1. Forecasting wildfires.
2. Forecasting earthquakes.
3. Forecasting global temperature.

(from Alexander & Cruz, 2013)



Table 1

Classification of surface fire spread rmvodels (19496 —2000)

Referenos Type Origin

Foas [4) Theoretical Umnited States
Emmons [5)] Theoretical Umnited States
Hottel et =1, |6) Theoretical Umnited States
MNMcArthur [ 7] Empirical® Auwsiralia
Van Wagner [8)] Theoretical Canada
Thomas |9 Theoretical Umnited Kingdom
MNMcArrthur [10) Empirical™ Ausiralis
Andersoay [11) Theoretical Umited States
Frandsen |1 2] Semiempirical Umited States
Rothermisel [13]) Semiempirical™ Umnited States
Pagni and Peterson [ 14]) Theoretical Umited States
Telisin [15]) Theoretical Russia
Steward [16]) Theoretical Umited States
Konewy and Sukhinin [17]) Theoretical Russia
Cekirge [18) Theoretical Umited States
Fujii ez al. [19) Theoretical Japan
Grashanm et 21, [ 20) Theoretical Russia
Graffin and Allan [21) Semiempirical Ausiralis
Huang and Xie [22)] Theoretical Umited States
Snecuwjagt and Peet [23) Semiempirical Aunstralis
Aldbin: (24 25) Theoretical Umnited States
De Mestire e1 al. [ 26) Theoretical Ausiralis
Weber [27] Theoretical Aowsiralis
Borrows et 21 [ 28] Semiempirical Aoawsiralis
Forestry Canada Fire Empirical™ Canada
Danger Group [29)

Croba e1 al. [30) Theoretical Greece
Marsden-Smedley Semiempirical Aaustralis
and Cawchpole [51)

Grishan [32]) Theoretical Russia
Dupuy [33) Theoretical France
Santoni and Balbi [ 34) Theoretical France

I1imn [35) Theoretical Umited States
Cawchpole et a2l [536]) Semicempirical Awsiralis
Cawchpole et 21 [37) Semicempirical Aausiralis
Fermandes [ 38) Semiempirical Portugal
Vega [539)] Semicempirical Spain
McocCaw [20) Semicempirical Aawsiralis
Viegas et al. [41]) Empirical Portugal
Cheney et al. [42) Empirical Aawsralis

I arin: et al. [43) Theoretical France
Margerit and Guiallaume [44) Theoretical France
Burrows [45_46) Semiempirical Aausiralis
Hargrove et =l. [47) Empirical™ Umnited States

T Models that constitute the basis of operating tools actually used

in foresiry agencies.

(from Pastor
et al., 2003)



2) Currently used evaluation methods for spread models.
a) Is the problem of modeling spread solved?
Many simplifying assumptions in current models.

Simulations can do very well retrospectively,
on data used to make the sims.

b) Methods for model assessment
Evaluate a particular statistic, like surface temperature or spread rate.
Comparison of final burn areas.

Error matrices, Cohen’s K, Sgrensen’s Q.



IVIOST rate oI nre spread modeis have the 1ol-
lowing kinds of limitations and should not be
expected to predict what they do not pretend to
represent (after Albini 1976a):

1. The fuel complex is assumed to be continuous,
uniform, and homogeneous. The more the actual
fuel situation departs from this idealized assump-
tion, the more likely the prediction will not match
the observed fire behaviour. While this issue is a
matter of scale, subsequent research (e.g., Frand-
sen and Andrews 1979, Catchpole et al. 1989)
and other innovations (Fujioka 1985, Finney
2003) such as the two-fuel model concept (Ro-
thermel 1983, Martin 1988), as well as geographic
information system (GIS)-based fire growth mod-
els (Bedk 2000, Finney 2004, Tymstra ef al 2010)
have not substantially reduced this problem. It
thus remains a continuing research challenge (Par-
sons ef al. 2011) and involves both the phymcal fuel
characteristics as well as fuel moistures, including
differences due to topographic features such as
slope exposure (Cheney 1981).

2. Some models assume that the fuel bed is a
single layer and is contiguous to the ground.
In other words, there is no distinct gap between
fuel layers (e.g., a forest stand with ground/
surface fuels and crown or aerial fuels). As Van
Wagner (1985) has so emphatically stated, “The
fire world would beat a path to the door of the
modeller who could account for wvertical gradi-
ents and interruptions in moisture content and
fuel density” Much progress has been made in

(Alexander &
Cruz, 2013)



Mell et al. (2007), retrospective. The experiment shown here was used in model construction.

(a)

(b)

Figure 4: (a) Photograph of experimental fire F19 at £ — 56 s. (b) Snapshot of WFDS simulation of
experimental fire F19 at ¢ — 56 s.



Observed vs. Predicted spread rate (Cruz & Alexander, 2013), retrospective:
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Observed vs. Predicted spread rate (Cruz & Alexander, 2013), prospective:
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Fig. 6. Observed rates of spread versus model predictions for a selection of studies presented in Table 1 featuring both ‘moderately slow’ and ‘exceedingly fast' spreading fires (i.e.
upwards of ~150 m min~"), The dashed lines around the line of perfect agreement indicate the +35% error interval, Refer to Table 2 for the mean of the model abbreviations (eg.
RCR72 = Rothermel, 1972). MAPE = mean absolute percent error.



Observed vs. Predicted spread rate (Alexander & Cruz, 2013)

Observed rate of fire spread (m/min)

40

30

20

10

P 4 ' S S
2 =~ s <&
O:_.' § . 0@
('V.- o ~ N
v j ST - - =
2/ E =
P~ - 8
So
4 ./ 00
/’ ra > =le 1
e ; - =t
% -~ =
4
~ // —
o - / 7 -
4 v >
/ - -
8 rd —
rd - /./
o ~ _
g g
e 7 -~
-~ —
.~ =
/// - Lodgepcle pine slash
e O Jack pine slash
| 1 ]
I i T
10 20 30 40

Predicted rate of fire spread (m/min)

Fig. 3. Observed rates of spread for experimental fires in
lodgepole pine logging slash in southwestern Alberta (Quintilio
1972) and jack pine logging slash in northeastern Ontario (Stocks
and Walker 13972) versus predictions from Rothermel's (1S9S72)
surface fire rate of spread model for Fuel Model 12 — Medium
Logging Slash [Anderson 13982) using a wind adjustment factor of
0.4 [Andrews 2012]) (adapted from Cruz and Alexander 201 3).
The dashed lines around the line of perfect agreement indicate
the =35% error interval.



Observed and Predicted surface temperature (de Mestre et al., 1989, from Weber 1991)
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Errors in windspeed measurements (Sullivan and Knight, 2001)

Table 2. Errors in estimating 5-min wind averages at a fire front
as a percentage of the measured wind within 68% confidence
limits (1 SD) assuming a standard deviation of 27% of the mean
wind speed.

No._ of Fire width

anemometers 040 m =80 m =160 m =300 m
1 +38% +33% +30% +28%

2 +33% +27% +23% +21%

4 +30% +23% +19% +16%

8 +28% +21% +16% +13%

One anemometer can predict the wind speed at another lo-
cation (say at the front of a small fire) with a probability
curve associated with the convolution of two 26.7% curves,
1.e., from eq. 8, sf = 37.8% of the mean wind speed. In other
words there 1s a 68% chance of the wind speed at the fire
front being within +37.8% of the measured wind speed. This
1s not particularly good.




Observed and Simulated burn polygons (Arca et al., 2007)

Time step Observed ROS Simulated ROS
1 7.0 6.5
2 12.4 10.3
3 6.6 7.4
whole area 8.1 8.1
Observed

Simulated 1
Simulated 2
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Figure 2 — Comparison between observed and simulated fire areas from the
simulation n. 4 (custom fuel model CM28) using raster wind maps (Simulated 1) and
constant wind field (Simulated 2).




Observed and Simulated burn polygons (Fujioka, 2002)
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Figure 7. Position and error corrected perimeter prediction for the Bee Fire, 29 June 1996, 1730 PDT, and
approximate 95% confidence interval for the true perimeter.



Remote Sensing techniques.
Error matrix (Congalton 1991)

Table 1. An Example Error Matrix

Reference Data

row

D C BA SB total
D 65 4 22 24 115
C 6 81 5 8 100
BA 0 11 85 19 115
SB 4 7 3 90 104
column 75 103 115 141 434
total
PRODUCER’S ACCURACY
D=65/75= 87%
C=81/103= 79%
BA=85/115= 74%
SB=90/141= 64%
Cohen’s K (Congalton 1991) N Y x,— 2 (x, *xyy)
g —_i=l i=1

N2— ) (x, *x)
i=1

Land Cover Categories
D =deciduous
C = conifer
BA =barren
SB = shrub

OVERALL ACCURACY =
321 /434 = T4%

USER’'S ACCURACY

D=65/115= 57%
C=81/100= 81%
BA=85/115= 74%
SB=90/104= 87%

Sorensen's original formula was intended to be applied to presence/absence data, and is

2C 2
QS_AJFB_

AN B|
Al + | B




Histogram of over-prediction and under-prediction of areas (Cruz and Alexander, 2013).
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Fig. 7. Disribution of under and over-prediction expressed as a percent errors for the
fires associated with Table 1.



Overlap proportion (Duff et al., 2013). Black = overlapping burn area,
white = burn area predicted but not observed, grey = burn area observed but not predicted.

1.00

0.80

O
o
o

Proportoin
o
oS
o

0.20 -

0.00 - e —l_-

L]

187-226 267-306 347-386 427-466
Elevation (m)




Difference between burn areas, evaluated radially as a function of 6
(Cui & Perera, 2010) (Duff et al., 2013)
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Few studies look at evolution of predicted & observed burn areas over time (Mell et al. 2007)

" symbols: exp. F19; shading: WFDS
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Likelihood methods for spread models.

Model evaluation may be simplified using probabilistic spread models.
Can simply use the likelihood as a measure of fit.

If model A routinely assigns lower likelihoods to the observed wildfires than
model B, then model B should be preferred.

* Simple, straightforward, meaningful comparisons of multiple competing models.

* Less potential for subtle disagreements between model and data to be amplified.

* L-test can be used to see if discrepancies for 1 model are statistically significant.
(Simulate, and see if the likelihood for the data is in the middle 95% range.)
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Currently used evaluation methods for forecasts of occurrence.

Percentage of days with wildfires vs. Index (Viegas et al., 1999)

% of days with fires

% of days with fires

'
Figure 3. Percentage ys of days with fires: (a) A. H.
Provence; (b) Veneto.



Mean area burned per day vs. Index (Viegas et al., 1999)
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Burning Index (BI)

NFDRS:
Spread Component (SC) and Energy Release Component (ERC),

each based on dozens of equations.
BI =[10.96 x SC x ERC] 046

e Uses daily weather variables, drought index, and
vegetation info. Human interactions excluded.
e Predicts: flame length,
... area/fire? # of fires? # of fires? Total burn area?



Some BI equations: (From Pyne et al., 1996:)

Rate of spread: R =1Ig € (1 + ¢y, + ¢5) / (ppe Qjg). Oven-dry bulk density: p, = w/0.
Reaction Intensity: I[g= I w, h nyms. Effective heating number: € = exp(-138/c).
Optimum reaction velocity: I = T . (B/ Bop)™ exp[A(1- B/ Bop)].

Maximum reaction velocity: I'” .. = ' (495 + 0.0594 ') -1,

Optimum packing ratios: B,, = 3.348 ¢ 08189 A =133 5013,

Moisture damping coef.: My = 1 - 259 M;/M, + 5.11 (M;/M,)? - 3.52 (M;/M,)>.
Mineral damping coef.: Ny = 0.174 S;01° (max = 1.0).

Propagating flux ratio: £ = (192 + 0.2595 &) exp[(0.792 + 0.681 c?)(B + 0.1)].

Wind factors: c,, = CUB (B/Bo,) . C =7.47 exp(-0.133 6°). B =0.02526 4.
E =0.715 exp(-3.59 x 10 5).

Net fuel loading: w, = wq (1 - St). Heat of preignition: Q;, =250 + 1116 M.

Slope factor: ¢ = 5.275 B 03 (tan ¢)>. Packing ratio: = py, / p,.



Good news for BI:

BI is positively associated with wildfire occurrence.

Positive correlations with number of fires, daily area burned,
and area per fire.

Properly emphasizes windspeed, relative humidity.



Some problems with BI

e (Correlations are low.
=  Corr(BI, area burned) = 0.09
= Corr(BI, # of fires) =0.13
» Corr(BI, area per fire) =0.076
I Corr(date, area burned) = 0.06

! Corr(windspeed, area burned) = 0.159

e Too high in Winter (esp Dec and Jan)
Too low in Fall (esp Sept and Oct)



Burn Area(sqgkm)
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Comparison of Area Burned Per Day & Bl (Year>1975)
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Separable Estimation for Point Processes

e Consider A(t, Xy, ..., X\; 0). [For fires, x,=location, x, = area.]
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Separable Estimation for Point Processes

Consider A(t, X, ..., X; 0). [For fires, x,=location, x, = area.]

Say A is multiplicative in mark x; if
ML, Xy, ., X 0) = 0 A4t x5 05) AL(t, X550,

where X ;= (Xq,... X1, Xji1,- - - Xi), Same for 6_ and A

If A _is multiplicative in x; , and if one of these holds, then
Oj, the partial MLE, is consistent.

S 7\‘-J(t’ X-j; 9'J> d!.l_J = y, fOr all O_J
S Ai(t, x;; 0;) dp; =7, for all ©;.

Sk(tx@)du S Ai(t, x;; 0;) du; =7, for all @.



Impact

 Model building.
e Model evaluation / dimension reduction.

e Excluded variables.



Total area burned (sq m)

Total area burned vs. average windspeed
r=0.16

Average windspeed




Total area burned
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Total area burned vs. average max relative humidity
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Total area burned (sq m)

0.15

0.10

0.05

Total area burned vs. average max temperature

Average max temperature ()
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Error diagrams (Molchan 1990, Xu and Schoenberg 2011)
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Model Construction

* Wildfire incidence seems roughly multiplicative.
(only marginally significant in separability test)
*  Windspeed. RH, Temp, Precip all matter.
e Tapered Pareto size distribution f, smooth spatial background L.

[*] A(tx.a) =
f(a) p(x) Biexp(B,RH + B3 WS) (B4 + BsTemp)(max{Pg - P;Prec,Bs})

Relative AICs (Model - Constant, so lower is better):

Constant RH BI Model [*]
0 -262.9 -302.7 -601.1




Comparison of Predictive Efficacy

False alarms % of fires

per year correctly

alarmed
BI 150: 32 22.3
Model [*]: 32 34.1
BI 200: 13 8.2
Model [*]: 13 15.1




Forecasting Earthquakes.



The Hawkes process (Hawkes 1971) 1s a useful form for modeling
clustered processes like earthquakes, where

Mtx,y,m) = p(x,y,m) + Y g(t-t, X-x;, y-y;, m).

I:ti<t

An example 1s the Epidemic-Type Aftershock Sequence (ETAS) model
of Ogata (1988, 1998), which has been used for earthquakes as well as

invasive species (Balderama et al. 2012) and crime (Mohler et al. 2011).
With ETAS, nu(x,y,m) = u(x,y) f(m), and e.g.

f(m) oc exp{—J3(m — my)},

I(O exp{(r(}‘z‘n — "”0‘)}
(?L + (_:-)1)(;1}.2 n I/z I (]')(1'

glt, 2,,m) =



parametric point process estimation is easy?

a. Point processes can generally be very well estimated by maximum
likelihood estimation (MLE).
MLEs are generally consistent, asymptotically normal, and efficient
Fisher (1925), Cramer (1946), Ogata (1978), Le Cam (1990).

b. Maximizing a function is fast and easy.
400 yrs of work on this since Newton (1669). Every computer package has a
strong quasi-Newton minimization routine, such as optim() in R.

For instance, suppose the function you want to minimize is

f(a,b) = (a-4.19)* + (b-7.23)%.

f = function(p) (p[1]-4.19)"4 + (p[2]-7.23)"4

p = c(1,1) ## initial guess at (a,b)

est = optim(p,f)$par

c. The likelihood function is fairly simple.
In practice, it’s convenient to compute log(likelihood), and minimize that.
log(likelihood) = Y log{A(t;,X;,yi)} - [[f A(t,x,y) dt dx dy.
ETAS (Ogata ‘98), A(t,x,y) =t p(x,y) + 2 9(t-t;, X-x;, y-y;: M)),
where g(t,x,y,M) = K (t+c)P eaM-M0) (x2 + y2 + d)-4
or K (t+¢)P {(x2 + y2)e-alM-M0) 4 d}-q,
44



Parametric point process estimation is easy?

ETAS (Ogata ‘98), A(t,x,y) = U p(X,y) + > g(t-t;, X-x;, y-y;: M)
where g(t,x,y,M) = K (t+c)P eaM-M0) (x2 4 y2 4 d)-d
or K (t+C)'p {(x2 + y2)e-a(M-M0) + d}'q.

To make these spatial and temporal parts of g densities, | suggest writing g as
g(t.x,y,M) ={K (p-1) ¢ (g-1) d¥ / =} (t+c)P eaMMO) (x2 + y2 + d)d

or
g(t.x,y,M) ={K (p-1) ¢ (g-1) do / =} (t+¢)P {(x* + y?)eaM-MO) + d}-a.

Two reasons for this:
1) It is easy to see how to replace g by another density.
2) For each earthquake (t;,x;,y;,M)),
Iy (-t x-x;, y-y;; My) dt dx dy = K gao)

45



Actually, parametric point process estimation is hard!

Main obstacles:

A. Small problems with optimization routines.
Extreme flatness, local maxima, choosing a starting value.

B. The integral term in the log likelihood.
log(likelihood) = Y log{A(t;,X;,yi)} - [ff A(t,x,y) dt dx dy.

The sum is easy, but the integral term is extremely difficult to compute.
By far the hardest part of estimation (Ogata 1998, Harte 2010).

Ogata ‘98: divide space around each pt into quadrants and integrate over them.
PtProcess, Harte ‘10: uses optim() or nim(). User must calculate the | somehow.

Numerical approximation is slow and is a poor approx. for some values of ©.
1,000 computations x 1,000 events x 1,000 function calls = 1 billion computations.

Problem B. contributes to reluctance to repeat estimation and check on A.

46



My suggestions.
1. Write the triggering function as a density in time and space.
2. Approximate the integral term as K )} e2(M-M0),
3. Given data from time O to time T,
estimate ETAS progressively,
using data til time T/100, then 2T /100, .., and assess convergence.

47



Example.

CA earthquakes from 14 months after Hector Mine, M > 3, from SCSN / SCEDC, as
discussed in Ogata, Y., Jones, L. M. and Toda, S. (2003).
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Hector Mine data. Convergence of ETAS parameters is evident after ~ 200 days.

Note that this repeated estimation over different time windows is easy if one

uses the integral trick. This seems to lead to more stability in the estimates, since
a little local maximum is less likely to appear repeatedly in all these estimations.
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Hector Mine data. ETAS parameter estimates as ratios of final estimates.
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Difficulty of point process model evaluation.

With most types of data, such as regression style data, time series data, or observations on a
spatial-temporal grid, can just look at residuals
observed — predicted

for each observation. Closer to 0 = better.
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With point processes, this doesn’t work.



With point processes, the observations are a collection of points indicating where and when
the phenomenon occurred, and typically the model output is an intensity function

M(u) = anticipated rate of points around spatial-temporal location u.

Can compare number observed and number predicted over each bin, but there are problems.
large pixels yield low power.

with small pixels, residuals are mostly 0 or 1. Highly skewed.

For many models, the residual plot simply looks like a plot of the points themselves.
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2. RELM and CSEP.

The Regional Earthquake Likelihood Models (RELM) project
[Field (2007)] led to the Collaboratory for the Study of Iy
Earthquake Predictability (CSEP) [Jordan (2006)].

RELM tested earthquake forecast models for California.

Rigorous, prospective 5 year testing in a dedicated testing center,
1/1/06-1/1/11. [Schorlemmer and Gerstenberger (2007)].

CSEP expanded to regional earthquake forecasts around the world,
including California, Japan, New Zealand, Italy, the
Northwest Pacific, the Southwest Pacific and the entire
globe. Testing centers in Japan, Switzerland, New Zealand
and the United States.

CSEP models are five-year, one-day, or recently three-month
forecasts. Forecast an expected number of events in each
space time magnitude bin. For 1 day models, bins are 0.1°
lon by 0.1¢ lat by 0.1M from M3.95 to 8.95.

For M8.95-10, one bin of size 0.1° by 0.1° by 1.05M.

The U.S. testing center is located at the So. California Earthquake
Center (SCEC) and hosts forecast experiments for
California, the Northwest and Southwest Pacific, and the
global experiments.
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Some models in CSEP.

A. Helmstetter, Kagan and Jackson (2007)

B. Kagan, Jackson and Rong (2007).

C. Shen, Jackson and Kagan (2007).

Epidemic-Type Aftershock Sequence (ETAS) model

[Zhuang, Ogata and Vere-Jones (2004), Ogata and

Zhuang (2006)].
Short-Term Earthquake Probabilities (STEP) model

[Gerstenberger et al. (2005)].

All based exclusively on previous seismicity except C,
which uses geodetic and geological info.

Earthquake catalogs were obtained from the Advanced
National Seismic System (ANSS).

142 shallow earthquakes with a M>3.95 occurred in
RELM’s spatial temporal window.

Note that each RELM model does not necessarily
produce a forecasted seismicity rate for every pixel in
the space—time region.
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Numerical summaries.

In RELM, consensus was reached that all models would be tested using a certain suite of
numerical tests [Jackson and Kagan (1999), Schorlemmer et al. (2007)].

N-Test compares total number of earthquakes for model and observations.
L-Test compares likelthood.
R-Test compares likelihood ratio for two models.

L and N test can be used to see if discrepancies for 1 model are stat. significant.
Simulate, and see if the likelihood for the data is in the middle 95% range.
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Some drawbacks of these tests were discovered (Schorlemmer et al. 2010).

The N-test and L-test have low power and are typically unable to discern
significant lack of fit unless the overall rate of the model fits very poorly.

Further, even when the tests do reject a model, they do not typically indicate
where or when the model fits poorly, or how it could be improved.

Model l obs )' Nobs 6
Mainshock+Aftershock
A. Helmstetter —22881.46 0.000 142 0.000
B. Kagan —10765.43 0.008 81 0.001
C. Shen —10265.20 0.002 86 0.043
Daily

ETAS —387.69 1.00 85 0.00
STEP —-50.43 0.00 83 0.99

Clements et al. 2011



Functional summaries.

K-function (Ripley 1979) measures the avg.
number of other events within distance  of an
event, divided by the overall mean rate.
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Adelfio and Schoenberg (2009) discuss similar weighted summaries.



Other functional summaries.

Molchan diagrams plot (normalized) number of
alarms vs. (normalized) number of false negatives
(failures to predict). (Molchan 1990; Molchan 1997;
Zaliapin & Molchan 2004; Kagan 2009).

Similar to ROC curves (Swets 1973).

Problems:

-- Must focus near axes.
[consider relative to given model (Kagan 2009)]

-- Difficult to see where model fits poorly.
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Pixel-based residuals.
Compare N(A;) with [, A(t, x) dt dx, on pixels A,;.
(Baddeley, Turner, Moller, Hazelton, 2005)

Problems:

Pearson residuals for Model B:

37

* If pixels are large, lose power.

* If pixels are small, residuals are mostly ~ 0,1.
-- non-normality after standardization.

* Smoothing reveals only gross features.
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Pearson residuals for Model B: Pearson residuals for Model C:




How can you see how well the model fits?
a) Deviance residuals

b) Superthinned residuals

c¢) Voronoi residuals.

competing models, can consider the difference between residu
observed fires — number expected, over each pixel.

interpret. If difference = 3, 1s this because mode
underestimated by 3? Or because
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Fi1G. 4. Left panel (a): deviance residuals for model A versus C. Sum of deviance residuals is
86.427. Rightr panel (b): deviance residuals for model B versus C. Sum of deviance residuals is

—7.468.
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FIG. 3. Left panel (a): deviance residuals for model A versus B. Sum of deviance residuals is
84.393. Right panel (b): close-up of deviance residuals for model A versus B near the Imperial fault.
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ing (Clements et al., 2012)
umber ¢ ~ mean( ), ).

A (t,x,y) <c, add in points of a simulated Poi
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FIG. 11. One realization of super-thinned residuals for the five models considered
(circles = observed earthquakes; plus signs = simulated points). Top-left panel (a): model A
(k = 2.76). Top-center panel (b): model B (k = 2.95). Top-right panel (c): model C (k = 2.73).
Bottom-left panel (d): ETAS (k = 1.35). Bottom-right panel (e): STEP (k =0.75).
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FIG. 9. Superposed residuals for model C. Simulated points make up 90.7% of all points.



36 37

35

Latitude

32

| | |
-122 -120 -118 -116 -114

Longitude

Superposed residuals for model C. Simulated points make up 90.7% of all points.
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oi residuals (Bray et al. 2013)

1 tessellation divides a space into cells Ci where Ci contains a
nt 1 than any other observed event.

Iculate residuals

r~1-X; X ~T(3.569,3.569) (Tanemura 2003)
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Voronoi Residuals

Voronoi Tessellation: (Okabe, 2000) a

partitioning of S into n convex polygons
(tiles)

Di ={x e X :||x = xi|| <||x = x|,V # i}

Voronoi Residual:

) ~ SE(|Di))




Properties of Voronoi Residuals

e Non-parametric

e Spatially adaptive

o |D|X ~ Gamma(3.5,3.5) for homogeneous (Tanemura 2003)

e Approximately Gamma for inhomogeneous (Barr and
Schoenberg 2010, Barr and Diez in progress)




e generating model = fitted model = 100x?|y|

e |ess-skewed residuals with narrower range
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Conclusions.

* Likelihood methods could facilitate evaluation of probabilistic spread
models.

* Deviance residuals are useful for comparing models on grid cells.

* Superthinned residuals do not rely on a grid and can be useful to highlight
where a model overpredicts or underpredicts.

* Voronoi residuals use an automatically adaptive grid and are powerful for
both comparison and to see where a particular model over or underpredicts.



Forecasting global temperature data.
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Fic. 2. Global surface temperature anomaly (1961-90 base period) for the
1850 control, individual ensemble members, and observations (HadCRUT4;
Morice et al. 2012).
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