Stat 35, Introduction to Probability.

Outline for the day:

1. Expected value, continued.
2. All in with AA.
3. Pot odds.
4. Violette vs. Elezra pot odds example.
5. Flopping 4 of a kind.
6. SD and variance.
7. Markov and Chebyshev inequalities.
8. Luck and skill.
9. Lederer and Minieri.

Read through chapter 5.

1. Expected Value, continued.

For a discrete random variable X with $p m f(b)$, the expected value of $X=\Sigma b f(b)$.
The sum is over all possible values of b. (continuous random variables later...)
The expected value is also called the mean and denoted $\mathrm{E}(\mathrm{X})$ or μ.
Ex: 2 cards are dealt to you. $\mathrm{X}=1$ if pair, 0 otherwise.
$\mathrm{P}(\mathrm{X}$ is 1$) \sim 5.9 \%, \mathrm{P}(\mathrm{X}$ is 0$) \sim 94.1 \%$.
$\mathrm{E}(\mathrm{X})=(1 \times 5.9 \%)+(0 \times 94.1 \%)=5.9 \%$, or 0.059 .
Ex. Coin, $\mathrm{X}=20$ if heads, $\mathrm{X}=10$ if tails.

$$
\mathrm{E}(\mathrm{X})=(20 \times 50 \%)+(10 \times 50 \%)=15
$$

Ex. Lotto ticket. $\mathrm{f}(\$ 10$ million $)=1 /$ choose $(52,6)=1 / 20$ million, $\mathrm{f}(\$ 0)=1-1 / 20 \mathrm{mil}$.
$\mathrm{E}(\mathrm{X})=(\$ 10 \mathrm{mil} \mathrm{x} 1 / 20 \mathrm{million})=\$ 0.50$.
The expected value of X represents a best guess of X .
Compare with the sample mean, $\bar{X}=\left(\mathrm{X}_{1}+\mathrm{X}_{1}+\ldots+\mathrm{X}_{\mathrm{n}}\right) / \mathrm{n}$.

Some reasons why Expected Value applies to poker:

- Tournaments: some game theory results suggest that, in symmetric, winner-take-all games, the optimal strategy is the one which uses the myopic rule: that is, given any choice of options, always choose the one that maximizes your expected value.
- Laws of large numbers: Some statistical theory indicates that, if you repeat an experiment over and over repeatedly, your long-term average will ultimately converge to the expected value. So again, it makes sense to try to maximize expected value when playing poker (or making deals).
- Checking results: A great way to check whether you are a long-term winning or losing player, or to verify if a certain strategy works or not, is to check whether the sample mean is positive and to see if it has converged to the expected value.

2. Heads up with AA.

Dan Harrington says that, "with a hand like AA, you really want to be one-on-one." True or false?

* Best possible pre-flop situation is to be all in with AA vs A8, where the 8 is the same suit as one of your aces, in which case you're about 94% to win. (the 8 could equivalently be a 6,7 , or 9 .) If you are all in for $\$ 100$, then your expected holdings afterwards are $\$ 188$.
a) In a more typical situation: you have AA against TT. You're 80% to win, so your expected value is $\$ 160$.
b) Suppose that, after the hand vs TT, you get QQ and get up against someone with A9 who has more chips than you do. The chance of you winning this hand is 72%, and the chance of you winning both this hand and the hand above is 58%, so your expected holdings after both hands are $\$ 232$: you have 58% chance of having $\$ 400$, and 42% chance to have $\$ 0$.
c) Now suppose instead that you have AA and are all in against 3 callers with A8, KJ suited, and 44. Now you're 58.4% to quadruple up. So your expected holdings after the hand are $\$ 234$, and the situation is just like (actually slightly better than) \#1 and \#2 combined: 58.4% chance to hold $\$ 400$, and 41.6% chance for $\$ 0$.
* So, being all-in with AA against 3 players is much better than being all-in with AA against one player: in fact, it's about like having two of these lucky one-on-one situations.

What about if you have 55?
a) You have $\$ 100$ and 55 and are up against A9. You are 56% to win, so your expected value is $\$ 112$.
b) You have \$100 and 55 and are up against A9, KJ, and QJs. Seems pretty terrible, doesn't it? But you have a probability of 27.3% to quadruple, so your expected value is
$0.273 \times \$ 400=\$ 109$. About the same as $\# 1$!
[For these probabilities, see the online Texas Holdem odds calculator at http://www.cardplayer.com .]
3. Expected value and pot odds.

Suppose someone bets (or raises) you, going all-in. What should your chances of winning be in order for you to correctly call?

Let $\mathrm{B}=$ the amount bet to you, i.e. the additional amount you'd need to put in if you want to call. So, if you bet $100 \&$ your opponent with 800 left went all-in, $B=700$.

Let $\mathrm{POT}=$ the amount in the pot right now (including your opponent's bet).
Let $\mathrm{p}=$ your probability of winning the hand if you call. So prob. of losing $=1-\mathrm{p}$.
Let CHIPS $=$ the number of chips you have right now.
If you call, then E[your chips at end $]=($ CHIPS $-B)(1-p)+(C H I P S+$ POT $)(p)$
$=\operatorname{CHIPS}(1-\mathrm{p}+\mathrm{p})-\mathrm{B}(1-\mathrm{p})+\mathrm{POT}(\mathrm{p})=\mathrm{CHIPS}-\mathrm{B}+\mathrm{Bp}+\mathrm{POTp}$
If you fold, then E[your chips at end $]=$ CHIPS .
You want your expected number of chips to be maximized, so it's worth calling if
$-\mathrm{B}+\mathrm{Bp}+\mathrm{POTp}>0$, i.e. if $\mathbf{p}>\mathbf{B} /(\mathbf{B}+\mathbf{P O T})$.
3. Pot odds and expected value, continued.

From previous slide, to call an all-in, need $\mathrm{P}($ win $)>\mathrm{B} \div(\mathrm{B}+$ pot $)$. Expressed as an odds ratio, this is sometimes referred to as pot odds or express odds.

If the bet is not all-in \& another betting round is still to come, need $\mathrm{P}($ win $)>$ wager \div (wager + winnings),
where winnings $=$ pot + amount you'll win on later betting rounds, wager $=$ total amount you will wager including the current round \& later rounds, assuming no folding.

The terms Implied-odds / Reverse-implied-odds describe the cases where winnings $>$ pot or where wager $>B$, respectively. See p66.

You will not be tested on implied or reverse implied odds in this course.

Example: 2006 World Series of Poker (WSOP).

Blinds: 200,000/400,000 $+50,000$ ante .
Jamie Gold (44 3d): 60 million chips. Calls.
Paul Wasicka (89 7): 18 million chips. Calls.
Michael Binger $(A \vee 10 \diamond)$: 11 million chips. Raises to $\$ 1,500,000$.
Gold \& Wasicka call. $\quad(\operatorname{pot}=4,650,000) \quad$ Flop: 69 10\&54.
-Wasicka checks, Binger bets $\$ 3,500,000 .($ pot $=8,150,000)$
-Gold moves all-in for $16,450,000 .(\operatorname{pot}=24,600,000)$
-Wasicka folds. Q: Based on expected value, should he have called?
If Binger will fold, then Wasicka's chances to beat Gold must be at least
$16,450,000 /(24,600,000+16,450,000)=40.1 \%$.
If Binger calls, it's a bit complicated, but basically Wasicka's chances must be at least $16,450,000 /(24,600,000+16,450,000+5,950,000)=35.0 \%$.

Ted Forrest: 1 million chips
Freddy Deeb: 825,000

$$
\text { Blinds: } 15,000 / 30,000
$$

Cindy Violette: 650,000
Eli Elezra: 575,000

* Elezra raises to 100,000
* Forrest folds.
* Deeb, the small blind, folds.
* Violette, the big blind with $\mathrm{K}>\mathrm{J}>$, calls.
* The flop is: $\quad 2 \triangleleft 7 \boldsymbol{7 *}$
* Violette bets $100,000 .($ pot $=315,000)$.
* Elezra raises all-in to $475,000 . \quad($ pot $=790,000)$.

So, it's 375,000 more to Violette. She folds.

Q: Based on expected value, should she have called?
Her chances must be at least $375,000 /(790,000+375,000)=32 \%$.

Violette has $\mathrm{K} \diamond \mathrm{J} \diamond$.

Q: Based on expected value, should she have called?
Her chances must be at least $375,000 /(790,000+375,000)=32 \%$.

vs.	AQ: 38%	AK: 37%	AA: 26%	$77: 26 \%$	A7: 31%
A2: 34%	$72: 34 \%$	TT: 54%	T9: 87%	$73: 50 \%$	

Harrington's principle: always assume at least a 10% chance that opponent is bluffing. Bayesian approach: average all possibilities, weighting them by their likelihood.

Violette has $\mathrm{K}>\mathrm{J} \diamond$.

The flop is: $2 \diamond 7 \Leftrightarrow \mathrm{~A}$.
Q: Based on expected value, should she have called?
Her chances must be at least $375,000 /(790,000+375,000)=32 \%$.

vs.	AQ: 38%	AK: 37%	AA: 26%	$77: 26 \%$	A7: 31%
	A2: 34%	$72: 34 \%$	TT: 54%	T9: 87%	$73: 50 \%$

Harrington's principle: always assume at least a 10% chance that opponent is bluffing. Bayesian approach: average all possibilities, weighting them by their likelihood.

Reality: Elezra had $7 \diamond 3$. Her chances were 51%. Bad fold.
What was her prob. of winning (given just her cards and Elezra's, and the flop)?
Of choose $(45,2)=990$ combinations for the turn \& river, how many give her the win?
First, how many outs did she have? eight $>\mathrm{s}+3$ kings +3 jacks $=14$.
She wins with (out, out) or (out, nonout) or (non- $\diamond \mathrm{Q}$, non- $>\mathrm{T}$)

$$
\text { choose }(14,2)+14 \times 31+3 * 3=534
$$

but not (k or j, 7 or non- -3) and not ($3 \diamond, 7$ or non- -3)

$$
-6 * 4 \quad-1 * 4=506
$$

So the answer is $506 / 990=51.1 \%$.

5. P(flop 4 of a kind).

Suppose you're all in next hand, no matter what cards you get.
$\mathbf{P}($ flop 4 of a kind $)=13 * 48 / \operatorname{choose}(52,5)=0.024 \%=1$ in 4165.

P(flop 4 of a kind I pocket pair)?

No matter which pocket pair you have, there are choose $(50,3)$ possible flops, each equally likely, and how many of them give you 4 -of-a-kind? 48. (e.g. if you have 7^7凶, then need to flop 7 7\& x, \& there are 48 choices for x) So P(flop 4-of-a-kind Ipp$)=48 /$ choose $(50,3)=0.245 \%=1$ in 408.

8. Luck and skill in poker. pp 71-79. \& \& \downarrow

Let equity = your expected portion of the pot after the hand, assuming no future betting. $=$ your expected number of chips after the hand - chips you had before the hand
$=$ pot $* \mathrm{p}$, where $\mathrm{p}=$ your probability of winning if nobody folds.
I define luck as the equity gained during the dealing of the cards.
Skill = equity gained during the betting rounds.
Example.
You have $\mathrm{Q} \boldsymbol{Q} \mathrm{Q}$. I have $10 \uparrow 9 \boldsymbol{4}$. Board is 10 8* $7 \boldsymbol{q} 4 \boldsymbol{*}$. Pot is $\$ 5$.
The river is $2 \downarrow$, you bet $\$ 3$, and I call.
On the river, how much equity did you gain by luck and how much by skill?
Equity gained by luck on river = your equity when 2 is exposed - your equity on turn $=100 \%(\$ 5)-35 / 44(\$ 5)=\$ 1.02$.
Why $35 / 44$? I can win with a $10,9,6$, or J that is not a club. There are $1+2+3+3=9$ of these cards, so the remaining 35 cards give you the win.

Equity gained by skill on river = your equity after all the betting is over - your equity when the $2 *$ is dealt
$=$ increase in pot on river $* \mathrm{P}$ (you win) - your cost
$=\$ 6 * 100 \%-\$ 3=\$ 3$.

Luck and skill in poker, continued. \& \&

9. Lederer and Minieri,

2 min into https://www.youtube.com/watch?v=-MbLOWXPaNM .
3 min in https://www.youtube.com/watch?v=4pU68XVCuaU .

