensity 

(t,x,y) = 2 + 0.6 ∫ f(t-t') g(x-x',y-y') dN(t',x',y'), on the space-time window [0,1]x[0,1] x [0,10],λ  
where f(t) = 4exp(-4t), and g(x,y) = 3 exp(-3r) / (2π r), where . r = √x2 + y2  
You observe 2 points, at (t,x,y) = ​(1,.5,.5) ​ and ​(3,.5,.6) ​.  
What is the log-likelihood? 
a) ​log(2) + log(2 + 36 exp(-8.3)/π) – 21.2.  
b) log(3.2) + log(2 + 36 exp(-8.3)/π) – 20.  
c) log(3.2) + log(2 + 36 exp(-8.3)/π) – 20.  
d) 2log(2) – 20. 

∑log( ) - ∫ dμ = log(2) + log{2 + .6(4exp(-8))(3exp(-.3)/(.2π))} - 20 ​- .6 - .6          ​k=0.6, N=2λ λ  
= log(2) + log(2 + 36 exp(-8.3)/π) – 21.2.              ​  og(1st point) og(2nd point) μT  N )l + l − ( + k  

1st point with , 2nd point with . t′ = 2 t = 3 .1  r = √x2 + y2 = √(0.5 .5) 0.6 .5)− 0 2 + ( − 0 2 = 0  
 

24. Deviance residuals. 
Given two competing models, can consider the difference between residuals, number of observed 
points – number expected, over each pixel. Divide by the estimated SE to get ​Pearson residuals. 
Problem: hard to interpret. 
With two competing models, it is better to consider the ​difference between ​log- likelihoods ​, in 
each ​pixel​. The result may be called ​deviance residuals ​, ~ resids from gen. linear models. 

 
 

25.  Voronoi residuals.  ​              ​             measure how model for fitsλ  
A Voronoi tessellation ​divides a space into cells Ci ​, where Ci contains all locations 
closer to event i than any other observed event. Within each cell, calculate residuals. 

 
                     spatially adaptive and nonparametric. 
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cells of different sizes; more zero (red) residuals, more fitted the model for  isλ  
With 2 models, can compare loglikelihoods across pixels or Voronoi cells. 

 
26.  ​Superthinning.​                                      ​test how well model for fitsλ  

Choose some number c ~ mean( ).                 ​  want it to be stationary poisson after superthningλ
︿

 
Superpose: where (t ,x,y) < c, add in points of a simulated Poisson process of rate c - (t, x, y)λ

︿
λ
︿

  
Thin: where > c, keep each point (ti,xi,yi) with prob. c / (t , x , y )λ

︿
i  i  i λ

︿
(t , x , y ).λ
︿

i  i  i  
Result is Poisson with rate c, if the model for  is correct.λ  

 
gap ​: model for is too high;λ  

if too small, end up with ​clusteringλ  
 

Exercise 8 
1.​ Suppose  is a Poisson process with rate 3,N 1  
and  is a Poisson process with rate 2 + x + 4t, independent of , and both are on [0,10] xN 2 N 1  
[0,1] x [0,1].                                                                                                                          T     S 
Let M = . Is M a Poisson process? What is its intensity?N 1 + N 2  

For any ​disjoint​ measurable sets  M( ) = is ​independent ​ of, B , ...,B1  2  Bi (B ) (B )N 1 i + N 2 i  
, j≠i} and { , j≠i}, and thus is independent of { , j≠i}.{N (B ) 1 j (B )N 2 j (B ) (B )N 1 j + N 2 j  

So yes, M is a Poisson process and since ​EM(B) = , M has rate 5 + x + 4t.N (B) EN (B)E 1 +  2  
 
2.​ Suppose N is ​homogeneous Poisson​ process with rate 1, and M is a ​clustered Hawkes process. 
Both ​ M and N have ​40 points on B ​ = [0,10] x [0,1] x [0,1] 
Let v1 = the ​average​ ​size​ of a Voronoi ​cell​ in a Voronoi tessellation of N, and v2 = the average 
size of a Voronoi cell in a Voronoi tessellation of M.                           ​partition of B into cells 
Which is bigger, v1 or v2, or will they be the same?  

The same, since v1 = v2 = 1⁄4. ​Each cell has one point, and the 40 cells occupy an area of 
size 10. rea B 0 0,a = 1 × 1 × 1 = 1 nd 40 points means 40 cells in area B; 0/40 /4a 1 = 1  
bigger or smaller size, cells all over the space B 
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Review list. 
1. PP as a random measure. 
2. Integration, ∫ f(t,x,y) dN. 
3. Simple and orderly. 
4. Cond. intensity and Papangelou intensity.  
5. Poisson processes. 
6. Mixed Poisson processes. 
7. Compound Poisson processes. 
8. Poisson cluster processes. 
9. Cox processes. 
10. Gibbs and Strauss processes. 
11. Matern processes. 
12. Hawkes and ETAS processes.  
13. Likelihood and MLE. 
14. Covariance and variogram.  
15. Kriging. 
16. CAR, SAR models. 
17. Simulation by thinning.  
18. Martingale formula. 
19. Kernel smoothing. 
20. F,G,J,K, and L functions.  
21. Marked G and J functions.  
22. Weighted K function. 
23. Nonparametric triggering function est. 
24. Deviance, Voronoi, andsuperthinned residuals. 
 
Exercise 
1.​ For an Ornstein-Uhlenbeck process, a ​2nd-order stationary process ​with covariance function 

(h) = exp(- |h|)/(2 , for all h, where  > 0.ρ β )β β  
What is the corresponding ​semivariogram ​? What are the ​nugget​, ​sill​, and ​partial sill ​? 
 
Use the fact that (h) = (0)- (h)​. See p15 of van Lieshout.γ ρ ρ   

(h) = 1/(2 ) - exp(- |h|)/(2 ).γ β β β  
The​ nugget effect is  (h) - (0) = 0 - 0 = 0.im l h→ 0 γ γ  
The ​sill is  (h) = 1/(2 ).im l h→ ∞ γ β  
The​ partial sill is (h) (h) = 1/(2 ).im l h→ ∞ γ im − l h→ 0 γ β  

semi-variogram var(X )γ = 2
1

t − X0  
Let be intrinsically stationary.Xt)  X = ( t∈Rd   
Then the ​semi-variogram γ :  ​is defined by  → RRd var(X ).γ = 2

1
t − X0  

Note that γ(t) = ρ(0) − ρ(t) for weakly stationary random fields.  
In particular, γ(0) = ρ(0)−ρ(0) = 0.  
The definition of a semi-variogram, however, requires only the weaker assumption of intrinsic 
stationarity. 
 



In practice, there is often additional measurement error. To be specific, suppose that the 
observations are realisations from the linear model   , i , .., ,Y i = Xti

+ Ei  = 1 . n  
for independent, identically distributed zero mean error terms that are independent of theEi  
intrinsically stationary random field X and have variance .σ2

E   
Then V ar(Y ) (t  −t ) V ar(Ej −Ei) γ (t  −t ) 1{i = }2

1
j − Y i = γX j i +  2

1 =  X j i + σ2
E / j  

so that (t) γ (t) σ   for  t = ; γ (t) γ (t)  for  tγY =  X +  2
E / 0  Y =  X = 0  

is discontinuous in t = 0. This phenomenon is known as the ​nugget effect ​.  
It is natural to assume that the ​dependence between sampled values fades out as the distance 
between them increases ​, that is, , provided it exists. In this case, the limitim  ρ(t) 0l ||t||→∞ =   

 is called the ​sill​. Taking into account the nugget effect, the ​ ​partial sill​ ​is defined asim  γ(t)l ||t||→∞  
im  γ(t) im  γ(t).l ||t||→∞ − l ||t||→0  

 
2.​ Which of the following is ​not true​ regarding the differences between a ​CAR​ model, a ​SAR 
model, and ​kriging ​? 
a. For a CAR model, the errors are correlated with each other, whereas with SAR the errors are 
uncorrelated. 
b. For a CAR model, the errors at one location are uncorrelated with the values of the random 
field at other locations, whereas with SAR the errors and the random field are correlated with 
each other. 
c. With CAR and SAR, only neighboring values are used to predict a certain value of the random 
field, whereas kriging uses all the values and as a result under general conditions is optimal for 
prediction. 
d. With CAR and SAR, typically the covariance function is zero unless two values are neighbors, 
whereas this is not typically assumed in kriging. 
e. None of the above. 
 
CAR: value on location, some covariance of near locations matters 
CAR and SAR are different at the error term; both based on variogram, use variance, how one 
value depends on neighbors 
Kriging uses all values, but CAR and SAR only use neighbor values 
X = BX + E is an autoregression formula. Note, though, that the ‘noise’ field E may be spatially 
correlated. ​E is correlated in CAR models 
Uncorrelated noise in SAR models 
 
3.​ Suppose a point process is generated on B = [0,10] days x [0,1] x [0,1]. First one generates 
parent points ​ according to a ​stationary Poisson process with rate 0.3 ​. Then each parent point 
gives birth to ​exactly one child point placed uniformly within 1 day after the parent and 
anywhere in the unit square ​. The resulting process consists of both the parents and children 
points. 
One realization of this process results in ​four points ​, at (3, 0.4, 0.5), (3.4, 0.7, 0.8), (7.2, 0.4, 0.5), 
and (7.5, 0.9,0.1). What is the loglikelihood, L? 
 
L = ∑ log( ) - ∫ (t,x,y) dt dx dyλ λ  
= log(.3) + log(1.3) + log(.3) + log(1.3) – 0.3 x 10 – 2  



~ -6.883. 
For a ​Hawkes process ​ where , where g is a(t, , ) (x, )  Σ  g(t , , )λ x y = μ y + k {t ,x ,y : t  < t}′ ′ ′ ′ − t′ x − x′ y − y′  
density, and ∫μ(x,y) dxdy = μ,                                                 ​ how far away from space and time 
 λ(t, , ) dt dx dy μT  k ∫ ∑ g(t , , ) dt dx dy∫ x y =  +  − t′ x − x′ y − y′  

                              μT  k ∑ ∫ g(t , , ) dt dx dy T  k N .=  +  − t′ x − x′ y − y′ ~ μ +   
This point process is like Hawkes process 
(3, 0.4, 0.5), (3.4, 0.7, 0.8), (7.2, 0.4, 0.5), and (7.5, 0.9,0.1) are one parent point followed with 
one offspring point, and one parent point followed with one offspring point 
1st point cannot be an offspring point, so log(0.3) 
2nd point be log(0.3+1): space-time: unit square and 1 day 
so ∑ log( ) be log(.3) + log(1.3) + log(.3) + log(1.3)λ  
∫ (t,x,y) dt dx dy = λ .3 00 × 1 − 1 − 1  
                             = - 2 offspring points triggered by 2 parent pointsTμ  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Simulation by Thinning 
One can simulate spatial-temporal point processes by ​thinning ​. 
Simulation of nonhomogeneous poisson processes by thinning. 
Suppose  has some upper bound, B. (t,x,y) ≤ B everywhere.λ λ  
First, simulate a stationary Poisson process ​N ​with intensity B.  
For i = 1,2, ... keep point  with probability /B.τ i (τ )λ i  
Boundary issues can be important in simulation. For Gibbs processes, for instance, the 
simulation can be biased because of missing points outside the observation region. For Hawkes 
processes, the simulation will tend to be biased by having too few points at the beginning of the 
simulation. One can have burn-in, by simulating points outside the observation region or before 
time 0, or in some cases some fancy weighting schemes can be done to achieve ​perfect 
simulation without burn-in. 

 
 


