
1. Forecasting wildfires. 
2. Forecasting earthquakes. 
3. Forecasting global temperature. 

(from Alexander & Cruz, 2013)



(from Pastor 
et al., 2003)



2) Currently used evaluation methods for spread models.

a) Is the problem of modeling spread solved?

Many simplifying assumptions in current models.

Simulations can do very well retrospectively, 
on data used to make the sims.

b) Methods for model assessment

Evaluate a particular statistic, like surface temperature or spread rate.

Comparison of final burn areas.

Error matrices, Cohen’s K, Sørensen’s Q.



(Alexander & 
Cruz, 2013)



Mell et al. (2007), retrospective. The experiment shown here was used in model construction.



Observed vs. Predicted spread rate (Cruz & Alexander, 2013), retrospective:



Observed vs. Predicted spread rate (Cruz & Alexander, 2013), prospective:



Observed vs. Predicted spread rate (Alexander & Cruz, 2013)



Observed and Predicted surface temperature (de Mestre et al., 1989, from Weber 1991)



Errors in windspeed measurements (Sullivan and Knight, 2001)



Observed and Simulated burn polygons (Arca et al., 2007)



Observed and Simulated burn polygons (Fujioka, 2002)



Cohen’s K (Congalton 1991)

Remote Sensing techniques.
Error matrix (Congalton 1991)



Histogram of over-prediction and under-prediction of areas (Cruz and Alexander, 2013).



Overlap proportion (Duff et al., 2013). Black = overlapping burn area, 
white = burn area predicted but not observed, grey = burn area observed but not predicted.



Difference between burn areas, evaluated radially as a function of q
(Cui & Perera, 2010) (Duff et al., 2013)



Few studies look at evolution of predicted & observed burn areas over time (Mell et al. 2007)



Likelihood methods for spread models.

Model evaluation may be simplified using probabilistic spread models.
Can simply use the likelihood as a measure of fit.
If model A routinely assigns lower likelihoods to the observed wildfires than 

model B, then model B should be preferred.

* Simple, straightforward, meaningful comparisons of multiple competing models.
* Less potential for subtle disagreements between model and data to be amplified.
* L-test can be used to see if discrepancies for 1 model are statistically significant.

(Simulate, and see if the likelihood for the data is in the middle 95% range.)

Schorlemmer et al. 2007



Currently used evaluation methods for forecasts of occurrence.

Percentage of days with wildfires vs. Index (Viegas et al., 1999)



Mean area burned per day vs. Index (Viegas et al., 1999)



Burning Index (BI)

NFDRS: 
Spread Component (SC) and Energy Release Component (ERC),
each based on dozens of equations.

BI = [10.96 x SC x ERC] 0.46

• Uses daily weather variables, drought index, and 
vegetation info. Human interactions excluded.

• Predicts: flame length, 
… area/fire? # of fires? # of fires? Total burn area? 



Some BI equations: (From Pyne et al., 1996:)

Rate of spread: R = IR x (1 + fw + fs) / (rbe Qig). Oven-dry bulk density: rb = w0/d. 

Reaction Intensity: IR =  G’ wn h hMhs. Effective heating number: e = exp(-138/s). 

Optimum reaction velocity: G’ =  G’max (b / bop)A exp[A(1- b / bop)].

Maximum reaction velocity: G’max = s1.5 (495 + 0.0594 s1.5) -1.

Optimum packing ratios: bop = 3.348 s -0.8189.    A = 133 s -0.7913.

Moisture damping coef.:  hM = 1 - 259 Mf /Mx + 5.11 (Mf /Mx)2 - 3.52 (Mf /Mx)3.

Mineral damping coef.: hs = 0.174 Se
-0.19 (max = 1.0).

Propagating flux ratio: x = (192 + 0.2595 s)-1 exp[(0.792 + 0.681 s0.5)(b + 0.1)].

Wind factors: sw = CUB (b/bop)-E.   C = 7.47 exp(-0.133 s0.55).  B = 0.02526 s0.54. 
E = 0.715 exp(-3.59 x 10-4 s).

Net fuel loading: wn = w0 (1 - ST). Heat of preignition: Qig = 250 + 1116 Mf.

Slope factor: fs = 5.275 b -0.3 (tan f)2. Packing ratio: b = rb / rp.



Good news for BI:

• BI is positively associated with wildfire occurrence.

• Positive correlations with number of fires, daily area burned, 
and area per fire.

• Properly emphasizes windspeed, relative humidity.



Some problems with BI

• Correlations are low.
§ Corr(BI, area burned) = 0.09
§ Corr(BI, # of fires) = 0.13
§ Corr(BI, area per fire) = 0.076
! Corr(date, area burned) = 0.06
! Corr(windspeed, area burned) = 0.159

• Too high in Winter (esp Dec and Jan)
Too low in Fall (esp Sept and Oct)









Separable Estimation for Point Processes

• Consider l(t, x1, …, xk; q). [For fires, x1=location, x2 = area.]











Separable Estimation for Point Processes

• Consider l(t, x1, …, xk; q). [For fires, x1=location, x2 = area.]

• Say l is multiplicative in mark xj if
l(t, x1, …, xk; q) = q0 lj(t, xj; qj) l-j(t, x-j; q-j),

where x-j = (x1,…,xj-1, xj+1,…,xk), same for q-j and l-j

• If l
~
is multiplicative in xj ^

and if one of these holds, then
qj, the partial MLE, is consistent. 

• S l-j(t, x-j; q-j) dµ-j = g, for all q-j.

• S lj(t, xj; qj) dµj = g, for all qj.
^ ~

• S lj(t, x; q) dµ = S lj(t, xj; qj) dµj = g, for all q.



Impact

• Model building.

• Model evaluation / dimension reduction.

• Excluded variables.
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Error diagrams (Molchan 1990, Xu and Schoenberg 2011)



Model Construction

• Wildfire incidence seems roughly multiplicative.
(only marginally significant in separability test)

• Windspeed. RH, Temp, Precip all matter. 
• Tapered Pareto size distribution f, smooth spatial background µ.

[*]  l(t,x,a) = 
f(a) µ(x) b1exp(b2RH + b3WS) (b4 + b5Temp)(max{b6 - b7Prec,b8})

Relative AICs (Model - Constant, so lower is better):

Constant RH BI Model [*]

0 -262.9 -302.7 -601.1



Comparison of Predictive Efficacy

False alarms
per year

% of fires 
correctly 
alarmed

BI 150: 32 22.3

Model [*]: 32 34.1

BI 200: 13 8.2

Model [*]: 13 15.1



Forecasting Earthquakes. 



The Hawkes process (Hawkes 1971) is a useful form for modeling 
clustered processes like earthquakes, where 

l(t,x,y,m) = µ(x,y,m) +      g(t-ti, x-xi, y-yi, mi).

An example is the Epidemic-Type Aftershock Sequence (ETAS) model 
of Ogata (1988, 1998), which has been used for earthquakes as well as 
invasive species (Balderama et al. 2012) and crime (Mohler et al. 2011). 
With ETAS, µ(x,y,m) = µ(x,y) f(m), and e.g.
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parametric point process estimation is easy?

a. Point processes can generally be very well estimated by maximum 
likelihood estimation (MLE).

MLEs are generally consistent, asymptotically normal, and efficient
Fisher (1925), Cramer (1946), Ogata (1978), Le Cam (1990).

b. Maximizing a function is fast and easy.
400 yrs of work on this since Newton (1669). Every computer package has a 
strong quasi-Newton minimization routine, such as optim() in R.

For instance, suppose the function you want to minimize is 
f(a,b) = (a-4.19)4 + (b-7.23)4.

f = function(p) (p[1]-4.19)^4 + (p[2]-7.23)^4
p = c(1,1) ## initial guess at (a,b)
est = optim(p,f)$par

c. The likelihood function is fairly simple.
In practice, it’s convenient to compute log(likelihood), and minimize that.

log(likelihood) = ∑ log{l(ti,xi,yi)} - ∫∫∫ l(t,x,y) dt dx dy.
ETAS (Ogata ‘98), l(t,x,y) = µ r(x,y) + ∑g(t-tj, x-xj, y-yj; Mj),
where g(t,x,y,M) = K (t+c)-p ea(M-M0) (x2 + y2 + d)-q

or K (t+c)-p {(x2 + y2)e-a(M-M0) + d}-q.
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Parametric point process estimation is easy?

ETAS (Ogata ‘98), l(t,x,y) = µ r(x,y) + ∑g(t-tj, x-xj, y-yj; Mj)
where g(t,x,y,M) = K (t+c)-p ea(M-M0) (x2 + y2 + d)-q

or K (t+c)-p {(x2 + y2)e-a(M-M0) + d}-q.

To make these spatial and temporal parts of g densities, I suggest writing g as
g(t,x,y,M) = {K (p-1) cp-1 (q-1) dq-1 / p} (t+c)-p ea(M-M0) (x2 + y2 + d)-q

or
g(t,x,y,M) = {K (p-1) cp-1 (q-1) dq-1 / p} (t+c)-p {(x2 + y2)e-a(M-M0) + d}-q.

Two reasons for this:
1) It is easy to see how to replace g by another density.
2) For each earthquake (tj,xj,yj,Mj),  

∫∫∫ g(t-tj, x-xj, y-yj; Mj) dt dx dy = K ea(M-M0).
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Actually, parametric point process estimation is hard!

Main obstacles:

A. Small problems with optimization routines.
Extreme flatness, local maxima, choosing a starting value.

B. The integral term in the log likelihood. 
log(likelihood) = ∑ log{l(ti,xi,yi)} - ∫∫∫ l(t,x,y) dt dx dy.

The sum is easy, but the integral term is extremely difficult to compute. 
By far the hardest part of estimation (Ogata 1998, Harte 2010).

Ogata ‘98: divide space around each pt into quadrants and integrate over them.
PtProcess, Harte ‘10: uses optim() or nlm(). User must calculate the ∫ somehow.
Numerical approximation is slow and is a poor approx. for some values of Q.
1,000 computations x 1,000 events x 1,000 function calls = 1 billion computations.

Problem B. contributes to reluctance to repeat estimation and check on A.
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My	suggestions.
1.	Write	the	triggering	function	as	a	density	in	time	and	space.
2.	Approximate	the	integral	term	as	K	∑	ea(Mj-M0).
3.	Given	data	from	time	0	to	time	T,	
estimate	ETAS	progressively,	
using	data	til	time	T/100,	then	2T/100,	...,		and	assess	convergence.
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Example. 
CA earthquakes from 14 months after Hector Mine, M ≥ 3, from SCSN / SCEDC, as 
discussed in Ogata, Y., Jones, L. M. and Toda, S. (2003).
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Hector Mine data. Convergence of ETAS parameters is evident after ~ 200 days.
Note that this repeated estimation over different time windows is easy if one 

uses the integral trick. This seems to lead to more stability in the estimates, since 
a little local maximum is less likely to appear repeatedly in all these estimations. 
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Hector Mine data. ETAS parameter estimates as ratios of final estimates.
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Difficulty of point process model evaluation.
With most types of data, such as regression style data, time series data, or observations on a 

spatial-temporal grid, can just look at residuals

observed – predicted

for each observation. Closer to 0 = better.
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With point processes, this doesn’t work.



With point processes, the observations are a collection of points indicating where and when 
the phenomenon occurred, and typically the model output is an intensity function 
l(u) = anticipated rate of points around spatial-temporal location u.
Can compare number observed and number predicted over each bin, but there are problems. 
large pixels yield low power.
with small pixels, residuals are mostly 0 or 1. Highly skewed.
For many models, the residual plot simply looks like a plot of the points themselves.
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2. RELM and CSEP.

The Regional Earthquake Likelihood Models (RELM) project 
[Field (2007)] led to the Collaboratory for the Study of 
Earthquake Predictability (CSEP) [Jordan (2006)]. 

RELM tested earthquake forecast models for California. 
Rigorous, prospective 5 year testing in a dedicated testing center, 

1/1/06-1/1/11. [Schorlemmer and Gerstenberger (2007)].

CSEP expanded to regional earthquake forecasts around the world, 
including California, Japan, New Zealand, Italy, the 
Northwest Pacific, the Southwest Pacific and the entire 
globe. Testing centers in Japan, Switzerland, New Zealand 
and the United States. 

CSEP models are five-year, one-day, or recently three-month 
forecasts. Forecast an expected number of events in each 
space time magnitude bin. For 1 day models, bins are 0.1◦
lon by 0.1◦ lat by 0.1M from M3.95 to 8.95. 

For M8.95-10, one bin of size 0.1◦ by 0.1◦ by 1.05M. 
The U.S. testing center is located at the So. California Earthquake 

Center (SCEC) and hosts forecast experiments for 
California, the Northwest and Southwest Pacific, and the 
global experiments.



Some models in CSEP.

A. Helmstetter, Kagan and Jackson (2007)
B. Kagan, Jackson and Rong (2007).
C. Shen, Jackson and Kagan (2007).
Epidemic-Type Aftershock Sequence (ETAS) model 
[Zhuang, Ogata and Vere-Jones (2004), Ogata and 
Zhuang (2006)].
Short-Term Earthquake Probabilities (STEP) model
[Gerstenberger et al. (2005)].

All based exclusively on previous seismicity except C, 
which uses geodetic and geological info.

Earthquake catalogs were obtained from the Advanced 
National Seismic System (ANSS). 

142 shallow earthquakes with a M≥3.95 occurred in 
RELM’s spatial temporal window. 
Note that each RELM model does not necessarily
produce a forecasted seismicity rate for every pixel in 
the space–time region.



Numerical summaries.

In RELM, consensus was reached that all models would be tested using a certain suite of 
numerical tests [Jackson and Kagan (1999), Schorlemmer et al. (2007)].

N-Test compares total number of earthquakes for model and observations.
L-Test compares likelihood.
R-Test compares likelihood ratio for two models.

L and N test can be used to see if discrepancies for 1 model are stat. significant.
Simulate, and see if the likelihood for the data is in the middle 95% range.

Schorlemmer et al. 2007



Clements et al. 2011

Some drawbacks of these tests were discovered (Schorlemmer et al. 2010).

The N-test and L-test have low power and are typically unable to discern 
significant lack of fit unless the overall rate of the model fits very poorly.

Further, even when the tests do reject a model, they do not typically indicate 
where or when the model fits poorly, or how it could be improved.



Functional summaries.
K-function (Ripley 1979) measures the avg. 
number of other events within distance r of an 
event, divided by the overall mean rate.
K(r) ~ πr2 for a stat. Poisson process, 
so centered version is L(r) = √[K(r)/π] – r. 
Useful to compare clustering in data with stat. 
Poisson process.

Weighted K [Baddeley, Møller and 
Waagepetersen 2000, Veen and Schoenberg 
2005] is useful for comparing degree of 
clustering in the model with the data. Each 
point is weighted inversely to l(t,x,y) = the 
conditional rate of points at (t,x,y), given 
previous seismicity.

Adelfio and Schoenberg (2009) discuss similar weighted summaries.



Other functional summaries.

Molchan diagrams plot (normalized) number of 

alarms vs. (normalized) number of false negatives 

(failures to predict).  (Molchan 1990; Molchan 1997; 

Zaliapin & Molchan 2004; Kagan 2009).

Similar to ROC curves (Swets 1973).

Problems:

-- Must focus near axes.

[consider relative to given model (Kagan 2009)]

-- Difficult to see where model fits poorly.



Pixel-based residuals.
Compare N(Ai) with ∫A l(t, x) dt dx, on pixels Ai.
(Baddeley, Turner, Møller, Hazelton, 2005) 

Problems:

* If pixels are large, lose power.
* If pixels are small, residuals are mostly ~ 0,1.

-- non-normality after standardization.
* Smoothing reveals only gross features.

Pearson residuals for Model B:



Pearson residuals for Model B: Pearson residuals for Model C:



-- Given two competing models, can consider the difference between residuals,      
number of observed fires – number expected, over each pixel.  

Problem:  Hard to interpret. If difference = 3, is this because model A overestimated by 
3? Or because model B underestimated by 3? Or because model A overestimated 
by 1 and model B underestimated by 2? 

-- Better: consider difference between log-likelihoods, in each pixel. The result may be 
called deviance residuals (Clements et al. 2011), ~ resids from gen. linear models.

How can you see how well the model fits? 
a) Deviance residuals
b) Superthinned residuals
c) Voronoi residuals. 





Superthinning.

Thinning:  Suppose inf l(ti , xi, yi) = b.

Keep each point (ti,xi,yi) with probability b / l(ti,xi,yi) .



Superposition:  Suppose sup l(t , x, y) = c.

Superpose N with a simulated Poisson process of rate c - l(t , x, y) . 

Problems with thinning and superposition:

Thinning: Low power.  If b = inf l(ti,xi,yi)  is small, will end up with very few 
points. 

Superposition:  Low power if c = sup l(ti,xi,yi) is large: most of the residual 
points will be simulated.

Superthinning: superpose where  l(t ,x,y) < c, and thin where l(ti,xi,yi) > c.



Superthinning (Clements et al., 2012)

Choose some number c ~ mean(     ). 

Superpose: where     (t ,x,y) < c, add in points of a simulated Poisson process of 
rate c - (t , x, y) . 

Thin: where (ti,xi,yi) > c, keep each point (ti,xi,yi) with prob. c /     (ti,xi,yi) .





c) Voronoi residuals (Bray et al. 2013)

A Voronoi tessellation divides a space into cells Ci where Ci contains all locations 
closer to event i than any other observed event.

Within each cell, calculate residuals

(  (Tanemura 2003)

spatially adaptive and nonparametric. 









overprediction

underprediction
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Conclusions.

* Likelihood methods could facilitate evaluation of probabilistic spread 
models.

* Deviance residuals are useful for comparing models on grid cells.

* Superthinned residuals do not rely on a grid and can be useful to highlight 
where a model overpredicts or underpredicts.

* Voronoi residuals use an automatically adaptive grid and are powerful for 
both comparison and to see where a particular model over or underpredicts.



Forecasting global temperature data. 


