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Introduction 
One of  most primary influence to be taken into account for the causes that regulate crime is its 

environment. This is demonstrated by Richard L. Dugdale in his famous book “Origin of  Crime in 

Society” with examples from the yellow-fever epidemic in Memphis: there were a great many robberies 

committed in that dreadful time[2]. Indeed, the disturbance of  social order which leaves property 

unprotected promotes unlawful appropriation [3].  

In response to the ongoing COVID-19 pandemic, governments across the states have implemented social 

distancing regulations. Social distancing measures are powerful public health tools to reduce transmission 

speed of  an infection agent, which include instructions that individuals maintain a distance from one 

another, limitations of  gatherings, business operation constrains[1]. In city of  Los Angeles, government 

announced the “shelter in place” order in March 20th, 2020 and the social distancing measure continue 

to today (June 6th, 2020). Most of  unnecessary businesses had remained closed until May 15th, 2020. 

This certainly changes the environment of  crime in various aspects. First, when fully implemented,  social 

distancing measure drives a massive disruption of  daily routines, significantly altering and disrupting the 

conditions under which crime may occur. For example, it reduces the possibility of  criminal acts that 

require in-person contact. Second, social distancing is built upon economy strain. The economic pressure 

might prompt the incentives for some people to conduct crime. Therefore, it is not obvious how the social 

distancing measure will shape the crime patterns. 

Investigation of  spatial-temporal pattern of  crime may provide valuable insights into 1) whether social 

distancing measures are effectively implemented and whether individuals and communities are more 

meaningful for critical public health measure; (2) what policy need to be adopt to compensate the harm 

from social distancing measure on public safety.  

STAT 222 2



In this study, we will use spatial-temporal analysis tools to investigate the arrest data in west Los 

Angeles area in April 2019 and April 2020.  The main questions to be addressed in this study are: 

1. is there any clustering or inhibition within event points;  

2. what can be a suitable model for the dataset;  

3. is there any effect from social distancing measures on spatial-temporal distribution of  criminal events.   

I will first introduce the data and some preprocessing steps. The methodology adopted will be covered in 

the following section. I will then diagnose the dataset to see clustering effect. Later, two different point 

process models are fit to the data in order to explain the possible patterns in the arrest data. Finally, I will 

summarize our findings and future directions.  

Dataset and preprocessing 
Our data comes from the open data source of  City of  Los Angeles (https://data.lacity.org/A-Safe-City/), 

which contains more than one million records of  arrest incidents from 2010 to present in the area of  Los 

Angeles city. Due to privacy issue, location fields are only provided to the nearest hundred block. I 

specifically look at arrests took place in west Los Angeles area (area code 08) in April 2019 and April 2020 

(Fig.1). The major area is located in a square window with latitude/longitude ((-118.48, 

-118.37)x(34.02,34.08)). For the time period, April 2020 is special because it is right after the shutting 

down of  Los Angeles city and before the reopening of  economy, corresponding to a period under social 

distancing measures. To compare it with usual case, I chose data from April 2019, a period without social 

distancing measures. This reduced the size of  dataset to around 100.  

In order to apply the spatial-temporal models, we need to preprocess the data. First, I normalize the 

latitude and longitude data into a unit square. Due to the high level of  coarse graining, some records have 

the same date and the same location. To let the dataset fit into a simple point process, I add a small noise to 

the date and location record: ,  and  

where  are uniform random noises. This makes all the times and locations distinct.  

t = t0 + 0.1(δt − 0.5) x = x0 + 0.01(δx − 0.5) y = y0 + 0.01(δy − 0.5)

δt, δx, δy
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Method 
Our data is distributed over the space , in which I will be conducting all of  our 

analysis.  The first thing I looked at was the kernel smoothing that calculated the density of  features in a 

neighborhood around those features. The bandwidth used is a constant calculated from standard distance 

and distance to the mean.  This helps to identify the hot spots. Next I looked at the estimated F, G, and J 

functions of  our data, which indicate possible clustering behavior. After that, I tried to fit two different 

point process models on our sample data, which are the inhomogeneous Poisson process and Hawkes 

process model.  

To find the best fit from the inhomogeneous Poisson process, I used the Stoyan method to estimate the 

parameters of  this model. The conditional intensity function I used on our data was 

 

where  and  is the distance. 

As for fitting an Hawkes process, the conditional intensity function takes the following form: 

 

where, ,  ,   ,   

which contains parameter . Then I use maximum-likelihood estimation to estimate parameter 

values. To evaluate the fitting performance, super-thinning method was adopted to make super-thinned 

points plot as well as estimate the F, G, and J function and compare to pure Poisson process.  

Results 
1. Raw data and diagnostic plots 
Figure 1 shows the plot of  original data obtained from website of  Los Angeles open data source. There is 

obvious inhomogeneity in the distribution of  arrest point, with a lot of  points locate in main streets or 

S = [0,1] × [0,1] × [0,31]

λ (z |z1, . . . , zk) = μ + α x + β y + γ
k

∑
i=1

a1e−a1D(zi,z)

2π D (zi, z )

z = (x , y) D (z1, z2) = |z1 − z2 |

λ (t , x , y) = μρ (x , y) + K ∑
ti,xi,yi;ti<t

g (t − ti)g (x − xi, y − yi)

ρ (x , y) = 1
X1Y1

g (t ) = βe−βt g (x , y) = α
π

e−αr2, r2 = x2 + y2

μ , K , β, α
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central business zone corresponding to high population density area. To further illustrate this, the data was 

visualized in a density plot after kernel smoothing (Fig. 2), which seems to indicate some clustering around 

districts such as Sawtelle, Beverly Wood for both period of  time. The data from 2020 seems to be more 

clustered at north Sawtelle area (west Wilshire blvd. and west Santa Monic blvd.) 

To further confirm the clustering behavior, I looked at the estimated F, G, and J functions in Figure 3. F 

function plot indicates the distance from a fixed point to the nearest point. The estimated F function 

appears to show more clustering of  arrest al all distances than that generated by a stationary Poisson 

process. Similarly, the G function plot, which implies the average distance from a typical point to its 

nearest neighbor, indicates possible clustering behavior for both dataset. Besides, the J function, which is a 

combination of  F and G function also shows the same conclusion.  

2. Fitting an inhomogeneous Poisson process 
I next fit the data using an inhomogeneous model by maximum likelihood estimation. The parameters 

and corresponding std are listed below in the form of  mean ± std.  

The background rate and total density rate for the space is shown in Fig.5. Density plots of  the fitting 

model agree relatively well with the original data. Both of  the models are successfully capture those hot 

spots. The background rate with social distancing measures (2020) is more inhomogeneous compared to 

the estimation for data without social distancing measures (2019). The west region has higher background 

rate compared to the east region in 2020. Since districts in the east are mostly single house residential area 

whereas many apartments and commercial businesses are located in the west, this suggests that crime 

events are less likely to happen in the the residential area, as expected due to “shelter in place” order. In 
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Table 1: estimate of  parameters and STDs for inhomogeneous Poisson process 

dataset μ ⍺ β # a1

2019 April 19.7±25.0 2.17±18.1 -9.46±31.1 0.857±0.1 52.3±9.62

2020 April 42.1±16.7 -41.6±29.4 -0.540±24.3 0.828±0.099 36.5±6.4



addition, similar positive  coefficients in both models indicate clustering for both datasets.  values are 

large, indicating correlation decreases quickly over distance. However, the standard errors appear to be 

extremely high, indicating this model might not be suitable. 

3. Fitting a Hawkes process 
Another model fitted in this analysis was the Hawkes model. The form we took can be found in the 

method section. In the table below we show fitting results. 

This model turns out to be a good fit for both datasets, which can be seen from the relatively small 

standard deviations compared to the estimated means. Model for 2019 data has a bit higher background 

rate than that of  2020. This is expected because the total number of  cases decreases from 112 in April 

2019 to 99 in April 2020. The values of  the triggering function are approximately 0.5. This implies that 

on average each point is likely to directly trigger 0.5 point. So each background point is expected to 

generate 1 triggered point in total. Besides, we have relatively high value of   and  compared to the scale 

of  length ( ) and time ( ), suggesting short correlation length in both time and space. This 

might be from group crime so that offender and accomplices were arrested in the near location and time.  

To see how well this Hawkes model can fit the data, we further evaluate the model using super-thinning. 

In Fig.6 we show the original points as well as super-thinned points. One can see the super-thinned points 

appear to follow a simple homogeneous Poisson process, which suggested that Hawkes model could be a 

good fit. The F, G and J functions for super-thinned points are displayed in Fig. 7 together with the 

original curves. For all those functions, at least in short distance, the super-thinned lines collapse with pure 

stationary Poisson process results. This provides evidence that the Hawkes model was suitable. 

γ a1

α β

X1 = Y1 = 1 T = 31
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Table 2: estimate of  parameters and STDs for Hawkes process model

dataset μ K ⍺ β

2019 April 1.86±0.31 0.484±0.084 40.2±17.9 40.1±6.0

2020 April 1.30±0.23 0.594±0.084 11.7±2.2 45.0±6.9



Conclusion and Future Direction 
To conclude, we studied the spatial-temporal arrest dataset in April, 2019 and April 2020, in order to 

understand the effect of  social distancing in crime. Kernel smoothing and simple diagnostic plots suggest 

clustering in arrest data. We then fitted the data using inhomogeneous Poisson process model as well as 

Hawkes model. The later one provides a good fit to both datasets, which is evaluated by diagnostic 

functions. Our results suggest that social distancing and shelter in place order have had some impact on 

crime in terms of  the background rate and spatial distribution, even though the effect is marginal.  

We note several limitations of  the present study. First, the results are specific to west Los Angeles area. 

Second, the arrest data couldn’t reflect all criminal events which might not result in an arrest record if  it is 

light. Besides, the police departments have undertaken dramatic changes in response to  the 

pandemic(New York city is a good example). Officers who contract COVID-19 or must accommodate 

children home from school, leads to reduced workforce for crime arrest.  

In addition to looking at larger dataset, it might be helpful to introduce covariates. Intuitively the crime 

frequency is related to population density or poverty. Adding those additional information might make our 

model more accurate. Besides, some quantitive evaluation of  the difference between fitted models for data 

in 2019 and 2020 would be helpful to demonstrate the impact of  social distancing measure more clearly. 

For example, we can simulate the fitted model from 2019 and compare it to dataset in 2020.  

Reference 
[1] Mohler, et al. Impact of  social distancing during COVID-19 pandemic in Los Angeles and 
Indianapolis, Journal of  Criminal Justice 68, 101692 (2020) 

[2] Richard L. Dugdale, Origin of  Crime in Society, The Atlantic, (1881) 

[3] Wilson, James Q Kelling, George L. Broken Windows, The Atlantic, (1982) 

[4] David Weisburd, The Law of  Crime Concentration and Criminology in Place, Criminology 53, 133 
(2015) 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Figure 1. Map of  west Los Angeles and distribution of  arrest data. 

left: data from April 2019, 112 points in total. Right: data from April 2020, 99 points in total. 

Figure 2. Kernel smoothing plot for both datasets. Top: 2019; Bottom: 2020 
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Figure 3. F, G, J function plot for original data. Left: 2019 data; Right 2020 data 

Figure 4. K and L functions for original data. Left: 2019 data. Right: 2020 data 
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Figure 5. Fitted inhomogeneous background rate (left) and lambda (right) for 2019 data (top) and 2020 

data (bottom) 

Figure 6. Overlay of  original points and super-thinned points. Left: 2019 data; Right 2020 data 
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Figure 7. F, G, and J function for super-thinned points 
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######## Code 
##### import data from April 2020 
mydata20 = read.csv("dataApril2020.csv") 
par(mfrow=c(1,1)) 
#plot(c(-118.48, -118.37), c(34.02,34.08),type="n",xlab="x-coordinate",ylab="y-coordinate", 
plot(c(0, 1), c(0, 1), type="n", xlab="longitude", ylab="latitude", main="arrest in April 2020") 
points(mydata20[, "lon"], mydata20[, "lat"],pch=3) 

##### import data from April 2019 
mydata19 = read.csv("dataApril2019.csv") 
par(mfrow=c(1, 1)) 
plot(c(0, 1), c(0, 1), type="n", xlab="longitude", ylab="latitude", main="arrest in April 2019") 
points(mydata19[, "lon"], mydata19[, "lat"], pch=3) 

############## kernel smoothing for 2019 data 
x1 = mydata19[, "lon"] 
y1 = mydata19[, "lat"] 
n = length(x1) 
b1 = as.points(x1,y1) 

############## kernel smoothing for 2020 data 
x1 = mydata20[, "lon"] 
y1 = mydata20[, "lat"] 
n = length(x1) 
b1 = as.points(x1,y1) 

###  Kernel smoothing  
stddist = sqrt(1/n*(sum((x1-mean(x1))^2)+sum((y1-mean(y1))^2))) ## standard distance  
ds = sqrt((x1-mean(x1))^2+(y1-mean(y1))^2) ## distances to mean  
dm = median(ds)  
bdw = .9*min(stddist,sqrt(1/log(2))*dm)*n^-.2  
## this is the suggestion in  
## https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-kernel-density-works.htm 

## bdw = sqrt(bw.nrd(x1)^2+bw.nrd(y1)^2)  ## another option for a default bandwidth 
# bdw = .2 ## or just pick a reasonable bandwidth yourself, like this. 
bdry = matrix(c(0,0,1,0,1,1,0,1,0,0),ncol=2,byrow=T) 
z = kernel2d(b1,bdry,bdw) 
par(mfrow=c(1,2)) 
image(z,col=hcl.colors(10),xlab="longitude",ylab="latitude") 
# points(b1) 
x4 = (0:100)/100*(max(z$z)-min(z$z))+min(z$z) 
plot(c(0,10),c(.8*min(x4),1.2*max(x4)),type="n",axes=F,xlab="",ylab="") 
image(c(-1:1),x4,matrix(rep(x4,2),ncol=101,byrow=T),add=T,col=hcl.colors(10)) 
text(2,min(x4),as.character(signif(min(x4),2)),cex=1) 
text(2,(max(x4)+min(x4))/2,as.character(signif((max(x4)+min(x4))/2,2)),cex=1) 
text(2,max(x4),as.character(signif(max(x4),2)),cex=1) 
mtext(s=3,l=-3,at=1,"Rate (pts per unit area)”) 
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######### K-function & L-function: 
## par(mfrow=c(2,1)) ## if  you want to make a 2x1 grid of  plots 
s = seq(.001,.3,length=50) 
k4 = khat(b1,bdry,s) 
plot(s,k4,xlab="distance",ylab="K4(h)",pch="*") 
lines(s,k4) 
lines(s,pi*s^2,lty=2) 
L4 = sqrt(k4/pi)-s 
plot(c(0,.3),range(L4),type="n",xlab="lag, h",ylab="L4(h) - h") 
points(s,L4,pch="*") 
lines(s,L4) 
lines(s,rep(0,50),lty=2) 

### CONFIDENCE BOUNDS FOR K-FUNCTION via simulation  
k4conf  = Kenv.csr(npts(b1), bdry, 1000, s)  
plot(c(0,max(s)),c(0,max(k4conf$upper,k4)), type="n",xlab="distance",ylab="K4(h)") 
points(s,k4,pch="*")  
lines(s,k4)  
lines(s,k4conf$upper,lty=3,col="green",lwd=2)  
lines(s,k4conf$lower,lty=3,col="green",lwd=2)  
L4upper = sqrt(k4conf$upper/pi) - s   
L4lower = sqrt(k4conf$lower/pi) - s  

plot(c(0,max(s)),c(min(L4lower,L4),max(L4upper,L4)),  
     type="n",xlab="distance",ylab="L4(h) - h")  
points(s,L4,pch="*")  
lines(s,L4)  
lines(s,L4upper,lty=2,col="green",lwd=2)  
lines(s,L4lower,lty=2,col="green",lwd=2)  
lines(s,rep(0,length(s)))  

### THEORETICAL BOUNDS for L-function  
## bounds = 1.96 * sqrt(2*pi*A) * h / E(N), where  
## A = area of  space, and  
## E(N) = expected # of  pts in the space (approximated here using  
## the observed # of  pts  
L4upper = 1.96 * sqrt(2*pi*1*1) * s / n  
L4lower = -1.0 * L4upper  
lines(s,L4upper,lty=3,col="orange",lwd=2)  
lines(s,L4lower,lty=3,col="orange",lwd=2)  

#### F-function (empty-space function):  
## The cumulative distribution function (cdf), F,  
## of  the distance from a fixed location to the nearest point of  X.  
## Lower F indicates clustering.  
## If  F(0.2) = 0.4, for instance, then  
## 40% of  locations are within distance 0.2 of  a point of  the process.  
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b2 = as.ppp(b1, W = c(0,1,0,1))  
## the above convert the points into a "ppp" object,  
## using as a window [0,1] x [0,1]  
par(mfrow=c(1,1))  
f4 = Fest(b2)  
plot(f4)  

#### G-function: 
## the cdf, G, of  the distance from a typical point to its nearest neighbor. 
## Higher G indicates clustering. 
## If  G(0.2) = 0.9, then 90% of  points have another point within 0.2 of  them. 
g4 = Gest(b2) 
plot(g4) 

#### J-function: 
## J(r) = (1-G(r))/(1-F(r)). 
## J = 1 corresponds to a stationary Poisson process. 
## J < 1 indicates clustering. J > 1 indicates inhibition. 
j4 = Jest(b2) 
plot(j4) 

#### load data 2020 to z 
mydata20 = read.csv("dataApril2020.csv") 
data20 = list() 
data20$t = c() 
data20$n=0 
data20$lat = c() 
data20$lon = c() 
data20$t = mydata20$t 
data20$lon = mydata20$lon 
data20$lat = mydata20$lat 
data20$n = length(mydata20$t) 
View(data20) 
z = data20 

#### load data 2019 to z 
mydata19 = read.csv("dataApril2019.csv") 
data19 = list() 
data19$t = c() 
data19$n=0 
data19$lat = c() 
data19$lon = c() 
data19$t = mydata19$t 
data19$lon = mydata19$lon 
data19$lat = mydata19$lat 
data19$n = length(mydata19$t) 
View(data19) 
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z = data19 

############################################################ 
### Fitting a Pseudo-Likelihood model.  
## I'm using the model lambda_p ( z | z_1, ..., z_k) =  
## mu + alpha x + beta y + gamma SUM_{i = 1 to k} a1 exp{-a1 D(z_i,z)}/(2piD(z_i,z)),   
## where z = (x,y), and where D means distance. 
## So, if  gamma is positive, then there is clustering; otherwise inhibition 

x1 = z$lon 
y1 = z$lat 
n = length(x1) 
n1 = length(x1) 
n2 = length(y1) 
d1 = as.matrix(dist(cbind(x1,y1))) ## matrix of  distances between pts 

f  = function(p){ 
## returns the negative pseudo log-likelihood 
## p = (mu,alpha,beta,gamma,a1) 
if(p[1] < 0) return(99999) 
if(p[1] + p[2] < 0) return(99999) 
if(p[1] + p[3] < 0) return(99999) 
if(p[1] + p[2] + p[3] < 0) return(99999) 
if(p[4] < 0) return(99999) 
if(p[4] > 1) return(99999) 
if(p[5] < 0) return(99999) 
lam = p[1] + p[2] * x1 + p[3] * y1 
for(i in 1:n1){ 
for(j in c(1:n1)[-i]){ 
lam[i] = lam[i] + p[4] * p[5] * exp(-p[5] * d1[i,j]) / (2*pi*d1[i,j]) 
} 
} 
if  (min(lam) < 0) return (99999) 
int2 = p[1] + p[2]/2 + p[3]/2 + p[4]*n1 
## Note that this above is for a window of  [0,1] x [0,1] 
cat("integral = ",int2," negative loglikelihood = ", 
int2-sum(log(lam)), "\n"," p = ",p,"\n") 
## integral should be roughly n when it's done 
return(int2-sum(log(lam))) 
} 
pstart = c(1, .13, 1, .1, 15) 
fit1 = optim(pstart,f,control=list(maxit=500),hessian=T) 
pend = fit1$par 
f(pstart)  ## -109.52. 
f(pend)    ## -221.96. 
pend 
sqrt(diag(solve(fit1$hess))) 
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### Plot the Model's Background Rate 
par(mfrow=c(1,1)) 
plot(c(0,1),c(0,1),type="n",xlab="x-coordinate",ylab="y-coordinate", 
main="background rate") 
x2 = seq(0.05,0.95,length=10) 
y2 = seq(0.05,0.95,length=10) 
z2 = matrix(rep(0,(10*10)),ncol=10) 
z3 = matrix(rep(0,(10*10)),ncol=10) 
for(i in 1:10){ 
for(j in 1:10){ 
z2[i,j] = pend[1] + pend[2]*x2[i] + pend[3]*y2[j] 
z3[i,j] = pstart[1] + pstart[2]*x2[i] + pstart[3]*y2[j] 
}} 
zmin = min(c(z2,z3)) 
zmax = max(c(z2,z3)) 
image(x2,y2,z2,col=hcl.colors(10),zlim=c(zmin,zmax),add=T) 
points(x1,y1) 
par(mfrow=c(1,2)) 
plot(c(0,1),c(0,1),type="n",xlab="x-coordinate",ylab="y-coordinate", 
main="background rate") 
x2 = seq(0.05,0.95,length=10) 
y2 = seq(0.05,0.95,length=10) 
z2 = matrix(rep(0,(10*10)),ncol=10) 
z3 = matrix(rep(0,(10*10)),ncol=10) 
for(i in 1:10){ 
for(j in 1:10){ 
z2[i,j] = pend[1] + pend[2]*x2[i] + pend[3]*y2[j] 
z3[i,j] = pstart[1] + pstart[2]*x2[i] + pstart[3]*y2[j] 
}} 
zmin = min(c(z2,z3)) 
zmax = max(c(z2,z3)) 
image(x2,y2,z2,col=hcl.colors(10),zlim=c(zmin,zmax),add=T) 
points(x1,y1) 
######### LEGEND: 
zrng = zmax - zmin 
zmid = zmin + zrng/2 
plot(c(0,10),c(zmid-2*zrng/3,zmid+2*zrng/3),type="n",axes=F,xlab="",ylab="") 
zgrid = seq(zmin,zmax,length=100) 
## zgrid = vector of  100 equally-spaced numbers spanning range of  the values. 
image(c(-1:1),zgrid,matrix(rep(zgrid,2),ncol=100,byrow=T),add=T,col=hcl.colors(10)) 
text(2.5,zmin,as.character(signif(zmin,2)),cex=1) 
text(2.5,zmax,as.character(signif(zmax,2)),cex=1) 
text(2.5,zmid,as.character(signif(zmid,2)),cex=1) 
text(4.5,zmid,"pts/unit area",srt=-90) 

### PLOT LAMBDA_p on a 10 x 10 grid. 
par(mfrow=c(1,2)) ## change this 3 to 2 for your projects. 
plot(c(0,1),c(0,1),type="n",xlab="x-coordinate",ylab="y-coordinate", 
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main="lambda_p") 
x2 = seq(0.05,0.95,length=10) 
y2 = seq(0.05,0.95,length=10) 
zz2 = matrix(rep(0,(10*10)),ncol=10) 
zz3 = matrix(rep(0,(10*10)),ncol=10) 
for(i in 1:10){ 
for(j in 1:10){ 
zz2[i,j] = pend[1] + pend[2] * x2[i] + pend[3] * y2[j] 
zz3[i,j] = pstart[1] + pstart[2] * x2[i] + pstart[3] * y2[j] 
for(k in c(1:n1)){ 
zz2[i,j] = zz2[i,j] + pend[4] * pend[5] * exp(-pend[5] * 
sqrt((x2[i]-x1[k])^2+(y2[j]-y1[k])^2)) 
zz3[i,j] = zz3[i,j] + pstart[4] * pstart[5] * exp(-pstart[5] * 
sqrt((x2[i]-x1[k])^2+(y2[j]-y1[k])^2)) 
} 
} 
} 
zmin = min(c(zz2,zz3)) 
zmax = max(c(zz2,zz3)) 
image(x2,y2,zz2,col=hcl.colors(10),zlim=c(zmin,zmax),add=T) 
points(x1,y1, col="red", pch=2) 
######### LEGEND: 
zrng = zmax - zmin 
zmid = zmin + zrng/2 
plot(c(0,10),c(zmid-2*zrng/3,zmid+2*zrng/3),type="n",axes=F,xlab="",ylab="") 
zgrid = seq(zmin,zmax,length=100) 
## zgrid = vector of  100 equally-spaced numbers spanning range of  the values. 
image(c(-1:1),zgrid,matrix(rep(zgrid,2),ncol=100,byrow=T),add=T,col=hcl.colors(10)) 
text(2.5,zmin,as.character(signif(zmin,2)),cex=1) 
text(2.5,zmax,as.character(signif(zmax,2)),cex=1) 
text(2.5,zmid,as.character(signif(zmid,2)),cex=1) 
text(4.5,zmid,"pts/unit area”,srt=-90) 

############################################################ 
############ fit Hawkes 
T = 31 
X1 = 1 
Y1 = 1 
M0 = 3.5 

m3 = function(x) signif(x,3) 

## Make sure the data are stored in z, and you define T,X1,Y1, and M0 externally.  
## First we will write the loglikelihood function in R.  
loglhawk = function(theta,draw=0){ 
  mu = theta[1]; K = theta[2]; alpha = theta[3]; beta = theta[4]  
  cat("\n mu = ",m3(mu),", K = ",m3(K),", alpha = ",m3(alpha),", beta = ",m3(beta),".\n")  
  if(min(mu,K,alpha,beta)<0.000000001) return(99999)  
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  if(K>.99999) return(99999) 
  if(draw){ 
    r = seq(0,3,length=100) 
    t = alpha/pi * exp(-alpha * r^2) 
    lines(r,t,col="orange",lty=2)  
  } 
  sumlog = log(mu/X1/Y1)  
  intlam = mu*T + K*z$n 
  const = K*alpha/pi*beta 
  for(j in 2:(z$n)){ 
    gij = 0 
    for(i in 1:(j-1)){ 
      r2 = (z$lon[j]-z$lon[i])^2+(z$lat[j]-z$lat[i])^2 
      gij = gij + exp(-beta*(z$t[j]-z$t[i])-alpha*r2) 
    } 
    lamj = mu / X1 / Y1 + const*gij 
    if(lamj < 0){ 
      cat("lambda ",j," is less than 0.") 
      return(99999) 
    } 
    sumlog = sumlog + log(lamj) 
  } 
  loglik = sumlog - intlam 
  cat("loglike is ", loglik, ". sumlog = ", sumlog,". integral = ", intlam,".\n") 
  if(draw) lines(r,t,col="white",lty=2)  
  return(-1.0*loglik) 
} 

theta1 = c(2,0.5, 40, 40)/2 
b1 = optim(theta1,loglhawk) 
b2 = optim(b1$par,loglhawk,hessian=T) 
theta2 = b2$par 
sqrt(diag(solve(b2$hess))) ## for SEs  

mu = theta2[1]; K = theta2[2]; alpha = theta2[3]; beta=theta2[4] 
lambda = rep(mu/X1/Y1,z$n) 
const = K*alpha/pi*beta 
for(j in 2:(z$n)){ 
  gij = 0 
  for(i in 1:(j-1)){ 
    r2 = (z$lon[j]-z$lon[i])^2+(z$lat[j]-z$lat[i])^2 
    gij = gij + exp(-beta*(z$t[j]-z$t[i])-alpha*r2) 
  } 
  lambda[j] = mu / X1 / Y1 + const*gij 
} 
mean(lambda) 
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###### f  function and super-thin 
f  = function(t,x,y,z){ 
  ## compute lambda(t,x,y) given data, z.  
  const = K*alpha/pi*beta 
  gij = 0 
  j = 0 
  if(t > z$t[1]) j = max(c(1:z$n[1])[z$t<t]) 
  if(j>0) for(i in 1:j){ 
    r2 = (x-z$lon[i])^2+(y-z$lat[i])^2 
    gij = gij + exp(-beta*(t-z$t[i])-alpha*r2) 
  } 
  mu / X1 / Y1 + const*gij 
} 

s = supthin(z,lambda,f) 

####### superthin func ### 
supthin = function(z,lambda,f,b=mean(lambda)){ 
  ## z = data, lambda = conditional intensity at pts, f  = function to compute lambda,  
  ## and b = resulting rate. 
  ## First thin, then superpose 
  keepz = list() 
  for(i in 1:z$n){ 
    if(runif(1) < b/lambda[i]){ 
      keepz$t = c(keepz$t,z$t[i]) 
      keepz$lon = c(keepz$lon,z$lon[i]) 
      keepz$lat = c(keepz$lat,z$lat[i]) 
    } 
  } 
  candn = rpois(1,b*X1*Y1*T) 
  candt = sort(runif(candn)*T) 
  candx = runif(candn)*X1 
  candy = runif(candn)*Y1 
  for(i in 1:candn){ 
    v = f(candt[i],candx[i],candy[i],z) 
    if(v < b){ 
      if(runif(1) < (b-v)/b){ 
        keepz$t = c(keepz$t,candt[i]) 
        keepz$lon = c(keepz$lon,candx[i]) 
        keepz$lat = c(keepz$lat,candy[i]) 
      }} 
  } 
  keepz$lon = keepz$lon[order(keepz$t)] 
  keepz$lat = keepz$lat[order(keepz$t)] 
  keepz$t = sort(keepz$t) 
  keepz$n = length(keepz$t) 
  keepz 
} 
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par(mfrow=c(1,2)) 
plot(z$lon,z$lat,pch=3,cex=.5,xlab="lon",ylab="lat",main="original pts.") 
plot(s$lon,s$lat,pch=1,cex=.1,xlab="lon",ylab="lat",main="superthinned points") 
par(mfrow=c(1,1)) 
plot(s$lon,s$lat,pch=1,cex=.5, col="gray", xlab="lon",ylab="lat") 
points(z$lon,z$lat,pch=2,cex=.5,col="red") 

s2 = as.ppp(as.points(s$lat, s$lon), W = c(0,1,0,1)) 
d2 = as.ppp(as.points(z$lat, z$lon), W=c(0, 1,0,1)) 
s2 = as.ppp(as.points(s$lat, s$lon), W = c(0,1,0,1)) 
d2 = as.ppp(as.points(z$lat, z$lon), W=c(0, 1,0,1)) 

f4 = Fest(s2) 
f40 = Fest(d2) 
par(mfrow=c(1,1)) 
plot(c(0,0.1), c(0, 1),type="n",xlab="h",ylab="F(h)", 
     main="F function") 
lines(f4$r[f4$r<.5],f4$rs[f4$r<.5],type="l", lty=1,col="green") 
lines(f40$r[f40$r<.5],f40$rs[f40$r<.5],lty=1,col="red") 
lines(f4$r[f4$r<.5],f4$theo[f4$r<.5],type="l",lty=2) 
legend(.07,.2,lty=c(1,2),legend=c("original","Poisson","superthined data")) 

g4 = Gest(s2) 
g40=Gest(d2) 
plot(g4$r[g4$r<.3],g4$rs[g4$r<.3],xlab="h",ylab="G(h)",type="l",lty=1, col="green") 
lines(g40$r[g40$r<.3],g40$rs[g40$r<.3],lty=1, col="red") 
lines(g4$r[g4$r<.3],g4$theo[g4$r<.3],lty=2) 
legend(.2,.2,lty=c(1,2),legend=c("superthined data","Poisson")) 

j4 = Jest(s2) 
j40 = Jest(d2) 
plot(j4$r[j4$r<.3],j4$rs[j4$r<.3],xlab="h",ylab="J(h)",type="l",lty=1, col="green") 
lines(j40$r[j40$r<.3],j40$rs[j40$r<.3],lty=1, col="red") 
lines(j4$r[j4$r<.3],j4$theo[j4$r<.3],lty=2) 
legend(.2,.2,lty=c(1,2),legend=c("data","Poisson"))
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