
Stat 222 Final Project: Effect of
Social Distancing Measures on

Crime
Spatial-Temporal Analysis on West Los Angeles Arrest Dataset

Hongda Jiang
Spring 2020  

STAT 222 1

Introduction
One of most primary influence to be taken into account for the causes that regulate crime is its

environment. This is demonstrated by Richard L. Dugdale in his famous book “Origin of Crime in

Society” with examples from the yellow-fever epidemic in Memphis: there were a great many robberies

committed in that dreadful time[2]. Indeed, the disturbance of social order which leaves property

unprotected promotes unlawful appropriation [3].

In response to the ongoing COVID-19 pandemic, governments across the states have implemented social

distancing regulations. Social distancing measures are powerful public health tools to reduce transmission

speed of an infection agent, which include instructions that individuals maintain a distance from one

another, limitations of gatherings, business operation constrains[1]. In city of Los Angeles, government

announced the “shelter in place” order in March 20th, 2020 and the social distancing measure continue

to today (June 6th, 2020). Most of unnecessary businesses had remained closed until May 15th, 2020.

This certainly changes the environment of crime in various aspects. First, when fully implemented, social

distancing measure drives a massive disruption of daily routines, significantly altering and disrupting the

conditions under which crime may occur. For example, it reduces the possibility of criminal acts that

require in-person contact. Second, social distancing is built upon economy strain. The economic pressure

might prompt the incentives for some people to conduct crime. Therefore, it is not obvious how the social

distancing measure will shape the crime patterns.

Investigation of spatial-temporal pattern of crime may provide valuable insights into 1) whether social

distancing measures are effectively implemented and whether individuals and communities are more

meaningful for critical public health measure; (2) what policy need to be adopt to compensate the harm

from social distancing measure on public safety.

STAT 222 2

In this study, we will use spatial-temporal analysis tools to investigate the arrest data in west Los

Angeles area in April 2019 and April 2020. The main questions to be addressed in this study are:

1. is there any clustering or inhibition within event points;

2. what can be a suitable model for the dataset;

3. is there any effect from social distancing measures on spatial-temporal distribution of criminal events.

I will first introduce the data and some preprocessing steps. The methodology adopted will be covered in

the following section. I will then diagnose the dataset to see clustering effect. Later, two different point

process models are fit to the data in order to explain the possible patterns in the arrest data. Finally, I will

summarize our findings and future directions.

Dataset and preprocessing
Our data comes from the open data source of City of Los Angeles (https://data.lacity.org/A-Safe-City/),

which contains more than one million records of arrest incidents from 2010 to present in the area of Los

Angeles city. Due to privacy issue, location fields are only provided to the nearest hundred block. I

specifically look at arrests took place in west Los Angeles area (area code 08) in April 2019 and April 2020

(Fig.1). The major area is located in a square window with latitude/longitude ((-118.48,

-118.37)x(34.02,34.08)). For the time period, April 2020 is special because it is right after the shutting

down of Los Angeles city and before the reopening of economy, corresponding to a period under social

distancing measures. To compare it with usual case, I chose data from April 2019, a period without social

distancing measures. This reduced the size of dataset to around 100.

In order to apply the spatial-temporal models, we need to preprocess the data. First, I normalize the

latitude and longitude data into a unit square. Due to the high level of coarse graining, some records have

the same date and the same location. To let the dataset fit into a simple point process, I add a small noise to

the date and location record: , and

where are uniform random noises. This makes all the times and locations distinct.

t = t0 + 0.1(δt − 0.5) x = x0 + 0.01(δx − 0.5) y = y0 + 0.01(δy − 0.5)

δt, δx, δy

STAT 222 3

Method
Our data is distributed over the space , in which I will be conducting all of our

analysis. The first thing I looked at was the kernel smoothing that calculated the density of features in a

neighborhood around those features. The bandwidth used is a constant calculated from standard distance

and distance to the mean. This helps to identify the hot spots. Next I looked at the estimated F, G, and J

functions of our data, which indicate possible clustering behavior. After that, I tried to fit two different

point process models on our sample data, which are the inhomogeneous Poisson process and Hawkes

process model.

To find the best fit from the inhomogeneous Poisson process, I used the Stoyan method to estimate the

parameters of this model. The conditional intensity function I used on our data was

where and is the distance.

As for fitting an Hawkes process, the conditional intensity function takes the following form:

where, , , ,

which contains parameter . Then I use maximum-likelihood estimation to estimate parameter

values. To evaluate the fitting performance, super-thinning method was adopted to make super-thinned

points plot as well as estimate the F, G, and J function and compare to pure Poisson process.

Results
1. Raw data and diagnostic plots
Figure 1 shows the plot of original data obtained from website of Los Angeles open data source. There is

obvious inhomogeneity in the distribution of arrest point, with a lot of points locate in main streets or

S = [0,1] × [0,1] × [0,31]

λ (z |z1, . . . , zk) = μ + α x + β y + γ
k

∑
i=1

a1e−a1D(zi,z)

2π D (zi, z)

z = (x , y) D (z1, z2) = |z1 − z2 |

λ (t , x , y) = μρ (x , y) + K ∑
ti,xi,yi;ti<t

g (t − ti)g (x − xi, y − yi)

ρ (x , y) = 1
X1Y1

g (t) = βe−βt g (x , y) = α
π

e−αr2, r2 = x2 + y2

μ , K , β, α

STAT 222 4

central business zone corresponding to high population density area. To further illustrate this, the data was

visualized in a density plot after kernel smoothing (Fig. 2), which seems to indicate some clustering around

districts such as Sawtelle, Beverly Wood for both period of time. The data from 2020 seems to be more

clustered at north Sawtelle area (west Wilshire blvd. and west Santa Monic blvd.)

To further confirm the clustering behavior, I looked at the estimated F, G, and J functions in Figure 3. F

function plot indicates the distance from a fixed point to the nearest point. The estimated F function

appears to show more clustering of arrest al all distances than that generated by a stationary Poisson

process. Similarly, the G function plot, which implies the average distance from a typical point to its

nearest neighbor, indicates possible clustering behavior for both dataset. Besides, the J function, which is a

combination of F and G function also shows the same conclusion.

2. Fitting an inhomogeneous Poisson process
I next fit the data using an inhomogeneous model by maximum likelihood estimation. The parameters

and corresponding std are listed below in the form of mean ± std.

The background rate and total density rate for the space is shown in Fig.5. Density plots of the fitting

model agree relatively well with the original data. Both of the models are successfully capture those hot

spots. The background rate with social distancing measures (2020) is more inhomogeneous compared to

the estimation for data without social distancing measures (2019). The west region has higher background

rate compared to the east region in 2020. Since districts in the east are mostly single house residential area

whereas many apartments and commercial businesses are located in the west, this suggests that crime

events are less likely to happen in the the residential area, as expected due to “shelter in place” order. In

STAT 222 5

Table 1: estimate of parameters and STDs for inhomogeneous Poisson process

dataset μ ⍺ β # a1

2019 April 19.7±25.0 2.17±18.1 -9.46±31.1 0.857±0.1 52.3±9.62

2020 April 42.1±16.7 -41.6±29.4 -0.540±24.3 0.828±0.099 36.5±6.4

addition, similar positive coefficients in both models indicate clustering for both datasets. values are

large, indicating correlation decreases quickly over distance. However, the standard errors appear to be

extremely high, indicating this model might not be suitable.

3. Fitting a Hawkes process
Another model fitted in this analysis was the Hawkes model. The form we took can be found in the

method section. In the table below we show fitting results.

This model turns out to be a good fit for both datasets, which can be seen from the relatively small

standard deviations compared to the estimated means. Model for 2019 data has a bit higher background

rate than that of 2020. This is expected because the total number of cases decreases from 112 in April

2019 to 99 in April 2020. The values of the triggering function are approximately 0.5. This implies that

on average each point is likely to directly trigger 0.5 point. So each background point is expected to

generate 1 triggered point in total. Besides, we have relatively high value of and compared to the scale

of length () and time (), suggesting short correlation length in both time and space. This

might be from group crime so that offender and accomplices were arrested in the near location and time.

To see how well this Hawkes model can fit the data, we further evaluate the model using super-thinning.

In Fig.6 we show the original points as well as super-thinned points. One can see the super-thinned points

appear to follow a simple homogeneous Poisson process, which suggested that Hawkes model could be a

good fit. The F, G and J functions for super-thinned points are displayed in Fig. 7 together with the

original curves. For all those functions, at least in short distance, the super-thinned lines collapse with pure

stationary Poisson process results. This provides evidence that the Hawkes model was suitable.

γ a1

α β

X1 = Y1 = 1 T = 31

STAT 222 6

Table 2: estimate of parameters and STDs for Hawkes process model

dataset μ K ⍺ β

2019 April 1.86±0.31 0.484±0.084 40.2±17.9 40.1±6.0

2020 April 1.30±0.23 0.594±0.084 11.7±2.2 45.0±6.9

Conclusion and Future Direction
To conclude, we studied the spatial-temporal arrest dataset in April, 2019 and April 2020, in order to

understand the effect of social distancing in crime. Kernel smoothing and simple diagnostic plots suggest

clustering in arrest data. We then fitted the data using inhomogeneous Poisson process model as well as

Hawkes model. The later one provides a good fit to both datasets, which is evaluated by diagnostic

functions. Our results suggest that social distancing and shelter in place order have had some impact on

crime in terms of the background rate and spatial distribution, even though the effect is marginal.

We note several limitations of the present study. First, the results are specific to west Los Angeles area.

Second, the arrest data couldn’t reflect all criminal events which might not result in an arrest record if it is

light. Besides, the police departments have undertaken dramatic changes in response to the

pandemic(New York city is a good example). Officers who contract COVID-19 or must accommodate

children home from school, leads to reduced workforce for crime arrest.

In addition to looking at larger dataset, it might be helpful to introduce covariates. Intuitively the crime

frequency is related to population density or poverty. Adding those additional information might make our

model more accurate. Besides, some quantitive evaluation of the difference between fitted models for data

in 2019 and 2020 would be helpful to demonstrate the impact of social distancing measure more clearly.

For example, we can simulate the fitted model from 2019 and compare it to dataset in 2020.

Reference
[1] Mohler, et al. Impact of social distancing during COVID-19 pandemic in Los Angeles and
Indianapolis, Journal of Criminal Justice 68, 101692 (2020)

[2] Richard L. Dugdale, Origin of Crime in Society, The Atlantic, (1881)

[3] Wilson, James Q Kelling, George L. Broken Windows, The Atlantic, (1982)

[4] David Weisburd, The Law of Crime Concentration and Criminology in Place, Criminology 53, 133
(2015) 

STAT 222 7

Figure 1. Map of west Los Angeles and distribution of arrest data.

left: data from April 2019, 112 points in total. Right: data from April 2020, 99 points in total.

Figure 2. Kernel smoothing plot for both datasets. Top: 2019; Bottom: 2020

STAT 222 8

Figure 3. F, G, J function plot for original data. Left: 2019 data; Right 2020 data

Figure 4. K and L functions for original data. Left: 2019 data. Right: 2020 data

STAT 222 9

Figure 5. Fitted inhomogeneous background rate (left) and lambda (right) for 2019 data (top) and 2020

data (bottom)

Figure 6. Overlay of original points and super-thinned points. Left: 2019 data; Right 2020 data

STAT 222 10

Figure 7. F, G, and J function for super-thinned points

STAT 222 11

Original

Poisson

Original

Poisson

######## Code
import data from April 2020
mydata20 = read.csv("dataApril2020.csv")
par(mfrow=c(1,1))
#plot(c(-118.48, -118.37), c(34.02,34.08),type="n",xlab="x-coordinate",ylab="y-coordinate",
plot(c(0, 1), c(0, 1), type="n", xlab="longitude", ylab="latitude", main="arrest in April 2020")
points(mydata20[, "lon"], mydata20[, "lat"],pch=3)

import data from April 2019
mydata19 = read.csv("dataApril2019.csv")
par(mfrow=c(1, 1))
plot(c(0, 1), c(0, 1), type="n", xlab="longitude", ylab="latitude", main="arrest in April 2019")
points(mydata19[, "lon"], mydata19[, "lat"], pch=3)

############## kernel smoothing for 2019 data
x1 = mydata19[, "lon"]
y1 = mydata19[, "lat"]
n = length(x1)
b1 = as.points(x1,y1)

############## kernel smoothing for 2020 data
x1 = mydata20[, "lon"]
y1 = mydata20[, "lat"]
n = length(x1)
b1 = as.points(x1,y1)

Kernel smoothing
stddist = sqrt(1/n*(sum((x1-mean(x1))^2)+sum((y1-mean(y1))^2))) ## standard distance
ds = sqrt((x1-mean(x1))^2+(y1-mean(y1))^2) ## distances to mean
dm = median(ds)
bdw = .9*min(stddist,sqrt(1/log(2))*dm)*n^-.2
this is the suggestion in
https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-kernel-density-works.htm

bdw = sqrt(bw.nrd(x1)^2+bw.nrd(y1)^2) ## another option for a default bandwidth
bdw = .2 ## or just pick a reasonable bandwidth yourself, like this.
bdry = matrix(c(0,0,1,0,1,1,0,1,0,0),ncol=2,byrow=T)
z = kernel2d(b1,bdry,bdw)
par(mfrow=c(1,2))
image(z,col=hcl.colors(10),xlab="longitude",ylab="latitude")
points(b1)
x4 = (0:100)/100*(max(z$z)-min(z$z))+min(z$z)
plot(c(0,10),c(.8*min(x4),1.2*max(x4)),type="n",axes=F,xlab="",ylab="")
image(c(-1:1),x4,matrix(rep(x4,2),ncol=101,byrow=T),add=T,col=hcl.colors(10))
text(2,min(x4),as.character(signif(min(x4),2)),cex=1)
text(2,(max(x4)+min(x4))/2,as.character(signif((max(x4)+min(x4))/2,2)),cex=1)
text(2,max(x4),as.character(signif(max(x4),2)),cex=1)
mtext(s=3,l=-3,at=1,"Rate (pts per unit area)”)

STAT 222 12

######### K-function & L-function:
par(mfrow=c(2,1)) ## if you want to make a 2x1 grid of plots
s = seq(.001,.3,length=50)
k4 = khat(b1,bdry,s)
plot(s,k4,xlab="distance",ylab="K4(h)",pch="*")
lines(s,k4)
lines(s,pi*s^2,lty=2)
L4 = sqrt(k4/pi)-s
plot(c(0,.3),range(L4),type="n",xlab="lag, h",ylab="L4(h) - h")
points(s,L4,pch="*")
lines(s,L4)
lines(s,rep(0,50),lty=2)

CONFIDENCE BOUNDS FOR K-FUNCTION via simulation
k4conf = Kenv.csr(npts(b1), bdry, 1000, s)
plot(c(0,max(s)),c(0,max(k4conf$upper,k4)), type="n",xlab="distance",ylab="K4(h)")
points(s,k4,pch="*")
lines(s,k4)
lines(s,k4conf$upper,lty=3,col="green",lwd=2)
lines(s,k4conf$lower,lty=3,col="green",lwd=2)
L4upper = sqrt(k4conf$upper/pi) - s
L4lower = sqrt(k4conf$lower/pi) - s

plot(c(0,max(s)),c(min(L4lower,L4),max(L4upper,L4)),
 type="n",xlab="distance",ylab="L4(h) - h")
points(s,L4,pch="*")
lines(s,L4)
lines(s,L4upper,lty=2,col="green",lwd=2)
lines(s,L4lower,lty=2,col="green",lwd=2)
lines(s,rep(0,length(s)))

THEORETICAL BOUNDS for L-function
bounds = 1.96 * sqrt(2*pi*A) * h / E(N), where
A = area of space, and
E(N) = expected # of pts in the space (approximated here using
the observed # of pts
L4upper = 1.96 * sqrt(2*pi*1*1) * s / n
L4lower = -1.0 * L4upper
lines(s,L4upper,lty=3,col="orange",lwd=2)
lines(s,L4lower,lty=3,col="orange",lwd=2)

F-function (empty-space function):
The cumulative distribution function (cdf), F,
of the distance from a fixed location to the nearest point of X.
Lower F indicates clustering.
If F(0.2) = 0.4, for instance, then
40% of locations are within distance 0.2 of a point of the process.

STAT 222 13

b2 = as.ppp(b1, W = c(0,1,0,1))
the above convert the points into a "ppp" object,
using as a window [0,1] x [0,1]
par(mfrow=c(1,1))
f4 = Fest(b2)
plot(f4)

G-function:
the cdf, G, of the distance from a typical point to its nearest neighbor.
Higher G indicates clustering.
If G(0.2) = 0.9, then 90% of points have another point within 0.2 of them.
g4 = Gest(b2)
plot(g4)

J-function:
J(r) = (1-G(r))/(1-F(r)).
J = 1 corresponds to a stationary Poisson process.
J < 1 indicates clustering. J > 1 indicates inhibition.
j4 = Jest(b2)
plot(j4)

load data 2020 to z
mydata20 = read.csv("dataApril2020.csv")
data20 = list()
data20$t = c()
data20$n=0
data20$lat = c()
data20$lon = c()
data20$t = mydata20$t
data20$lon = mydata20$lon
data20$lat = mydata20$lat
data20$n = length(mydata20$t)
View(data20)
z = data20

load data 2019 to z
mydata19 = read.csv("dataApril2019.csv")
data19 = list()
data19$t = c()
data19$n=0
data19$lat = c()
data19$lon = c()
data19$t = mydata19$t
data19$lon = mydata19$lon
data19$lat = mydata19$lat
data19$n = length(mydata19$t)
View(data19)

STAT 222 14

z = data19

Fitting a Pseudo-Likelihood model.
I'm using the model lambda_p (z | z_1, ..., z_k) =
mu + alpha x + beta y + gamma SUM_{i = 1 to k} a1 exp{-a1 D(z_i,z)}/(2piD(z_i,z)),
where z = (x,y), and where D means distance.
So, if gamma is positive, then there is clustering; otherwise inhibition

x1 = z$lon
y1 = z$lat
n = length(x1)
n1 = length(x1)
n2 = length(y1)
d1 = as.matrix(dist(cbind(x1,y1))) ## matrix of distances between pts

f = function(p){
returns the negative pseudo log-likelihood
p = (mu,alpha,beta,gamma,a1)
if(p[1] < 0) return(99999)
if(p[1] + p[2] < 0) return(99999)
if(p[1] + p[3] < 0) return(99999)
if(p[1] + p[2] + p[3] < 0) return(99999)
if(p[4] < 0) return(99999)
if(p[4] > 1) return(99999)
if(p[5] < 0) return(99999)
lam = p[1] + p[2] * x1 + p[3] * y1
for(i in 1:n1){
for(j in c(1:n1)[-i]){
lam[i] = lam[i] + p[4] * p[5] * exp(-p[5] * d1[i,j]) / (2*pi*d1[i,j])
}
}
if (min(lam) < 0) return (99999)
int2 = p[1] + p[2]/2 + p[3]/2 + p[4]*n1
Note that this above is for a window of [0,1] x [0,1]
cat("integral = ",int2," negative loglikelihood = ",
int2-sum(log(lam)), "\n"," p = ",p,"\n")
integral should be roughly n when it's done
return(int2-sum(log(lam)))
}
pstart = c(1, .13, 1, .1, 15)
fit1 = optim(pstart,f,control=list(maxit=500),hessian=T)
pend = fit1$par
f(pstart) ## -109.52.
f(pend) ## -221.96.
pend
sqrt(diag(solve(fit1$hess)))

STAT 222 15

Plot the Model's Background Rate
par(mfrow=c(1,1))
plot(c(0,1),c(0,1),type="n",xlab="x-coordinate",ylab="y-coordinate",
main="background rate")
x2 = seq(0.05,0.95,length=10)
y2 = seq(0.05,0.95,length=10)
z2 = matrix(rep(0,(10*10)),ncol=10)
z3 = matrix(rep(0,(10*10)),ncol=10)
for(i in 1:10){
for(j in 1:10){
z2[i,j] = pend[1] + pend[2]*x2[i] + pend[3]*y2[j]
z3[i,j] = pstart[1] + pstart[2]*x2[i] + pstart[3]*y2[j]
}}
zmin = min(c(z2,z3))
zmax = max(c(z2,z3))
image(x2,y2,z2,col=hcl.colors(10),zlim=c(zmin,zmax),add=T)
points(x1,y1)
par(mfrow=c(1,2))
plot(c(0,1),c(0,1),type="n",xlab="x-coordinate",ylab="y-coordinate",
main="background rate")
x2 = seq(0.05,0.95,length=10)
y2 = seq(0.05,0.95,length=10)
z2 = matrix(rep(0,(10*10)),ncol=10)
z3 = matrix(rep(0,(10*10)),ncol=10)
for(i in 1:10){
for(j in 1:10){
z2[i,j] = pend[1] + pend[2]*x2[i] + pend[3]*y2[j]
z3[i,j] = pstart[1] + pstart[2]*x2[i] + pstart[3]*y2[j]
}}
zmin = min(c(z2,z3))
zmax = max(c(z2,z3))
image(x2,y2,z2,col=hcl.colors(10),zlim=c(zmin,zmax),add=T)
points(x1,y1)
######### LEGEND:
zrng = zmax - zmin
zmid = zmin + zrng/2
plot(c(0,10),c(zmid-2*zrng/3,zmid+2*zrng/3),type="n",axes=F,xlab="",ylab="")
zgrid = seq(zmin,zmax,length=100)
zgrid = vector of 100 equally-spaced numbers spanning range of the values.
image(c(-1:1),zgrid,matrix(rep(zgrid,2),ncol=100,byrow=T),add=T,col=hcl.colors(10))
text(2.5,zmin,as.character(signif(zmin,2)),cex=1)
text(2.5,zmax,as.character(signif(zmax,2)),cex=1)
text(2.5,zmid,as.character(signif(zmid,2)),cex=1)
text(4.5,zmid,"pts/unit area",srt=-90)

PLOT LAMBDA_p on a 10 x 10 grid.
par(mfrow=c(1,2)) ## change this 3 to 2 for your projects.
plot(c(0,1),c(0,1),type="n",xlab="x-coordinate",ylab="y-coordinate",

STAT 222 16

main="lambda_p")
x2 = seq(0.05,0.95,length=10)
y2 = seq(0.05,0.95,length=10)
zz2 = matrix(rep(0,(10*10)),ncol=10)
zz3 = matrix(rep(0,(10*10)),ncol=10)
for(i in 1:10){
for(j in 1:10){
zz2[i,j] = pend[1] + pend[2] * x2[i] + pend[3] * y2[j]
zz3[i,j] = pstart[1] + pstart[2] * x2[i] + pstart[3] * y2[j]
for(k in c(1:n1)){
zz2[i,j] = zz2[i,j] + pend[4] * pend[5] * exp(-pend[5] *
sqrt((x2[i]-x1[k])^2+(y2[j]-y1[k])^2))
zz3[i,j] = zz3[i,j] + pstart[4] * pstart[5] * exp(-pstart[5] *
sqrt((x2[i]-x1[k])^2+(y2[j]-y1[k])^2))
}
}
}
zmin = min(c(zz2,zz3))
zmax = max(c(zz2,zz3))
image(x2,y2,zz2,col=hcl.colors(10),zlim=c(zmin,zmax),add=T)
points(x1,y1, col="red", pch=2)
######### LEGEND:
zrng = zmax - zmin
zmid = zmin + zrng/2
plot(c(0,10),c(zmid-2*zrng/3,zmid+2*zrng/3),type="n",axes=F,xlab="",ylab="")
zgrid = seq(zmin,zmax,length=100)
zgrid = vector of 100 equally-spaced numbers spanning range of the values.
image(c(-1:1),zgrid,matrix(rep(zgrid,2),ncol=100,byrow=T),add=T,col=hcl.colors(10))
text(2.5,zmin,as.character(signif(zmin,2)),cex=1)
text(2.5,zmax,as.character(signif(zmax,2)),cex=1)
text(2.5,zmid,as.character(signif(zmid,2)),cex=1)
text(4.5,zmid,"pts/unit area”,srt=-90)

############ fit Hawkes
T = 31
X1 = 1
Y1 = 1
M0 = 3.5

m3 = function(x) signif(x,3)

Make sure the data are stored in z, and you define T,X1,Y1, and M0 externally.
First we will write the loglikelihood function in R.
loglhawk = function(theta,draw=0){
 mu = theta[1]; K = theta[2]; alpha = theta[3]; beta = theta[4]
 cat("\n mu = ",m3(mu),", K = ",m3(K),", alpha = ",m3(alpha),", beta = ",m3(beta),".\n")
 if(min(mu,K,alpha,beta)<0.000000001) return(99999)

STAT 222 17

 if(K>.99999) return(99999)
 if(draw){
 r = seq(0,3,length=100)
 t = alpha/pi * exp(-alpha * r^2)
 lines(r,t,col="orange",lty=2)
 }
 sumlog = log(mu/X1/Y1)
 intlam = mu*T + K*z$n
 const = K*alpha/pi*beta
 for(j in 2:(z$n)){
 gij = 0
 for(i in 1:(j-1)){
 r2 = (z$lon[j]-z$lon[i])^2+(z$lat[j]-z$lat[i])^2
 gij = gij + exp(-beta*(z$t[j]-z$t[i])-alpha*r2)
 }
 lamj = mu / X1 / Y1 + const*gij
 if(lamj < 0){
 cat("lambda ",j," is less than 0.")
 return(99999)
 }
 sumlog = sumlog + log(lamj)
 }
 loglik = sumlog - intlam
 cat("loglike is ", loglik, ". sumlog = ", sumlog,". integral = ", intlam,".\n")
 if(draw) lines(r,t,col="white",lty=2)
 return(-1.0*loglik)
}

theta1 = c(2,0.5, 40, 40)/2
b1 = optim(theta1,loglhawk)
b2 = optim(b1$par,loglhawk,hessian=T)
theta2 = b2$par
sqrt(diag(solve(b2$hess))) ## for SEs

mu = theta2[1]; K = theta2[2]; alpha = theta2[3]; beta=theta2[4]
lambda = rep(mu/X1/Y1,z$n)
const = K*alpha/pi*beta
for(j in 2:(z$n)){
 gij = 0
 for(i in 1:(j-1)){
 r2 = (z$lon[j]-z$lon[i])^2+(z$lat[j]-z$lat[i])^2
 gij = gij + exp(-beta*(z$t[j]-z$t[i])-alpha*r2)
 }
 lambda[j] = mu / X1 / Y1 + const*gij
}
mean(lambda)

STAT 222 18

f function and super-thin
f = function(t,x,y,z){
 ## compute lambda(t,x,y) given data, z.
 const = K*alpha/pi*beta
 gij = 0
 j = 0
 if(t > z$t[1]) j = max(c(1:z$n[1])[z$t<t])
 if(j>0) for(i in 1:j){
 r2 = (x-z$lon[i])^2+(y-z$lat[i])^2
 gij = gij + exp(-beta*(t-z$t[i])-alpha*r2)
 }
 mu / X1 / Y1 + const*gij
}

s = supthin(z,lambda,f)

####### superthin func ###
supthin = function(z,lambda,f,b=mean(lambda)){
 ## z = data, lambda = conditional intensity at pts, f = function to compute lambda,
 ## and b = resulting rate.
 ## First thin, then superpose
 keepz = list()
 for(i in 1:z$n){
 if(runif(1) < b/lambda[i]){
 keepz$t = c(keepz$t,z$t[i])
 keepz$lon = c(keepz$lon,z$lon[i])
 keepz$lat = c(keepz$lat,z$lat[i])
 }
 }
 candn = rpois(1,b*X1*Y1*T)
 candt = sort(runif(candn)*T)
 candx = runif(candn)*X1
 candy = runif(candn)*Y1
 for(i in 1:candn){
 v = f(candt[i],candx[i],candy[i],z)
 if(v < b){
 if(runif(1) < (b-v)/b){
 keepz$t = c(keepz$t,candt[i])
 keepz$lon = c(keepz$lon,candx[i])
 keepz$lat = c(keepz$lat,candy[i])
 }}
 }
 keepz$lon = keepz$lon[order(keepz$t)]
 keepz$lat = keepz$lat[order(keepz$t)]
 keepz$t = sort(keepz$t)
 keepz$n = length(keepz$t)
 keepz
}

STAT 222 19

par(mfrow=c(1,2))
plot(zlon,zlat,pch=3,cex=.5,xlab="lon",ylab="lat",main="original pts.")
plot(slon,slat,pch=1,cex=.1,xlab="lon",ylab="lat",main="superthinned points")
par(mfrow=c(1,1))
plot(slon,slat,pch=1,cex=.5, col="gray", xlab="lon",ylab="lat")
points(zlon,zlat,pch=2,cex=.5,col="red")

s2 = as.ppp(as.points(slat, slon), W = c(0,1,0,1))
d2 = as.ppp(as.points(zlat, zlon), W=c(0, 1,0,1))
s2 = as.ppp(as.points(slat, slon), W = c(0,1,0,1))
d2 = as.ppp(as.points(zlat, zlon), W=c(0, 1,0,1))

f4 = Fest(s2)
f40 = Fest(d2)
par(mfrow=c(1,1))
plot(c(0,0.1), c(0, 1),type="n",xlab="h",ylab="F(h)",
 main="F function")
lines(f4$r[f4$r<.5],f4$rs[f4$r<.5],type="l", lty=1,col="green")
lines(f40$r[f40$r<.5],f40$rs[f40$r<.5],lty=1,col="red")
lines(f4$r[f4$r<.5],f4$theo[f4$r<.5],type="l",lty=2)
legend(.07,.2,lty=c(1,2),legend=c("original","Poisson","superthined data"))

g4 = Gest(s2)
g40=Gest(d2)
plot(g4$r[g4$r<.3],g4$rs[g4$r<.3],xlab="h",ylab="G(h)",type="l",lty=1, col="green")
lines(g40$r[g40$r<.3],g40$rs[g40$r<.3],lty=1, col="red")
lines(g4$r[g4$r<.3],g4$theo[g4$r<.3],lty=2)
legend(.2,.2,lty=c(1,2),legend=c("superthined data","Poisson"))

j4 = Jest(s2)
j40 = Jest(d2)
plot(j4$r[j4$r<.3],j4$rs[j4$r<.3],xlab="h",ylab="J(h)",type="l",lty=1, col="green")
lines(j40$r[j40$r<.3],j40$rs[j40$r<.3],lty=1, col="red")
lines(j4$r[j4$r<.3],j4$theo[j4$r<.3],lty=2)
legend(.2,.2,lty=c(1,2),legend=c("data","Poisson"))

STAT 222 20

