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Abstract. We present a new technique for isolating climate signals in time series with a characteristic 
"red' noise background which arises from temporal persistence. This background is estimated by a 
'robust' procedure that, unlike conventional techniques, is largely unbiased by the presence of signals 
immersed in the noise. Making use of multiple-taper spectral analysis methods, the technique further 
provides for a distinction between purely harmonic (periodic) signals, and broader-band ('quasiperi- 
odic') signals. The effectiveness of our signal detection procedure is demonstrated with synthetic 
examples that simulate a variety of possible periodic and quasiperiodic signals immersed in red noise. 
We apply our methodology to historical climate and paleoclimate time series examples. Analysis of 
a ~ 3 million year sediment core reveals significant periodic components at known astronomical 
forcing periodicities and a significant quasiperiodic 100 year peak. Analysis of a roughly 1500 year 
tree-ring reconstruction of Scandinavian summer temperatures suggests significant quasiperiodic 
signals on a near-century timescale, an interdecadal 16-18 year timescale, within the interannual 
E1 Nifio/Southern Oscillation (ENSO) band, and on a quasibiennial timescale. Analysis of the 144 
year record of Great Salt Lake monthly volume change reveals a significant broad band of significant 
interdecadal variability, ENSO-timescale peaks, an annual cycle and its harmonics. Focusing in detail 
on the historical estimated global-average surface temperature record, we find a highly significant 
secular trend relative to the estimated red noise background, and weakly significant quasiperiodic 
signals within the ENSO band. Decadal and quasibiennial signals are marginally significant in this 
series. 

1. Introduction 

As we seek to establish more confidently the extent to which anthropogenic influ- 
ences may be affecting the climate, it becomes increasingly essential that we be 
able to distinguish 'signals' in the climate record from the 'noise' background in 
which they are immersed. Theoretical investigations suggest, for example, that 
signals on interdecadal and longer timescales could arise from the coupling of 
ocean-atmosphere processes and the dynamics of ocean gyres (e.g., Latif and Bar- 
nett, 1994) or the ocean's thermohaline circulation (see e.g., Stocker and Mysak, 
1992; Delworth et al., 1994). As such natural signals may partially mask an under- 
lying anthropogenic trend (see e.g., Schlesinger and Ramankutty, 1994a; Santer et 
al., 1995), isolating them may allow for a more confident identification of anthro- 
pogenic climate change. 

The level of confidence we attribute to a potential signal depends quite sensitive- 
ly on our a priori assumptions regarding the nature of the background noise, as well 
as the appropriateness of our statistical model for the signal itself. Most paradigms 
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associate climate signals with a direct response to periodic external forcing such 
as that by the yearly cycle in insolation, with unstable internal oscillations in the 
climate system (e.g., the E1 Nifio/Southem Oscillation or 'ENSO') or, possibly, 
an interaction between such extemal and intemal mechanisms. Signals of the first 
type can appropriately be modeled by a sinusoidal time-dependence, and are read- 
ily identified as narrow peaks in the power spectrum of the series with a coherent 
phase spectrum. In the latter two cases, however, such a simple time-domain model 
is not sufficient because the signal does not exhibit long-term memory of its phase. 
Nonetheless, such signals typically acquire a dominant timescale from the under- 
lying dynamics (perhaps in resonance with external forcing) and can be detected as 
relatively narrow peaks in the power spectrum with greater amplitude than would 
be expected from chance noise fluctuations. The success of signal detection will 
thus hinge, in such cases, on the proper isolation of the underlying noise and an 
appropriate criterion for analyzing the power spectrum for signal contributions. In 
this paper, we describe a procedure that seeks to provide a more accurate means 
for signal detection and noise background estimation in climate studies. 

In Section 2 we will motivate and describe the 'red noise' model for the underly- 
ing noise component of the spectrum. In Section 3, we introduce a signal-detection 
procedure that (a) seeks to optimize the fundamental signal-to-noise ratio prob- 
lem through the use of multiple-taper spectral analysis, (b) invokes assumptions 
regarding signal (narrow-band but not necessarily periodic) and background noise 
('red') that are faithful to our understanding of the physics governing the climate 
system, and that (c) enhances the detectability of signals by using a 'robust' pro- 
cedure to estimate the noise background. In Section 4, we apply our analysis to 
synthetic examples to demonstrate how our procedure provides improved signal 
detection and noise estimation in the case where signal and noise are precisely 
specified and known. In Section 5, we apply our analysis to a small number of 
historical and paleoclimatic time series, discussing implications for the existence 
of low frequency climate signals. Finally, in Section 6, we apply our anlaysis to 
the instrumental record of estimated global-average surface temperature, focusing 
on the presence of low frequency signals, and providing a new perspective on the 
greenhouse signal-detection problem. 

2. The 'Red Noise' Model 

'Red noise' is used to describe noise with relatively enhanced low-frequency 
fluctuations arising from the interaction of white noise forcing with the slow- 
response components of a system. There is theoretical justification for a red noise 
description of the noise background in climatic time series, as the thermal inertia 
of the oceans has been shown in models (e.g., Hasselmann, 1976; Wigley and 
Raper, 1990) to provide memory, effectively integrating atmospheric 'weather' 
forcing. There is also considerable empirical evidence that the red noise model 
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provides a reasonable description of the noise spectra for a variety of climatic and 
hydrological time series including long-term climate proxy records (Kutzbach and 
Bryson, 1974), historical sea and air surface temperature (Allen, 1992; Allen and 
Smith, 1994) and station precipitation data (Gilman et al., 1963). 

The simplest statistical model for a discrete finite red noise series is the first- 
order autoregressive 'AR(1)' process 

r, = pr~_ t + w~ (1) 

where n, = 1, . . . ,  N denotes the discrete time increment in units of the sampling 
interval At,  0 < p < 1, the lag-one autocorrelation coefficient, describes the 
degree of serial correlation in the noise, and wn is Gaussian white-noise sequence 
with variance ~72. Note that the trivial limit p = 0 yields a white-noise process. For 
the AR(1) red noise process, autocorrelation decays exponentially as a function of 
time 

p~ = exp ( - r~At / r )  (2) 

with a characteristic decay time of r.  Thus, if the lag-one autocorrelation coefficient 
P -= Pl is known, the characteristic noise decay time scale can be determined as 

At 
r - ( 3 )  

log p 

For periodicities much larger than r ,  the spectrum behaves like a white spectrum. 
The power spectrum of the AR(1 ) process is given by (e.g., Bartlett, 1966), 

1 - p2 

S ( f )  = So 1 _ 2pcosrc ( f / fN)  + p2 (4) 

for frequency f where So is the average value of the power spectrum, related to 
the white-noise variance by, 

SO = 0.2/(1 __ p2) (5) 

(within some overall normalization of the power spectrum that depends on con- 
vention), f N  = 2 / A t ,  the Nyquist frequency, is the highest frequency that can 
be resolved for sampling rate At. More elaborate models might seek to describe 
the noise resulting from two or more such processes, each with different levels 
of autocorrelation (i.e., a 'compound' red-noise process - see Julian, 1961) or 
to determine the noise spectrum based on a more detailed model of the physics 
governing the climate system (e.g., Wigley and Raper, 1990 - note that the AR(1) 
red noise spectrum (4) is a limiting case of their more general noise model). An 
application of our methodology to these generalizations of the AR(1) noise model 
adopted here would represent a worthwhile extension of the present study. 

Other alternative models such as higher order autoregressive (AR(n), n > 1) 
models can provide a better fit to the overall spectrum, but often through parame- 
terizing features that might actually be associated with signals. Such models can, 
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for example, admit oscillatory solutions (see Allen, 1992, for a more detailed 
discussion of this point) corresponding to narrow spectral peaks at non-zero fre- 
quency. Thus, the signal/noise distinction motivated earlier becomes blurred if a 
higher order AR noise model is invoked. 'Long-range dependence' models for 
the underlying spectra of hydro-climatic time series exhibiting a 1/f scaling have 
also been argued (e.g., Mandelbrot and Wallis, 1969; Bloomfield, 1992). Others 
have directly argued against the AR(1 ) noise model based on conventional spectral 
analyses of certain climatic time series (e.g., Currie and Fairbridge, 1985; Newell 
et al., 1989). We will show below, however, that a robustly estimated AR(1) red 
noise background approximates quite well the noise background spectrum in a 
variety of climate series. The AR(1) red noise is thus best justified because it has 
both theoretical and empirical motivation in the context of climate studies, and can 
easily be generalized to accommodate more detailed physics of the climate system. 

3. Signal Detection and 'Robust' Noise Estimation 

We assume an underlying time series model, 

L 

yn -- Z + (6) 
/ = l  

where r is the red noise process described above, and s (z) denotes a finite, a priori 
unknown set of signals. Under the assumption that each signal s (z) has a distinct 
narrow-band signature in the frequency domain, spectral analysis affords a par- 
ticularly useful means for detection. The efficiency of signal detection, however, 
depends on the resolution and statistical variance properties of the spectral estimate 
(see Thomson, 1982). Numerous spectral analysis studies of climatic time series 
(e.g., Gilman et al., 1963; Kutzbach and Bryson, 1974; Stocker and Mysak, 1992; 
Deser and Blackmon, 1993; Delworth et al., 1993) have taken into account the 
red noise background, but using a single-tapered periodogram. With only a single 
data taper, a spectral estimate with usefully low-enough statistical variance can 
only be obtained through a periodogram smoothing or related ensemble-averaging 
(e.g., Brillinger, 1981). Such a procedure bears a heavy cost in terms of the vari- 
ance/resolution tradeoff and invokes fairly strict assumptions of stationarity. The 
multiple-taper or 'multi-taper' method of spectral analysis (henceforth, 'MTM' - 
Thomson, 1982; Percival and Walden, 1993) affords a modestly better tradeoff 
between spectral resolution and statistical variance than conventional single-taper 
methods (see e.g., Park et al., 1987) - an advantage which may be essential in 
the case where signal-to-noise ratios are low. Furthermore, MTM relaxes some 
of the strict stationarity assumptions, and the multiple degrees of freedom used 
to describe the spectrum provide for a local test for the presence of a sinusoidal 
signal against the assumption of a smoothly varying 'locally-white' spectrum back- 
ground. For these reasons, MTM is particularly well-suited for the spectral analysis 
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of climatic time series (e.g. Thomson, 1990a, b; Kuo et al., 1990; Ghil and Vautard, 
1991; Birchfield and Ghil, 1993; Park and Maasch, 1993; Mann and Park, 1993). 
However, to use MTM to test for the presence of both periodic and quasiperiodic 
signals against a red-noise background null hypothesis, several adaptations of the 
traditional MTM procedure are required. 

We seek first to isolate any periodic signals corresponding to singular peaks in 
the power spectrum (within the confines of finite frequency resolution) associated 
with a coherent phase spectrum. This is accomplished by Thomson's (1982) reshap- 
ing procedure with some small modifications. The residual 'continuous' spectrum 
component may still contain narrowband features associated with quasiperiodic 
signals. To identify these features, we separate out the estimated noise background 
from the residual spectrum. 

This noise component must be estimated in such a way that the noise parameter 
estimation is not distorted by the potentially sizeable signals imbedded in the noise. 
For example, when a significant secular trend is present, the series is often 'detrend- 
ed' through subtraction of the assumed low-frequency contribution before noise 
parameters are fitted (e.g., Stocker and Mysak, 1992; Eisner and Tsonis, 1994). 
Similarly, an iterative procedure may be used to remove signal contributions from 
the series as they are detected (see e.g., Allen and Smith, 1994), eventually resulting 
in a residual series which is consistent with the underlying noise model. Because 
such a procedure is (a) not especially efficient in an exploratory data analysis con- 
text and (b) can lead to undesirable effects on the spectrum of the residual (see 
Section 5), we prefer our own alternative 'robust' noise background estimation 
procedure. This procedure makes use of a median smoothing of the spectrum to 
provide an estimate of the underlying noise background that is insensitive to the 
contributions of narrowband signals but does not alter the spectrum itself. The 
median-smoothed empirical estimate of the background will, however, rarely yield 
the true underlying noise spectrum, due to sampling fluctuations and some small 
residual bias that even the median smoothing cannot eliminate. This is seen below 
in our synthetic examples (Section 4) where the noise is generated from a pure red 
noise process. 

Assuming that the underlying noise was generated by an AR(1) red noise 
process, we can better isolate the true noise background by fitting an analytical red 
noise spectrum (4) to the median-smoothed background estimate. This involves 
fitting two free parameters, the average noise level So (or equivalently, through 
(5), the average white-noise level ~r) and the lag-one autocorrelation coefficient 
p, to the median smoothed background. This 'robust' estimate of p will provide 
an improved estimate of the true persistence timescale 7- of the noise through (3) 
since signal contributions present in the nominal tag-one correlation coefficient 
of the time series are largely eliminated. This value of 7- may be compared with 
characteristic relaxation timescales of potential slow-response components of the 
climatic system for possible physical insight into the noise process. 
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Thomson's 
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Figure 1. Schematic illustration of the procedure for signal identification and confidence level 
estimation. The reshaping step is accomplished by using a 95% or 99% confidence cut-off for both 
the F-test and the spectral power amplitude. Non-linear fits are calculated using Brent's method to 
minimize the misfit of the AR(I) model and the robust estimate of the smoothed spectrum. 

Finally, we gauge the significance of  periodic or quasiperiodic peaks in the 
spectrum relative to the estimated red noise background using elementary sam- 
piing theory (Tukey, 1950; Percival and Walden, 1993). Our entire procedure is 
illustrated schematically in Figure 1. Details of  the spectrum estimation, reshaping, 
median-smoothing, red-noise background fit, and confidence level determination 
are provided in Appendix A. 
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Table I 
Description of the two synthetic examples, including length and sampling rate of each synthetic series, 
and details of each component in the time series including qualitative description, period (or period 
range) of oscillation, frequency (or frequency range), and relative amplitude 

Series N At Signal T f Rel. 
(years) (cycles/yr) amp. 

Synthetic 1440 1 month Linear trend c~ 0.0 1.5 
No. 1 Periodic sinusoid 25 0.04 1.0 

Frequency modulated oscillation 9 - 1 1  0.09-0.11 1.0 
Frequency modulated oscillation 4.3-4.8 0.21-0.23 1.0 
Periodic square wave 1.0 1.0 1.0 
AR(I) noise (p = 0.4) 1.0 

Synthetic 120 1 year Linear trend cx~ 0.0 1.5 
No. 2 Frequency modulated oscillation 9 - 1 1  0.09-0.11 1.0 

Frequency modulated oscillation 4.3-4.8 0.21-0.23 1.0 
AR(1) noise (p = 0.2) 1.0 

4. Synthetic Examples 

We focus on two synthetic examples consisting of periodic and quasiperiodic 
signals superimposed on equal amplitude, moderately-red noise (Table I). A com- 
parison of the true, 'raw' (i.e., non-robustly estimated) and robust analyses of the 
noise background (Table II) demonstrates the effectiveness of the robust red noise 
level determination. 

The first synthetic time series (Figure 2a) describes a 120-year monthly sampled 
series (1440 months) with a periodic annual square-wave cycle, quasiperiodic 
interannual and decadal signals, a harmonic interdecada125-year oscillation, and a 
linear trend. We separately analyze the signal (Figure 2a-top) and signal-plus-noise 
(Figure 2a-bottom) time series. The 'adaptive' (see Appendix A) MTM spectrum of 
the signal time series (Figure 2b) shows distinct peaks corresponding to each of the 
signals described above, including odd harmonics generated by the square wave. 
Leakage from the lower frequency signals produces a notably higher background 
floor to the spectrum at lower frequencies, but even at low frequency, the signals are 
at least two orders of magnitude above the floor - this leakage becomes negligible 
in the presence of added noise. 

The signals are visually evident in the spectrum of the signal-plus-noise time 
series (Figure 2c), but the AR(1) background and confidence limits are artificially 
raised by the low frequency signals. This artifact leads to the clearly incorrect 
inferences that there are no statistically-significant signals in the low frequency 
range (e.g., f < 0.5 cycle/yr) and that most of the high frequency ( f  > 2 cycle/yr) 
part of the spectrum is significant relative to red-noise at the > 99% level. 
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Figure 2. Synthetic example representing 120 years of monthly sampled data with a red-noise 
background generated from p = 0.4, and the signals described in the text. (a) Time series of signal 
(top), noise (middle), and signal-plus-noise (bottom). (b) Multipaper spectrum of signal component of 
time series using K = 3, p = 2, with peaks labeled by periodicity in years. (c) Multipaper spectrum 
of signal-plus-noise showing red-noise fit to spectrum (solid curve) and 90, 95, 99% confidence limits 
(dashed curves) based on raw AR(1) fit to spectrum. As in later plots, the non-reshaped (dashed) 
spectrum is plotted on top of the reshaped (solid) spectrum so that 'periodic' signals are indicated by 
narrow dashed peaks, while more "quasiperiodic' signals are indicated by solid peaks. For a signal 
that has both significant periodic and quasiperiodic components, the area between the reshaped and 
unreshaped spectra is a measure of the relative fraction of variance that appears to represent periodic 
variability. The median-smoothed back~ound (thick dot-dashed) spectrum is also shown. Higher- 
frequency peaks are labeled by periodicity in years, while lower-frequency region (surrounded by 
box) is expanded in the following figure. In this and all similar plots, unless otherwise noted, a 95% 
confidence level for the F-test and spectral power is used in the reshaping procedure. (d) Multitaper 
spectrum of signal-plus-noise, as in (c) but based on robust estimate of AR(1) background. The true 
red-noise background (heavy solid) is also shown for comparison. 

For  the robus t  analysis ,  we  choose  a median  smoo th ing  w i n d o w  o f  width  

/k fsmootla = 1.2 cycle/yr ,  consis tent  with our  guidel ines  for  w i n d o w  width  select ion 
(Append ix  A). We require a 99% signif icance level for  phase -cohe rence  and p o w e r  
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in the reshaping procedure (see Figure 1; Appendix A). This analysis yields a far 
more accurate determination of the true red noise (Figure 2d; Table II). The largest 
fractional discrepancy is found for T (estimated at 0.11 yr rather than the true value 
of 0.21 yr) which is highly sensitive to the estimated value of p through its loga- 
rithmic dependence. The synthetic signals are each properly identified at the 99% 
confidence level. A periodic annual peak is detected along with quasiperiodic odd 
harmonics (in the latter case, the power level criterion is not met in the reshaping 
procedure). The interdecadal (25 year) sinusoid is detected as significant, but as a 
quasiperiodic rather than periodic signal. In this case, there are too few repetitions 
(less than 5) of the cycle in the series for good enough statistical constraint in the 
phase-coherence test of the reshaping procedure. This failure underscores the diffi- 
culty in distinguishing periodic and quasiperiodic signals at very low frequencies. 
The relatively small number of spurious peaks above the 99% level are consistent 
with the expectations of chance occurrence in a random noise sampling. 

Focusing on the low-frequency range of 0-0.5 cycle/yr (Figure 3) corresponding 
to periods (1/f) greater than 2 years, we see in more detail how the raw AR( 1 ) deter- 
mination and associated confidence levels overpredict the low-frequency noise 
level (Figure 3a). The true noise spectrum is essentially white on interannual 
timescales owing to the fact that 1/f >> T, but the non-robust analysis prescribes a 
strongly red background as an artifact of the influence of the seculax, interdecadal, 
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and quasidecadal signals. None of these signals breach the 99% confidence level 
relative to this poorly estimated noise background (the secular trend does not even 
breach the estimated mean red-noise level). The robust analysis, in contrast, accu- 
rately determines the noise background on interannual timescales, and correctly 
isolates the low-frequency signals (Figure 3b). 

The second synthetic example is a 120 year length annually sampled series 
(Figure 4a) consisting of a similar set of signals (Table I) superimposed on moderate 
interannual timescale red noise (p = 0.2, r = 0.6 year). This example is a model 
for the relatively short, coarsely sampled time series that are often encountered in 
historical climate data. Because the frequency width (0.5 cycle/yr) of the spectrum 
is smaller, and spectral resolution is poor, due to the short nature of the time series, 
there is less independent information available for noise background estimation. 
However, the robust noise level determination represents a clear improvement over 
a raw determination of the noise level and confidence limits (Table II). The adaptive 
MTM spectrum of the signal time series shows the expected peaks centered at 4-5 
yr, 9-11 yr, and on secular (> 50 year) time scales (Figure 4b). In the raw AR(1) 
determination of the signal-plus-noise series, the highly overestimated values of 
p and So (Table II) lead to poor signal detection. Only the quasidecadal signal 
is found to exceed the 99% confidence level, with the 4-5 year signal not even 
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significant at the 90% level (Figure 4c). The robust determination provides fairly 
accurate estimates of the true red noise (Figure 4d, Table II). Each of the three 
signals is found to be significant at > 95% confidence level with the expected one 
chance spurious peak (near 2.2-2.4 year period) exceeding the 90% confidence 
level. 

5. Application to Climate Time Series 

We examine three diverse climatic time series including (1) an ~ 3 million year 
(Ma) long Ocean Drilling Project (ODP) sediment core reconstruction with 1 kyr 
(1000 year) sampling, (2) a ~ 1500 year long tree ring temperature reconstruction 
with annual sampling, and (3) the ~ 150 year long monthly volume change record 
of the Great Salt Lake (GSL). The results of the red noise parameter estimation 
procedure are summarized in Table III, and the detected signals are discussed 
below. 
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Figure 3. Spectra of first synthetic example, focusing on an interannual range (0.0-0.5 cycle/yr 
frequency range). (a) Same as 2c, but restricted to interannual frequency range. (b) Same as 2d, but 
restricted to interannual frequency range. 
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I 

100 

Figure 4. Synthetic example representing 120 years of annual sampled data with a red-noise back- 
ground generated from p = 0.2, and the signals described in the text. (a) Time series of sig-nal 
(top), noise (middle), and signal-plus-noise (bottom). (b) MTM spectrum of signal component of 
time series. (c) MTM spectrum of signal + noise showing red-noise fit to spectrum (solid) and 90, 95, 
99% confidence limits (dashed) based on raw AR(I ) fit to spectrum. The median-smoothed spectrum 
is also shown (thick dot-dashed). (d) Multitaper spectrum of signal + noise, as in (c) but based on a 
robust estimate of AR(I) background. The true red noise background (heavy solid) is also shown for 
comparison. 

5.1. ODP SITE 607 CORE 

The 2.7 Ma ODP site 607 6180 reconstruction (Figure 5a) is a proxy for low- 
frequency Pleistocene ice-related climate fluctuations (see e.g., Birchfield and Ghil, 
1993; Lees and Park, 1994). The adaptive MTM spectrum (Figure 5b) exhibits a 
secular peak, in addition to peaks near 100 kyr, 40 kyr, and 18-25 kyr. The non- 
robust analysis, however,  finds the secular peak insignificant, and unrealistically 
determines much of  the higher f requency continuum ( f  > 0.04 cyc/kyr) as sig- 
nificant above the 95% confidence level. The values of  p and So (Table III) are 

overest imated by the several narrowband, low frequency peaks which artificially 
elevate the estimated noise level. 
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The robust determination provides a far more reasonable fit to the noise back- 
ground, with a lesser degree of  autocorrelation and a lower average level (Table III) 
although the noise background varies somewhat  more abruptly than can be accom- 
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' 014 ' 0.5 

modated by the simple AR(1) red noise description - the compound red noise 
process described earlier may be more appropriate in this case where the dynamic 
range is quite large. Consequently, we show results based both on fitting S(f) 
and log S(f) in the red noise estimation procedure (Figure 5c) which differ some- 
what in how they choose to fit an AR(1) dependence to the noise background (see 
Appendix A). However, significance inferences at the 99% level are independent of 
the two choices, and the estimated noise parameters are similar (Table III). Several 
high-frequency peaks isolated as significant in the raw red-noise significance level 
determination, are dismissed as insignificant in the robust determination. Periodic 
signals near 19, 23 and 24 kyr, likely due to Milankovitch precessional forcing, and 
40 kyr, corresponding to obliquity forcing are detected at the 99% confidence level 
for significance. The 40-kyr peak has a strong quasiperiodic component which 
may associated with problems in the way the series has been 'tuned'. The 100-kyr 
peak is determined as strictly quasiperiodic, consistent with the intermittent nature 
of the oscillation evident in the time series (Figure 5a); the 100-kyr variability 
displays greatest strength during the recent ~ 800 kyr, but is absent before that 
point, demonstrating an apparent transition in the climate system consistent with 
non-linear internal variability (see e.g., Saltzman and Maasch, 1990). Such non- 
stationary signal behavior suggests the usefulness of an 'evolutive' generalization 
(e.g., Birchfield and Ghil, 1993; Yiou et al., 1991) of the present procedure in 
which the spectrum is evaluated in a moving window through the time series. 
The secular peak, determined as highly significant in the robust analysis, can be 
attributed to long-term tectonic forcing (e.g., Mitchell, 1976). The robust deter- 
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Figure 5. ODP site 607 core. (a) Time series. (b) MTM spectrum of the 6180 series, showing red-noise 
fit to spectrum (solid) and 90, 95, 99% confidence limits (dashed) based on raw AR(1) fit to spectrum. 
The median-smoothed spectrum is also shown (thick dot-dashed). (c) MTM spectrum as above, but 
based on a robust estimate of the red-noise background. Thick curves are based on the log-fitting of 
the red-noise spectrum. 

mination gives a timescale of ~- ~ 10-20 kyr (depending on which method of 
noise background fitting is used), consistent with estimated response timescales of 
stochastic low-frequency ocean circulation variability (e.g., Keigwin et al., 1994). 

5.2. FENNOSCANDINAVIAN TREE RING RECONSTRUCTION 

A 1482-year long tree ring reconstruction of Scandinavian summer temperatures 
(Briffa and Jones, 1992; Bradley and Jones, 1993) is analyzed here. Significant 
interdecadal-to-century scale variability is visually evident in the series (Figure 6a). 
The strong, relatively narrowband peaks associated with signals on these time 
scales (Figure 6b) artificially elevates the raw estimated red noise background. 
The associated confidence levels imply that the secular trend is the only significant 
low-frequency peak. Evaluated robustly (Figure 6c) there is evidence for a signif- 
icant secular trend and significant quasiperiodic variability on century timescales 
(50-70 year timescale peak), 30-36, 16-18, 4.8-5.0, 3.6-3.8, 3-3.2, and 2.2-year 



ESTIMATION OF BACKGROUND NOISE AND SIGNAL DETECTION 427 

10 4 

10 3 

n -  
I,IJ 

10 2 
o 
a .  

101 

10 o 

secula.r 
100 kyr 

,,~ 41 kyr 

~ " 
I I 

, I 

24 kyr 
/ 2 3  kyr 

~4,', 
, ,, ~,18kyr 

I t I 

0 0 .04  0 .08 0 .12 
F R E Q U E N C Y  (CYCLE/kyr )  

Figure 5b. 

time scales. The interannual signals correspond to well-known ENSO and quasi- 
biennial timescales (see e.g., Ghil and Vautard, 1991; Mann and Park, 1994). The 
quasibiennial peak is close to the Nyquist frequency and should be interpreted cau- 
tiously. The interdecadal signal has also been isolated in instrumental temperature 
records (Ghil and Vautard, 1991; Mann and Park, 1994), long-term proxy (Mann 
et al., 1995b) and historical (Plaut et al., 1995) data. Century scale oscillations 
in the North Atlantic have been noted elsewhere (e.g., Stocker and Mysak, 1992; 
Mann et al., 1995b) as well as predicted theoretically (e.g., Stocker and Mysak, 
1992; Delworth et al., 1994). The latter studies have associated this variability 
with instabilities in the thermohaline circulation. The non-robust red-noise anal- 
ysis (Table III) yields an estimate of the persistence time 7- = 2.6 years which is 
quite different from typical estimates for gridded instrumental surface temperature 
records (7- ~ i year -see Allen and Smith, 1994). The robust analysis (Table III 
- case 'a') provides a far more consistent estimate 7- = 0.7 year. As summer 
seasons tend to erase the climatic memory associated with persistent cold-season 
anomalous circulation patterns (consistent with the 'spring barrier' often discussed 
in the context of medium-range climatic forecasting), 7- ~ 1 year is a physically 
reasonable timescale for the noise persistence. 
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We chose this time series example to test the sensitivity of the procedure to 
the parameter ~Sfsmooth and the threshold level required in the reshaping procedure. 
The values of p and So obtained with a larger value Afsmoo~ = 0.11 cycle/year 
(within the range of widths specified for our selection rules - 0.05-0.13 cycle/yr 
in this case) yields a very similar estimation of the noise background (Table III - 
case 'b') and significance of signals (Figure 6d). Lowering the reshaping threshold 
from the 99% to 95% confidence level, however, now leads us to infer periodic 
structure in the interannual 'ENSO' variations. This distinction demonstrates the 
ultimate subjectivity in deciding whether or not a given spectral peak is considered 
as representing periodic or quasiperiodic variability. Our red-noise significance cri- 
terion, however, isolates the same peaks as significant whether they are considered 
periodic or quasiperiodic. 

5.3. GREAT SALT L A K E  

The 144-year (1846-1989) historical record (see Sangoyami, 1993) of monthly 
volume change in the Great Salt Lake ( 'AV' - Figure 7a) is analyzed here. The 
raw red-noise determination (Figure 7b) isolates an annual cycle and its first two 
harmonics as significant, but does not indicate any significant low-frequency vari- 
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Figure 6. Fennoscandinavian summer temperature tree-ring reconstruction. (a) Raw annual time series 
(dashed) along with a 20-year moving average (thick solid) to visually emphasize lower frequency 
variability. (b) MTM spectrum of the above series showing red-noise fit to spectrum (solid) and 90, 95, 
99% confidence limits (dashed) based on raw AR(1) fit to spectrum. The median-smoothed spectrum 
(thick dot-dashed) is also shown. A 99% confidence level cutoff is required in the reshaping procedure 
in this case. (c) MTM spectrum as above, but using robust estimate of the red-noise background. 
(d) Same as (c) but with the larger median smoothing and a 95% level cutoff. Lower cutoff leads to 
determination of some periodic signals, labeled by periodicity in years. 

ability, other than a narrow 16-17 year peak. The estimated noise level is elevated 
by the annual cycle, its harmonics, and a peculiar broad band of  elevated variance on 
interdecadal time scales. The robust analysis (Figure 7c), in contrast, suggests that 
a fair amount of the low frequency variability in the record is significant, including 
peaks in the interannual ENSO band and a broad 10-70 year band (Figure 7d). 
Specific modes of quasidecadal (10-12 year) and secular (> 50 year timescale) 
variability have been shown to correlate well with large-scale modes of climatic 
variability (Mann et al., 1995; Lall and Mann, 1995). The significant broad-band 
of  interdecadal variability is unusual for a hydroclimatic time series and may relate 
to the tendency of  large scale forcing on decadal and interdecadal timescales to 
interact with the lakes own low-frequency internal non-linear dynamics (see Lall 
et al., 1995). The robust analysis indicates all of the harmonics of  the annual cycle 
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(i.e., up to fN) as being significant. It is noteworthy that the annual peak is found 
to contain a significant quasiperiodic (i.e., non phase-coherent) component. This 
feature is consistent with observations that the annual cycle in western precipitation 
has exhibited a phase drift during the last century (Rajagopalan and Lall, 1995) 
with potential connections to anthropogenic climate change (Thomson, 1995). 

6. Instrumental 'Global Average' Temperature Record 

We analyze here the 137-year long record of annually-averaged estimated global- 
average surface temperature anomalies of the Climatic Research Unit of East 
Anglia University (see e.g., Jones et al., 1986). Visually the series exhibits a clear 
long-teiTn warming trend (Figure 8a). The character and significance of this trend 
is a subject of considerable recent interest and controversy (Kuo et al., 1990; Ghil 
and Vautard, 1991; Bloomfield, 1992; Bloomfield and Nychka, 1992). Less visually 
obvious signals in the record on interannual, decadal, and interdecadal timescales 
have also been detected (Ghil and Vautard, 1991; Eisner and Tsonis, 1991; Alien 
and Smith, 1994). Mann and Park (1993; 1994) favor multivariate analysis of 
global temperature gridpoint data because coherent, high-amplitude signals (e.g., 
ENSO) partially cancel in coarse spatial averaging due to spatial variation in the 
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phase. Multivariate methods can also provide alternative 'local' confidence tests 
that do not require detailed knowledge of the overall shape of the noise spectrum 
(Mann and Park, 1994). 

Proper determination of the noise background is essential to detecting an anthro- 
pogenic signal (see e.g., Wigley and Raper, 1990; Bloomfield and Nychka, 1992). 
A non-robust analysis of the un-detrended series leads to the highly questionable 
inferences (Figure 8b) that the secular trend is n o t  significant relative to red noise, 
and that nearly the entire interannual band (all periods of 7 years or shorter) of vari- 
ability is significant well above the 99% confidence level. Furthermore, the value of 
p = 0.93 (Table III) provides a noise persistence timescale estimate ~- = 14 years 
which is unphysically long compared to the typical 1-year timescale estimated for 
regional surface temperatures data (see Section 5.2). In contrast, if the estimated 
low-frequency trend is first removed before noise parameters are estimated (Allen 
and Smith, 1994), a more reasonable estimate, albeit still slightly larger estimates 
of p ~ 0.6 and ~- ~ 2 years) are obtained - Allen and Smith (1994) argue for an 
iterative procedure to successively remove all detected signals from the series. Our 
robust procedure is insensitive to the contributions of the secular warming trend 
or any residual century-scale signals (see Schlesinger and Ramankutty, 1994a) and 
decadal and interannual timescale signals. This procedure yields noise parame- 
ters of p = 0.385 and ~- --- 1 year (Table III) which are highly consistent with 
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that obtained for regional surface temperature records. The discrepancy between 
the raw estimates of 7- for globally-averaged and regional surface temperature 
records arises from the subtle ways in which signal and noise add differently in 
the global-averaging process (see Mann and Park, 1994). The apparent enhanced 
noise persistence in the global-average series is thus an artifact which disappears in 
robust noise parameter estimation. In this sense, there appears to be no fundamental 
difference in the characteristics of typical regional and 'global' surface temperature 
noise. 

The robust analysis argues for a highly significant secular trend (Kuo et al., 1990; 
Wigley and Raper, 1990; Bloomfield and Nychka, 1992; Ghil and Vautard, 1992; 
Allen and Smith, 1994; Mann and Park, 1994) relative to red noise. Whether this 
signal arises as a response to greenhouse wanning, from organized low-frequency 
climate variability, or some combination can not be addressed from an empiri- 
cal analysis alone, but is potentially addressed by model prediction/observation 
intercomparison studies (e.g., IPCC, 1990; Santer et al., 1995). Weakly significant 
signals on decadal and typical interannual ENSO timescales are also observed here, 
consistent with evidence from spatiotemporal analysis (Mann and Park, 1994). A 
quasibiennial (~ 2.1-year period) signal is isolated as significant only slightly 
below the 90% confidence level, but is close enough to the Nyquist frequency 
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Figure 7. Great Salt Lake month-to-month volume difference time series. (a) Raw monthly time 
series in units of m3/month (dashed) along with a 10-year moving average (thick solid) to visually 
emphasize lower frequency variability. (b) MTM spectrum of the above series showing red-noise fit to 
spectrum (solid) and 90, 95, 99% confidence limits (dashed) based on raw AR(I) fit to spectrum. The 
median-smoothed spectrum (thick dot-dashed) is also shown. The low-frequency region (surrounded 
by box) is expanded in part (d). (c) MTM spectrum as above, but using robust estimate of the red-noise 
background. (d) Same as (c) but focusing on interannual and longer time scales (7- > 2-year period). 

( fN = 0.5 cycle/year) that aliasing effects may be problematic. As previously 
noted by Mann and Park (1993), no periodic low-frequency signals are detected in 
the global temperature record. 

A recent study by Schlesinger and Ramankutty (1994a) has argued for the exis- 
tence of a low-frequency ~ 70-year timescale oscillation in the global-average 
temperature series superimposed on an anthropogenic warming trend. In their mul- 
tivariate analysis of globally-distributed long-term instrumental temperature data, 
Mann and Park (1994) observe a similar signal centered in the North Atlantic. A 
recent multivariate analysis of  proxy data (Mann et al., 1995b) suggests a robust- 
ness to such oscillations over several centuries. Whether or not this signal can be 
detected in the global-average series, however, appears to depend quite strongly on 
assumptions regarding the nature of the secular warming signal and the underly- 
ing red noise background (Elsner and Tsonis, 1994; Schlesinger and Ramankutty, 
1994b). We revisit this issue in our present analysis of this series. Although more 
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sophisticated detrending is often invoked (e.g., Ghil and Vautard, 1990) and a 
model-predicted response to combined anthropogenic greenhouse/aerosol forcing 
was used by Schlesinger and Ramankutty (1994a) to define the secular trend, we 
choose to assume a simpler linear 'anthropogenic' warming trend to illustrate some 
of the subtle issues involved. The spectrum of the detrended series (Figure 8d) is 
noticeably altered at timescales as short as the decadal ( f  ~ 0.1 cycle/year) by the 
detrending process which indicates one of the potential problems in detrending: the 
removal of a simple trend can lead to an undesirable bias of higher frequency vari- 
ability. The 'raw' red-noise analysis shows a peak near the 70-year period, barely 
breaching the 90% confidence level. We no longer detect a significant quasidecadal 
peak, and the significance of the quasibiennial and ENSO peaks are altered. We are 
led to conclude that the simple process of trend removal followed by noise param- 
eter estimation can lead to biased inferences. If instead, however, we apply the 
robust analysis to the detrended series, we are led to nearly identical conclusions 
to those in the robust analysis of the original series with the same peaks isolated 
at nearly identical significance levels, and very similar noise parameters estimated 
(Table III - case b). Furthermore, the residual ~ 70-year peak is found to be signif- 
icant at the 99% level relative to the robustly-estimated red noise level. The robust 
analysis yields consistent results whether applied to the original or detrended series 
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because it is insensitive to local features in the spectrum such as a narrow secular 
peak. 

This latter analysis shows that the global-average series contains a significant 
residual peak centered near the 70-year period relative to the assumption of red 
noise superimposed on a linear wanning trend. Trend removal based on incorrect 
or overly simple a priori assumptions, however, could clearly lead to incorrect 
inferences. For example, if the true trend is an exponential increase, the residual 
of linear-detrending will yield an apparently significant low frequency oscilla- 
tion purely as an artifact of detrending. In this case, both the linear trend and 
apparent low-frequency oscillation might appear to represent distinct statistically 
significant signals, when only one true low-frequency signal was actually present. 
The multivariate methods discussed above can resolve distinct similar timescale 
signals through their differing spatial as well as temporal characteristics, under- 
scoring another advantage of multivariate methods when spatially-distributed data 
are available. 

One argument against the proposition that the observed wanning of the last cen- 
tury is due to enhanced greenhouse conditions is that certain ad hoc null hypotheses 
for the noise-like component of the system can explain away the observed warm- 
ing trend (e.g., Bloomfield, 1992). Our analysis would argue that a parsimonious 
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model for the behavior of global temperature series can be provided which is con- 
sistent with our understanding of the physics governing the climate system. The 
global-average temperature series is consistent with a few weakly significant quasi- 
oscillatory components superimposed on a secular warming trend, and immersed 
in red noise with a roughly 1-year persistence timescale. The quasiperiodic nature 
of the oscillatory components is consistent with internal organized dynamics of the 
climate system, while the long-term warming trend is within the bounds of climate 
model predictions of the response to combined radiative and aerosol anthropogenic 
forcing of the climate. 

7. Conclusions 

We have developed a new technique for signal detection in climate time series 
that is faithful to the physics governing the climatic system. Our procedure uses 
'multitaper' spectral estimation in concert with a robust noise level determination to 
allow for optimal detection of periodic and quasiperiodic signals buried in climatic 
red noise. The effectiveness of this procedure is verified through an analysis of 
synthetic examples chosen to simulate a variety of climate signals immersed in 
moderate red-noise backgrounds. The common detection of similar signals (e.g., a 
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Figure 8. Global-average surface temperature anomaly record. (a) Raw annual time series from 1854 
to 1990. (b) MTM spectrum of the above series showing red-noise fit to spectrum (solid) and 90, 95, 
99% confidence limits (dashed) based on raw AR(1) fit to spectrum. The median-smoothed spectrum 
(thick dot-dashed) is also shown. (c) MTM spectrum as above, but using robust estimate of the 
red-noise background. Peaks significant at near or above the 90% confidence level are labeled with 
periodicity in years. (d) MTM spectrum but based on time series with linear trend subtracted off 
(heavy dotted spectrum) along with the original (solid) spectrum, and raw (thin solid) and robust 
(thick solid) red noise fit. The 90, 95, 99% confidence limits based on raw (thin dashed) and robust 
(thick dashed) red noise fit to spectrum are shown. The median-smoothed version of the original 
spectrum (thick dot-dashed) is also shown. 

3-5 year ENSO timescale signal) in disparate climate time series, and the consistent 
estimate of  the ,,~ 1 - y e a r  noise persistence time in regional and global surface 
temperature, strengthens our confidence in the underlying red noise model  as it is 
' robust ly '  estimated in our procedure. A highly significant secular warming trend, 
and moderately significant quasiperiodic decadal and interannual signals in the 
global temperature record are detected relative to a properly estimated red noise 
background by our analysis. A residual 'oscillation' centered near the 50-70  year 
period is found to be highly significant if a simple (linear) warming trend due 
to anthropogenic forcing is invoked. However,  this feature could alternatively be 
viewed as a non-uniformity in the warming trend itself. Neither possibility can be 
ruled out by the analysis of  this single series. 
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Appendix A 

A 1. SPECTRUM ESTIMATION AND RESHAPING 

We use Thomson's (1982) procedure for separating the continuous and broadband 
features of a spectrum which is described elsewhere (e.g., Percival and Walden, 
1993) in more detail. The raw multi-paper power spectrum S(f) of a time series 

N { y r~ },~= l (from which one typically removes the mean) is constructed from a group 
of indendent k = 1, . . . ,  K spectral estimates, 

N 

n = l  

as 

s ( y )  = ~ K = I / ~ k l Y k ( F ) 1 2  

EL, 
within some overall normalization. At is the sampling interval (e.g., monthly 

or annual), and the data taper {w (k) N },~=1 is the kth member in an orthogonal 
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sequence of K Slepian tapers determined by a variational condition to minimize 
spectral leakage outside of a band of +PfR (i.e., of bandwidth 2pfR) about a given 
frequency f where fR = 1~(NAt) is the Rayleigh frequency. ,kk is a measure of 
the fractional leakage associated with the kth data taper. Only the first 2p - 1 tapers 
are usefully resistant to spectral leakage, so one is forced to use K _< 2p - 1 tapers 
in spectral estimation. The choice of K thus represents a compromise between 
spectral resolution and variance. In this study, we use either p = 2 or p = 3, with 
K = 2p - 1 in each case. Shorter time series require the lower values to achieve 
the desired frequency resolutions. 

The contributions from each of the K eigenspectra can be variably weighted to 
further minimize broadband leakage through an adaptive spectral estimate 

S(f )  = ~ = t  b~(f)AklYk(f)l 2 

where bk ( f )  is a weighting function that further guards against broadband leakage 
for a non-white ( 'colored') but locally-white process. The adaptive spectrum esti- 
mate has an effective degrees of freedom z/that generally departs only slightly from 
the nominal value 2 K  of the non-adaptively weighted spectrum. Spectral power 
associated with the low-frequency trend in a data series is confined to a 'secular 
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band' about zero frequency, 0 < f < Pfn (for p = 2, and a 100-year data series, 
this corresponds to variability with timescale greater than 50 years). As broadband 
leakage is typically limited to far less than 1% in the adaptive MTM spectrum 
estimate, long-term trends generally should not bias higher frequency variability 
as long as dynamic ranges are not extremely large (i.e., many decades in power). 
Such dynamic ranges are not found in any climatic time series we have analyzed. 

A test for periodic signals (i.e., for phase-coherent variability) can be performed 
based on the ratio of the variance explained by a sinusoid at a given frequency to 
that explained by the adaptively weighted spectral estimate, 

(K 1)l~(f)12E~l w02 - -  r e  k 

F(f)  = E ~ I  ]Yk(f)- ~(f)W~ 2 

where 141k is the Fourier transform of the data taper w ~, and W ~ = Wk( f  = O) 

Iz(f) = ~ Vv~Yk(f) W ~ 
k=l 

For locally white noise, F ( f )  is distributed with 2 and 2K - 2 degrees of freedom, 
allowing a test for periodic components relative to the null hypothesis of locally- 
white noise. The influence of any periodic components can be removed by a 
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reshaping procedure (Thomson, 1982; Lees, 1995), providing an estimate of the 
continuous background spectrum. Simple subroutines to perform MTM spectral 
analysis (Lees and Park, 1994) are available over the internet. 

We have modified the original reshaping procedure. To detect a putative peri- 
odic component (and perform reshaping) at frequency f ,  we require that the F-test 
confidence level be sufficiently high at f (e.g., 95% or 99% confidence level), and 
that the overall spectral power at f be significant (see A3) relative to an interim esti- 
mate of the background spectrum obtained by a median-smoothing (see A2) of the 
reshaped spectrum. Thus, our procedure for periodic signal identification is some- 
what more conservative than that of Thomson (1982). Our approach assumes that a 
true climate signal must have power that is significant relative to a smooth estimate 
of the overall noise background, whether or not the phase information suggests 
the presence of a harmonic signal. The true noise background will subsequently be 
estimated by the red noise fit to the median-smoothed spectrum. Significance of 
periodic signals, as described above, and quasiperiodic signals (narrowband peaks 
in spectral power associated with an incoherent phase spectrum) will ultimately be 
measured with respect to this noise background (see A3). 

A2. MEDIAN SMOOTHING AND RED-NOISE BACKGROUND FIT 

We perform a robust (as earlier defined) estimate of the spectrum background by 
using a median-smoothing estimator of the reshaped spectrum: at each frequency 
point, the spectrum estimate is replaced with the median value in a moving window 
centered at that point. Near the edges of the spectrum (i.e., f = 0 or f = fN), the 
window is simply truncated to include fewer points. While the statistical constraint 
near these boundaries is thus not very good, the smooth red-noise spectrum that is fit 
to the median-smoothed estimate is insensitive to the precise boundary conditions 
of the smoothing. Methods with perhaps more desirable statistical properties are 
available (e.g., Thomson, 1977) but we favor our approach for its simplicity and 
ease of implementation. Our procedure is found to provide correct statistical results 
when applied to synthetic red noise processes (A3). 

Useful guidelines for selecting the width of the smoothing window Afsmooth 
are ,  

(a) ~fsmooth ~< fN/4 
(b) AfsmootU > min(pfn, 0.05) cycle/year 

These rules reflect two assumptions: 
(a) to resolve the overall shape of the spectrum, the full bandwidth of the 

spectrum (i.e., the Nyquist frequency, fN), which depends on the sampling rate of 
the series, should be several (at least 4) multiples of the window width. 

(b) the minimum smoothing width should be greater than both of two charac- 
teristic bandwidths: the spectral resolution, which depends on the time-frequency 
bandwidth product p chosen for spectral estimation as well as the length of the time 
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series (through fR), and the maximum intrinsic bandwidth of typically observed 
climate signals (e.g., the ,,~ 4-6 year interannual ENSO signal, which is about 0.05 
cycle/year). 

The latter rule (b) represents the subjective element in window selection, and is 
based on a priori assumptions regarding the nature of signals in the record. For a 
time series of length 100 years, annual time resolution, and time-frequency product 
p = 3 for example, Afsmoot h ~ 0.05-0.13 cycle/yr would be appropriate, while for 
a time series of length 50 years, monthly resolution, and time-frequency bandwidth 
p = 5, 0.1 < Afsmoot h < 1.5 cycle/yr should be employed. Our experience shows 
that the results of the analysis are relatively insensitive to the exact choice within 
such specified ranges. 

Once the background has been estimated through the median-smoothing pro- 
cedure, we use Brent's method (Press et al., 1992) to perform an efficient search 
for the best fit (in the least-squares sense) values of p and So in (2) to the median- 
smoothed spectrum. A fit to S (f)  will be more weighted towards the low-frequency, 
high amplitude portion of the spectrum than a fit to log S(f). The latter procedure 
may provide a preferable alternative when the dynamic range of the spectrum is 
large. Any significance estimates that are strongly dependent on whether the red 
noise background is fit to S(f) or log S(f) should not be interpreted with great 
confidence. 

A3. CONFIDENCE LEVEL DETERMINATION 

While sophisticated non-parametric methods have been developed (Thomson and 
Chave, 1991), we have found the elementary sampling theory of the power spectrum 
(Tukey, 1950; Percival and Walden, 1993) to provide satisfactory results. The latter 
sampling theory, used by Gilman et al. (1963) in their seminal investigation of 
red-noise confidence testing in climate spectra, assumes that the spectrum are X 2 
distributed with v degrees of freedom where v is the number of degrees of freedom 
in the spectral estimate. As described above, v ~ 2K degrees of freedom is an 
approximation for the adaptive multitaper spectrum estimate. The ratio of power 
associated with a peak in the spectrum to the local power level of the background 
is assumed to be distributed as X2/v, and can be compared to the tabulated X 2 
probability distribution to determine peak significances. Although the elementary 
sampling theory is strictly valid only for stationary processes (e.g., processes 
exhibiting a white noise background), it provides a suitable description for the 
weak-to-moderate red-noise found in climate timeseries, which can be treated as 
locally white. In such cases, the K spectral estimates are only weakly correlated. We 
tested the validity of our confidence testing procedure by performing Monte Carlo 
simulations to produce pure AR(1) processes. We verified that the number of peaks 
exceeding given confidence level equaled (within small sampling fluctuations) the 
expected rates of chance incidence (i.e., roughly 1% of the spectrum was found 
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tO exceed  the 99% level, 5% o f  the spec t rum found  to exceed  the 95% conf idence  

level, etc.). 
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