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Preface to the Fourth Edition

The fourth edition follows the general layout of the third edition but includes some
modernization of topics as well as the coverage of additional topics. The preface to
the third edition—which follows—still applies, so we concentrate on the di�erences
between the two editions here. As in the third edition, R code for each example
is given in the text, even if the code is excruciatingly long. Most of the examples
with seemingly endless coding are in the latter chapters. The R package for the text,
astsa, is still supported and details may be found in Appendix R. A number of data
sets have been updated. For example, the global temperature deviation series have
been updated to 2015 and are included in the newest version of the package; the
corresponding examples and problems have been updated accordingly.

Chapter 1 of this edition is similar to the previous edition, but we have included
the definition of trend stationarity and the the concept of prewhitening when using
cross-correlation. The New York Stock Exchange data set, which focused on an old
financial crisis, was replaced with a more current series of the Dow Jones Indus-
trial Average, which focuses on a newer financial crisis. In Chapter 2, we rewrote
some of the regression review, changed the smoothing examples from the mortality
data example to the Southern Oscillation Index and finding El Niño. We also ex-
panded the discussion of lagged regression to Chapter 3 to include the possibility of
autocorrelated errors.

In Chapter 3, we removed normality from definition of ARMA models; while the
assumption is not necessary for the definition, it is essential for inference and pre-
diction. We added a section on regression with ARMA errors and the corresponding
problems; this section was previously in Chapter 5. Some of the examples have been
modified and we added some examples in the seasonal ARMA section.

In Chapter 4, we improved and added some examples. The idea of modulated
series is discussed using the classic star magnitude data set. We moved some of the
filtering section forward for easier access to information when needed. We removed
the reliance on spec.pgram (from the stats package) to mvspec (from the astsa
package) so we can avoid having to spend pages explaining the quirks of spec.pgram,
which tended to take over the narrative. The section on wavelets was removed because
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vi Preface to the Fourth Edition

there are so many accessible texts available. The spectral representation theorems are
discussed in a little more detail using examples based on simple harmonic processes.

The general layout of Chapter 5 and of Chapter 7 is the same, although we have
revised some of the examples. As previously mentioned, we moved regression with
ARMA errors to Chapter 3.

Chapter 6 sees the biggest change in this edition. We have added a section on
smoothing splines, and a section on hidden Markov models and switching autore-
gressions. The Bayesian section is completely rewritten and is on linear Gaussian
state space models only. The nonlinear material in the previous edition is removed
because it was old, and the newer material is in Douc, Moulines, and Sto�er (2014).
Many of the examples have been rewritten to make the chapter more accessible. Our
goal was to be able to have a course on state space models based primarily on the
material in Chapter 6.

The Appendices are similar, with some minor changes to Appendix A and Ap-
pendix B. We added material to Appendix C, including a discussion of Riemann–
Stieltjes and stochastic integration, a proof of the fact that the spectra of autoregressive
processes are dense in the space of spectral densities, and a proof of the fact that spec-
tra are approximately the eigenvalues of the covariance matrix of a stationary process.

We tweaked, rewrote, improved, or revised some of the exercises, but the overall
ordering and coverage is roughly the same. And, of course, we moved regression with
ARMA errors problems to Chapter 3 and removed the Chapter 4 wavelet problems.
The exercises for Chapter 6 have been updated accordingly to reflect the new and
improved version of the chapter.

Davis, CA Robert H. Shumway
Pittsburgh, PA David S. Sto�er
September 2016
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Preface to the Third Edition

The goals of this book are to develop an appreciation for the richness and versatility
of modern time series analysis as a tool for analyzing data, and still maintain a
commitment to theoretical integrity, as exemplified by the seminal works of Brillinger
(1975) and Hannan (1970) and the texts by Brockwell and Davis (1991) and Fuller
(1995). The advent of inexpensive powerful computing has provided both real data
and new software that can take one considerably beyond the fitting of simple time
domain models, such as have been elegantly described in the landmark work of Box
and Jenkins (1970). This book is designed to be useful as a text for courses in time
series on several di�erent levels and as a reference work for practitioners facing the
analysis of time-correlated data in the physical, biological, and social sciences.

We have used earlier versions of the text at both the undergraduate and gradu-
ate levels over the past decade. Our experience is that an undergraduate course can
be accessible to students with a background in regression analysis and may include
Section 1.1–Section 1.5, Section 2.1–Section 2.3, the results and numerical parts of
Section 3.1–Section 3.9, and briefly the results and numerical parts of Section 4.1–
Section 4.4. At the advanced undergraduate or master’s level, where the students
have some mathematical statistics background, more detailed coverage of the same
sections, with the inclusion of extra topics from Chapter 5 or Chapter 6 can be used
as a one-semester course. Often, the extra topics are chosen by the students according
to their interests. Finally, a two-semester upper-level graduate course for mathemat-
ics, statistics, and engineering graduate students can be crafted by adding selected
theoretical appendices. For the upper-level graduate course, we should mention that
we are striving for a broader but less rigorous level of coverage than that which is
attained by Brockwell and Davis (1991), the classic entry at this level.

The major di�erence between this third edition of the text and the second edition
is that we provide R code for almost all of the numerical examples. An R package
called astsa is provided for use with the text; see Section R.2 for details. R code
is provided simply to enhance the exposition by making the numerical examples
reproducible.

We have tried, where possible, to keep the problem sets in order so that an
instructor may have an easy time moving from the second edition to the third edition.
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viii Preface to the Third Edition

However, some of the old problems have been revised and there are some new
problems. Also, some of the data sets have been updated. We added one section
in Chapter 5 on unit roots and enhanced some of the presentations throughout the
text. The exposition on state-space modeling, ARMAX models, and (multivariate)
regression with autocorrelated errors in Chapter 6 have been expanded. In this edition,
we use standard R functions as much as possible, but we use our own scripts (included
in astsa) when we feel it is necessary to avoid problems with a particular R function;
these problems are discussed in detail on the website for the text under R Issues.

We thank John Kimmel, Executive Editor, Springer Statistics, for his guidance
in the preparation and production of this edition of the text. We are grateful to Don
Percival, University of Washington, for numerous suggestions that led to substantial
improvement to the presentation in the second edition, and consequently in this
edition. We thank Doug Wiens, University of Alberta, for help with some of the R
code in Chapter 4 and Chapter 7, and for his many suggestions for improvement of
the exposition. We are grateful for the continued help and advice of Pierre Duchesne,
University of Montreal, and Alexander Aue, University of California, Davis. We also
thank the many students and other readers who took the time to mention typographical
errors and other corrections to the first and second editions. Finally, work on the this
edition was supported by the National Science Foundation while one of us (D.S.S.)
was working at the Foundation under the Intergovernmental Personnel Act.

Davis, CA Robert H. Shumway
Pittsburgh, PA David S. Sto�er
September 2010
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Chapter 1

Characteristics of Time Series

The analysis of experimental data that have been observed at di�erent points in time
leads to new and unique problems in statistical modeling and inference. The obvi-
ous correlation introduced by the sampling of adjacent points in time can severely
restrict the applicability of the many conventional statistical methods traditionally
dependent on the assumption that these adjacent observations are independent and
identically distributed. The systematic approach by which one goes about answer-
ing the mathematical and statistical questions posed by these time correlations is
commonly referred to as time series analysis.

The impact of time series analysis on scientific applications can be partially doc-
umented by producing an abbreviated listing of the diverse fields in which important
time series problems may arise. For example, many familiar time series occur in the
field of economics, where we are continually exposed to daily stock market quota-
tions or monthly unemployment figures. Social scientists follow population series,
such as birthrates or school enrollments. An epidemiologist might be interested in
the number of influenza cases observed over some time period. In medicine, blood
pressure measurements traced over time could be useful for evaluating drugs used
in treating hypertension. Functional magnetic resonance imaging of brain-wave time
series patterns might be used to study how the brain reacts to certain stimuli under
various experimental conditions.

In our view, the first step in any time series investigation always involves careful
examination of the recorded data plotted over time. This scrutiny often suggests
the method of analysis as well as statistics that will be of use in summarizing the
information in the data. Before looking more closely at the particular statistical
methods, it is appropriate to mention that two separate, but not necessarily mutually
exclusive, approaches to time series analysis exist, commonly identified as the time
domain approach and the frequency domain approach. The time domain approach
views the investigation of lagged relationships as most important (e.g., how does
what happened today a�ect what will happen tomorrow), whereas the frequency
domain approach views the investigation of cycles as most important (e.g., what is
the economic cycle through periods of expansion and recession). We will explore
both types of approaches in the following sections.
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Fig. 1.1. Johnson & Johnson quarterly earnings per share, 84 quarters, 1960-I to 1980-IV.

1.1 The Nature of Time Series Data

Some of the problems and questions of interest to the prospective time series analyst
can best be exposed by considering real experimental data taken from di�erent subject
areas. The following cases illustrate some of the common kinds of experimental time
series data as well as some of the statistical questions that might be asked about such
data.

Example 1.1 Johnson & Johnson Quarterly Earnings
Figure 1.1 shows quarterly earnings per share for the U.S. company Johnson &
Johnson, furnished by Professor Paul Gri�n (personal communication) of the
Graduate School of Management, University of California, Davis. There are 84
quarters (21 years) measured from the first quarter of 1960 to the last quarter of
1980. Modeling such series begins by observing the primary patterns in the time
history. In this case, note the gradually increasing underlying trend and the rather
regular variation superimposed on the trend that seems to repeat over quarters.
Methods for analyzing data such as these are explored in Chapter 2 and Chapter 6.
To plot the data using the R statistical package, type the following:1.1

library(astsa) # SEE THE FOOTNOTE
plot(jj, type="o", ylab="Quarterly Earnings per Share")

Example 1.2 Global Warming
Consider the global temperature series record shown in Figure 1.2. The data are the
global mean land–ocean temperature index from 1880 to 2015, with the base period
1951-1980. In particular, the data are deviations, measured in degrees centigrade,
from the 1951-1980 average, and are an update of Hansen et al. (2006). We note an
apparent upward trend in the series during the latter part of the twentieth century
that has been used as an argument for the global warming hypothesis. Note also
the leveling o� at about 1935 and then another rather sharp upward trend at about

1.1 Throughout the text, we assume that the R package for the book, astsa, has been installed and loaded.
See Section R.2 for further details.
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Fig. 1.2. Yearly average global temperature deviations (1880–2015) in degrees centigrade.
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Fig. 1.3. Speech recording of the syllable aaa · · · hhh sampled at 10,000 points per second
with n = 1020 points.

1970. The question of interest for global warming proponents and opponents is
whether the overall trend is natural or whether it is caused by some human-induced
interface. Problem 2.8 examines 634 years of glacial sediment data that might be
taken as a long-term temperature proxy. Such percentage changes in temperature
do not seem to be unusual over a time period of 100 years. Again, the question of
trend is of more interest than particular periodicities. The R code for this example
is similar to the code in Example 1.1:
plot(globtemp, type="o", ylab="Global Temperature Deviations")

Example 1.3 Speech Data
Figure 1.3 shows a small .1 second (1000 point) sample of recorded speech for
the phrase aaa · · · hhh, and we note the repetitive nature of the signal and the
rather regular periodicities. One current problem of great interest is computer
recognition of speech, which would require converting this particular signal into
the recorded phrase aaa · · · hhh. Spectral analysis can be used in this context to
produce a signature of this phrase that can be compared with signatures of various
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Fig. 1.4. The daily returns of the Dow Jones Industrial Average (DJIA) from April 20, 2006 to
April 20, 2016.

library syllables to look for a match. One can immediately notice the rather regular
repetition of small wavelets. The separation between the packets is known as the
pitch period and represents the response of the vocal tract filter to a periodic
sequence of pulses stimulated by the opening and closing of the glottis. In R, you
can reproduce Figure 1.3 using plot(speech).

Example 1.4 Dow Jones Industrial Average
As an example of financial time series data, Figure 1.4 shows the daily returns
(or percent change) of the Dow Jones Industrial Average (DJIA) from April 20,
2006 to April 20, 2016. It is easy to spot the financial crisis of 2008 in the figure.
The data shown in Figure 1.4 are typical of return data. The mean of the series
appears to be stable with an average return of approximately zero, however, highly
volatile (variable) periods tend to be clustered together. A problem in the analysis
of these type of financial data is to forecast the volatility of future returns. Models
such as ARCH and GARCH models (Engle, 1982; Bollerslev, 1986) and stochastic
volatility models (Harvey, Ruiz and Shephard, 1994) have been developed to handle
these problems. We will discuss these models and the analysis of financial data in
Chapter 5 and Chapter 6. The data were obtained using the Technical Trading Rules
(TTR) package to download the data from YahooTM and then plot it. We then used
the fact that if xt is the actual value of the DJIA and rt = (xt�xt�1)/xt�1 is the return,
then 1 + rt = xt/xt�1 and log(1 + rt ) = log(xt/xt�1) = log(xt ) � log(xt�1) ⇡ rt .1.2

The data set is also available in astsa, but xts must be loaded.
# library(TTR)
# djia = getYahooData("^DJI", start=20060420, end=20160420, freq="daily")
library(xts)
djiar = diff(log(djia$Close))[-1] # approximate returns
plot(djiar, main="DJIA Returns", type="n")
lines(djiar)

1.2 log(1 + p) = p � p

2
2 +

p

3
3 � · · · for �1 < p  1. If p is near zero, the higher-order terms in the

expansion are negligible.
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Fig. 1.5. Monthly SOI and Recruitment (estimated new fish), 1950-1987.

Example 1.5 El Niño and Fish Population
We may also be interested in analyzing several time series at once. Figure 1.5
shows monthly values of an environmental series called the Southern Oscillation
Index (SOI) and associated Recruitment (number of new fish) furnished byDr. Roy
Mendelssohn of the Pacific Environmental Fisheries Group (personal communica-
tion). Both series are for a period of 453 months ranging over the years 1950–1987.
The SOI measures changes in air pressure, related to sea surface temperatures in
the central Pacific Ocean. The central Pacific warms every three to seven years due
to the El Niño e�ect, which has been blamed for various global extreme weather
events. Both series in Figure 1.5 exhibit repetitive behavior, with regularly repeating
cycles that are easily visible. This periodic behavior is of interest because under-
lying processes of interest may be regular and the rate or frequency of oscillation
characterizing the behavior of the underlying series would help to identify them.
The series show two basic oscillations types, an obvious annual cycle (hot in the
summer, cold in the winter), and a slower frequency that seems to repeat about
every 4 years. The study of the kinds of cycles and their strengths is the subject of
Chapter 4. The two series are also related; it is easy to imagine the fish population is
dependent on the ocean temperature. This possibility suggests trying some version
of regression analysis as a procedure for relating the two series. Transfer function
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Fig. 1.6. fMRI data from various locations in the cortex, thalamus, and cerebellum; n = 128
points, one observation taken every 2 seconds.

modeling, as considered in Chapter 5, can also be applied in this case. The following
R code will reproduce Figure 1.5:
par(mfrow = c(2,1)) # set up the graphics
plot(soi, ylab="", xlab="", main="Southern Oscillation Index")
plot(rec, ylab="", xlab="", main="Recruitment")

Example 1.6 fMRI Imaging
A fundamental problem in classical statistics occurs when we are given a collection
of independent series or vectors of series, generated under varying experimental
conditions or treatment configurations. Such a set of series is shown in Figure 1.6,
where we observe data collected from various locations in the brain via functional
magnetic resonance imaging (fMRI). In this example, five subjects were given pe-
riodic brushing on the hand. The stimulus was applied for 32 seconds and then
stopped for 32 seconds; thus, the signal period is 64 seconds. The sampling rate
was one observation every 2 seconds for 256 seconds (n = 128). For this example,
we averaged the results over subjects (these were evoked responses, and all subjects
were in phase). The series shown in Figure 1.6 are consecutive measures of blood
oxygenation-level dependent (����) signal intensity, which measures areas of acti-
vation in the brain. Notice that the periodicities appear strongly in the motor cortex
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Fig. 1.7. Arrival phases from an earthquake (top) and explosion (bottom) at 40 points per
second.

series and less strongly in the thalamus and cerebellum. The fact that one has series
from di�erent areas of the brain suggests testing whether the areas are responding
di�erently to the brush stimulus. Analysis of variance techniques accomplish this in
classical statistics, and we show in Chapter 7 how these classical techniques extend
to the time series case, leading to a spectral analysis of variance. The following R
commands can be used to plot the data:
par(mfrow=c(2,1))
ts.plot(fmri1[,2:5], col=1:4, ylab="BOLD", main="Cortex")
ts.plot(fmri1[,6:9], col=1:4, ylab="BOLD", main="Thalamus & Cerebellum")

Example 1.7 Earthquakes and Explosions
As a final example, the series in Figure 1.7 represent two phases or arrivals along
the surface, denoted by P (t = 1, . . . , 1024) and S (t = 1025, . . . , 2048), at a seismic
recording station. The recording instruments in Scandinavia are observing earth-
quakes and mining explosions with one of each shown in Figure 1.7. The general
problem of interest is in distinguishing or discriminating between waveforms gen-
erated by earthquakes and those generated by explosions. Features that may be
important are the rough amplitude ratios of the first phase P to the second phase
S, which tend to be smaller for earthquakes than for explosions. In the case of the
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two events in Figure 1.7, the ratio of maximum amplitudes appears to be somewhat
less than .5 for the earthquake and about 1 for the explosion. Otherwise, note a
subtle di�erence exists in the periodic nature of the S phase for the earthquake. We
can again think about spectral analysis of variance for testing the equality of the
periodic components of earthquakes and explosions. We would also like to be able
to classify future P and S components from events of unknown origin, leading to
the time series discriminant analysis developed in Chapter 7.

To plot the data as in this example, use the following commands in R:
par(mfrow=c(2,1))
plot(EQ5, main="Earthquake")
plot(EXP6, main="Explosion")

1.2 Time Series Statistical Models

The primary objective of time series analysis is to develop mathematical models that
provide plausible descriptions for sample data, like that encountered in the previous
section. In order to provide a statistical setting for describing the character of data
that seemingly fluctuate in a random fashion over time, we assume a time series can
be defined as a collection of random variables indexed according to the order they are
obtained in time. For example, we may consider a time series as a sequence of random
variables, x1, x2, x3, . . . , where the random variable x1 denotes the value taken by
the series at the first time point, the variable x2 denotes the value for the second
time period, x3 denotes the value for the third time period, and so on. In general, a
collection of random variables, {xt }, indexed by t is referred to as a stochastic process.
In this text, t will typically be discrete and vary over the integers t = 0,±1,±2, ..., or
some subset of the integers. The observed values of a stochastic process are referred
to as a realization of the stochastic process. Because it will be clear from the context
of our discussions, we use the term time series whether we are referring generically to
the process or to a particular realization and make no notational distinction between
the two concepts.

It is conventional to display a sample time series graphically by plotting the values
of the random variables on the vertical axis, or ordinate, with the time scale as the
abscissa. It is usually convenient to connect the values at adjacent time periods to
reconstruct visually some original hypothetical continuous time series that might
have produced these values as a discrete sample. Many of the series discussed in
the previous section, for example, could have been observed at any continuous point
in time and are conceptually more properly treated as continuous time series. The
approximation of these series by discrete time parameter series sampled at equally
spaced points in time is simply an acknowledgment that sampled data will, for the
most part, be discrete because of restrictions inherent in the method of collection.
Furthermore, the analysis techniques are then feasible using computers, which are
limited to digital computations. Theoretical developments also rest on the idea that a
continuous parameter time series should be specified in terms of finite-dimensional
distribution functions defined over a finite number of points in time. This is not to
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1.2 Time Series Statistical Models 9

say that the selection of the sampling interval or rate is not an extremely important
consideration. The appearance of data can be changed completely by adopting an
insu�cient sampling rate. We have all seen wheels in movies appear to be turning
backwards because of the insu�cient number of frames sampled by the camera. This
phenomenon leads to a distortion called aliasing (see Section 4.1).

The fundamental visual characteristic distinguishing the di�erent series shown
in Example 1.1–Example 1.7 is their di�ering degrees of smoothness. One possible
explanation for this smoothness is that it is being induced by the supposition that
adjacent points in time are correlated, so the value of the series at time t, say,
xt , depends in some way on the past values xt�1, xt�2, . . .. This model expresses a
fundamental way in which we might think about generating realistic-looking time
series. To begin to develop an approach to using collections of random variables to
model time series, consider Example 1.8.

Example 1.8 White Noise (3 flavors)
A simple kind of generated series might be a collection of uncorrelated random
variables, wt , with mean 0 and finite variance �2

w . The time series generated from
uncorrelated variables is used as a model for noise in engineering applications,
where it is called white noise; we shall denote this process as wt ⇠ wn(0,�2

w). The
designation white originates from the analogy with white light and indicates that
all possible periodic oscillations are present with equal strength.

We will sometimes require the noise to be independent and identically dis-
tributed (iid) random variables with mean 0 and variance �2

w . We distinguish this
by writing wt ⇠ iid(0,�2

w) or by saying white independent noise or iid noise. A
particularly useful white noise series is Gaussian white noise, wherein the wt are
independent normal random variables, with mean 0 and variance �2

w; or more suc-
cinctly, wt ⇠ iid N(0,�2

w). Figure 1.8 shows in the upper panel a collection of 500
such random variables, with �2

w = 1, plotted in the order in which they were drawn.
The resulting series bears a slight resemblance to the explosion in Figure 1.7 but
is not smooth enough to serve as a plausible model for any of the other experi-
mental series. The plot tends to show visually a mixture of many di�erent kinds of
oscillations in the white noise series.

If the stochastic behavior of all time series could be explained in terms of the
white noise model, classical statistical methods would su�ce. Two ways of intro-
ducing serial correlation and more smoothness into time series models are given in
Example 1.9 and Example 1.10.

Example 1.9 Moving Averages and Filtering
We might replace the white noise series wt by a moving average that smooths the
series. For example, consider replacing wt in Example 1.8 by an average of its
current value and its immediate neighbors in the past and future. That is, let

vt =
1
3
�

wt�1 + wt + wt+1
�

, (1.1)

which leads to the series shown in the lower panel of Figure 1.8. Inspecting the
series shows a smoother version of the first series, reflecting the fact that the slower
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Fig. 1.8. Gaussian white noise series (top) and three-point moving average of the Gaussian
white noise series (bottom).

oscillations are more apparent and some of the faster oscillations are taken out. We
begin to notice a similarity to the SOI in Figure 1.5, or perhaps, to some of the
fMRI series in Figure 1.6.

A linear combination of values in a time series such as in (1.1) is referred to,
generically, as a filtered series; hence the command filter in the following code
for Figure 1.8.
w = rnorm(500,0,1) # 500 N(0,1) variates
v = filter(w, sides=2, filter=rep(1/3,3)) # moving average
par(mfrow=c(2,1))
plot.ts(w, main="white noise")
plot.ts(v, ylim=c(-3,3), main="moving average")

The speech series in Figure 1.3 and the Recruitment series in Figure 1.5, as
well as some of the MRI series in Figure 1.6, di�er from the moving average series
because one particular kind of oscillatory behavior seems to predominate, producing
a sinusoidal type of behavior. A number of methods exist for generating series with
this quasi-periodic behavior; we illustrate a popular one based on the autoregressive
model considered in Chapter 3.
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Fig. 1.9. Autoregressive series generated from model (1.2).

Example 1.10 Autoregressions
Suppose we consider the white noise series wt of Example 1.8 as input and calculate
the output using the second-order equation

xt = xt�1 � .9xt�2 + wt (1.2)

successively for t = 1, 2, . . . , 500. Equation (1.2) represents a regression or predic-
tion of the current value xt of a time series as a function of the past two values of the
series, and, hence, the term autoregression is suggested for this model. A problem
with startup values exists here because (1.2) also depends on the initial conditions
x0 and x�1, but assuming we have the values, we generate the succeeding values by
substituting into (1.2). The resulting output series is shown in Figure 1.9, and we
note the periodic behavior of the series, which is similar to that displayed by the
speech series in Figure 1.3. The autoregressive model above and its generalizations
can be used as an underlying model for many observed series and will be studied
in detail in Chapter 3.

As in the previous example, the data are obtained by a filter of white noise.
The function filter uses zeros for the initial values. In this case, x1 = w1, and
x2 = x1 + w2 = w1 + w2, and so on, so that the values do not satisfy (1.2). An easy
fix is to run the filter for longer than needed and remove the initial values.
w = rnorm(550,0,1) # 50 extra to avoid startup problems
x = filter(w, filter=c(1,-.9), method="recursive")[-(1:50)] # remove first 50
plot.ts(x, main="autoregression")

Example 1.11 Random Walk with Drift
A model for analyzing trend such as seen in the global temperature data in Figure 1.2,
is the random walk with drift model given by

xt = � + xt�1 + wt (1.3)

for t = 1, 2, . . ., with initial condition x0 = 0, and where wt is white noise. The
constant � is called the drift, and when � = 0, (1.3) is called simply a random walk.
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Fig. 1.10. Random walk, �w = 1, with drift � = .2 (upper jagged line), without drift, � = 0
(lower jagged line), and straight (dashed) lines with slope �.

The term random walk comes from the fact that, when � = 0, the value of the time
series at time t is the value of the series at time t � 1 plus a completely random
movement determined by wt . Note that we may rewrite (1.3) as a cumulative sum
of white noise variates. That is,

xt = � t +
t

’

j=1
wj (1.4)

for t = 1, 2, . . .; either use induction, or plug (1.4) into (1.3) to verify this statement.
Figure 1.10 shows 200 observations generated from the model with � = 0 and .2,
and with �w = 1. For comparison, we also superimposed the straight line .2t on
the graph. To reproduce Figure 1.10 in R use the following code (notice the use of
multiple commands per line using a semicolon).
set.seed(154) # so you can reproduce the results
w = rnorm(200); x = cumsum(w) # two commands in one line
wd = w +.2; xd = cumsum(wd)
plot.ts(xd, ylim=c(-5,55), main="random walk", ylab='')
lines(x, col=4); abline(h=0, col=4, lty=2); abline(a=0, b=.2, lty=2)

Example 1.12 Signal in Noise
Many realistic models for generating time series assume an underlying signal with
some consistent periodic variation, contaminated by adding a random noise. For
example, it is easy to detect the regular cycle fMRI series displayed on the top of
Figure 1.6. Consider the model

xt = 2 cos(2⇡ t+15
50 ) + wt (1.5)

for t = 1, 2, . . . , 500, where the first term is regarded as the signal, shown in the
upper panel of Figure 1.11. We note that a sinusoidal waveform can be written as

A cos(2⇡!t + �), (1.6)
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Fig. 1.11. Cosine wave with period 50 points (top panel) compared with the cosine wave
contaminated with additive white Gaussian noise, �w = 1 (middle panel) and �w = 5 (bottom
panel); see (1.5).

where A is the amplitude,! is the frequency of oscillation, and � is a phase shift. In
(1.5), A = 2, ! = 1/50 (one cycle every 50 time points), and � = 2⇡15/50 = .6⇡.

An additive noise term was taken to be white noise with �w = 1 (middle
panel) and �w = 5 (bottom panel), drawn from a normal distribution. Adding the
two together obscures the signal, as shown in the lower panels of Figure 1.11. Of
course, the degree to which the signal is obscured depends on the amplitude of the
signal and the size of �w . The ratio of the amplitude of the signal to �w (or some
function of the ratio) is sometimes called the signal-to-noise ratio (SNR); the larger
the SNR, the easier it is to detect the signal. Note that the signal is easily discernible
in the middle panel of Figure 1.11, whereas the signal is obscured in the bottom
panel. Typically, we will not observe the signal but the signal obscured by noise.

To reproduce Figure 1.11 in R, use the following commands:
cs = 2*cos(2*pi*1:500/50 + .6*pi); w = rnorm(500,0,1)
par(mfrow=c(3,1), mar=c(3,2,2,1), cex.main=1.5)
plot.ts(cs, main=expression(2*cos(2*pi*t/50+.6*pi)))
plot.ts(cs+w, main=expression(2*cos(2*pi*t/50+.6*pi) + N(0,1)))
plot.ts(cs+5*w, main=expression(2*cos(2*pi*t/50+.6*pi) + N(0,25)))
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In Chapter 4, we will study the use of spectral analysis as a possible technique
for detecting regular or periodic signals, such as the one described in Example 1.12.
In general, we would emphasize the importance of simple additive models such as
given above in the form

xt = st + vt, (1.7)

where st denotes some unknown signal and vt denotes a time series that may be white
or correlated over time. The problems of detecting a signal and then in estimating or
extracting the waveform of st are of great interest in many areas of engineering and
the physical and biological sciences. In economics, the underlying signal may be a
trend or it may be a seasonal component of a series. Models such as (1.7), where the
signal has an autoregressive structure, form the motivation for the state-space model
of Chapter 6.

In the above examples, we have tried to motivate the use of various combinations
of random variables emulating real time series data. Smoothness characteristics of
observed time series were introduced by combining the random variables in vari-
ous ways. Averaging independent random variables over adjacent time points, as in
Example 1.9, or looking at the output of di�erence equations that respond to white
noise inputs, as in Example 1.10, are common ways of generating correlated data.
In the next section, we introduce various theoretical measures used for describing
how time series behave. As is usual in statistics, the complete description involves
the multivariate distribution function of the jointly sampled values x1, x2, . . . , xn,
whereas more economical descriptions can be had in terms of the mean and autocor-
relation functions. Because correlation is an essential feature of time series analysis,
the most useful descriptive measures are those expressed in terms of covariance and
correlation functions.

1.3 Measures of Dependence

A complete description of a time series, observed as a collection of n random variables
at arbitrary time points t1, t2, . . . , tn, for any positive integer n, is provided by the joint
distribution function, evaluated as the probability that the values of the series are
jointly less than the n constants, c1, c2, . . . , cn; i.e.,

Ft1,t2,...,tn (c1, c2, . . . , cn) = Pr
�

xt1  c1, xt2  c2, . . . , xt
n

 cn
�

. (1.8)

Unfortunately, these multidimensional distribution functions cannot usually be writ-
ten easily unless the random variables are jointly normal, in which case the joint
density has the well-known form displayed in (1.33).

Although the joint distribution function describes the data completely, it is an
unwieldy tool for displaying and analyzing time series data. The distribution func-
tion (1.8) must be evaluated as a function of n arguments, so any plotting of the
corresponding multivariate density functions is virtually impossible. The marginal
distribution functions

Ft (x) = P{xt  x}
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or the corresponding marginal density functions

ft (x) =
@Ft (x)
@x
,

when they exist, are often informative for examining the marginal behavior of a
series.1.3 Another informative marginal descriptive measure is the mean function.

Definition 1.1 The mean function is defined as

µxt = E(xt ) =
π 1

�1
x ft (x) dx, (1.9)

provided it exists, where E denotes the usual expected value operator. When no
confusion exists about which time series we are referring to, we will drop a subscript
and write µxt as µt .

Example 1.13 Mean Function of a Moving Average Series
If wt denotes a white noise series, then µwt = E(wt ) = 0 for all t. The top series in
Figure 1.8 reflects this, as the series clearly fluctuates around a mean value of zero.
Smoothing the series as in Example 1.9 does not change the mean because we can
write

µvt = E(vt ) = 1
3 [E(wt�1) + E(wt ) + E(wt+1)] = 0.

Example 1.14 Mean Function of a Random Walk with Drift
Consider the random walk with drift model given in (1.4),

xt = � t +
t

’

j=1
wj, t = 1, 2, . . . .

Because E(wt ) = 0 for all t, and � is a constant, we have

µxt = E(xt ) = � t +
t

’

j=1
E(wj) = � t

which is a straight line with slope �. A realization of a random walk with drift can
be compared to its mean function in Figure 1.10.

1.3 If x
t

is Gaussian with mean µ
t

and variance �2
t

, abbreviated as x
t

⇠ N(µ
t

, �2
t

), the marginal density

is given by f
t

(x) = 1
�
t

p
2⇡

exp
⇢

� 1
2�2

t

(x � µ
t

)2
�

, x 2 R.
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16 1 Characteristics of Time Series

Example 1.15 Mean Function of Signal Plus Noise
A great many practical applications depend on assuming the observed data have
been generated by a fixed signal waveform superimposed on a zero-mean noise
process, leading to an additive signal model of the form (1.5). It is clear, because
the signal in (1.5) is a fixed function of time, we will have

µxt = E(xt ) = E
⇥

2 cos(2⇡ t+15
50 ) + wt

⇤

= 2 cos(2⇡ t+15
50 ) + E(wt )

= 2 cos(2⇡ t+15
50 ),

and the mean function is just the cosine wave.

The lack of independence between two adjacent values xs and xt can be assessed
numerically, as in classical statistics, using the notions of covariance and correlation.
Assuming the variance of xt is finite, we have the following definition.

Definition 1.2 The autocovariance function is defined as the second moment product

�x(s, t) = cov(xs, xt ) = E[(xs � µs)(xt � µt )], (1.10)

for all s and t. When no possible confusion exists about which time series we are
referring to, we will drop the subscript and write �x(s, t) as �(s, t). Note that �x(s, t) =
�x(t, s) for all time points s and t.

The autocovariance measures the linear dependence between two points on the
same series observed at di�erent times. Very smooth series exhibit autocovariance
functions that stay large even when the t and s are far apart, whereas choppy series
tend to have autocovariance functions that are nearly zero for large separations. Recall
from classical statistics that if �x(s, t) = 0, xs and xt are not linearly related, but there
still may be some dependence structure between them. If, however, xs and xt are
bivariate normal, �x(s, t) = 0 ensures their independence. It is clear that, for s = t,
the autocovariance reduces to the (assumed finite) variance, because

�x(t, t) = E[(xt � µt )2] = var(xt ). (1.11)

Example 1.16 Autocovariance of White Noise
The white noise series wt has E(wt ) = 0 and

�w(s, t) = cov(ws,wt ) =
(

�2
w s = t,

0 s , t .
(1.12)

A realization of white noise with �2
w = 1 is shown in the top panel of Figure 1.8.

We often have to calculate the autocovariance between filtered series. A useful
result is given in the following proposition.
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1.3 Measures of Dependence 17

Property 1.1 Covariance of Linear Combinations
If the random variables

U =
m
’

j=1
ajXj and V =

r
’

k=1
bkYk

are linear combinations of (finite variance) random variables {Xj} and {Yk}, respec-
tively, then

cov(U,V) =
m
’

j=1

r
’

k=1
ajbkcov(Xj,Yk). (1.13)

Furthermore, var(U) = cov(U,U).

Example 1.17 Autocovariance of a Moving Average
Consider applying a three-point moving average to the white noise series wt of the
previous example as in Example 1.9. In this case,

�v(s, t) = cov(vs, vt ) = cov
� 1

3 (ws�1 + ws + ws+1) , 1
3 (wt�1 + wt + wt+1)

 

.

When s = t we have

�v(t, t) = 1
9cov{(wt�1 + wt + wt+1), (wt�1 + wt + wt+1)}

= 1
9 [cov(wt�1,wt�1) + cov(wt,wt ) + cov(wt+1,wt+1)]

= 3
9�

2
w .

When s = t + 1,

�v(t + 1, t) = 1
9cov{(wt + wt+1 + wt+2), (wt�1 + wt + wt+1)}

= 1
9 [cov(wt,wt ) + cov(wt+1,wt+1)]

= 2
9�

2
w,

using (1.12). Similar computations give �v(t � 1, t) = 2�2
w/9, �v(t + 2, t) = �v(t �

2, t) = �2
w/9, and 0 when |t � s | > 2. We summarize the values for all s and t as

�v(s, t) =

8

>

>

>

>

>

><

>

>

>

>

>

>

:

3
9�

2
w s = t,

2
9�

2
w |s � t | = 1,

1
9�

2
w |s � t | = 2,

0 |s � t | > 2.

(1.14)

Example 1.17 shows clearly that the smoothing operation introduces a covariance
function that decreases as the separation between the two time points increases and
disappears completely when the time points are separated by three or more time
points. This particular autocovariance is interesting because it only depends on the
time separation or lag and not on the absolute location of the points along the series.
We shall see later that this dependence suggests a mathematical model for the concept
of weak stationarity.
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18 1 Characteristics of Time Series

Example 1.18 Autocovariance of a Random Walk
For the random walk model, xt =

Õt
j=1 wj , we have

�x(s, t) = cov(xs, xt ) = cov ©

≠

´

s
’

j=1
wj,

t
’

k=1
wk

™

Æ

¨

= min{s, t} �2
w,

because the wt are uncorrelated random variables. Note that, as opposed to the
previous examples, the autocovariance function of a random walk depends on the
particular time values s and t, and not on the time separation or lag. Also, notice that
the variance of the random walk, var(xt ) = �x(t, t) = t �2

w , increases without bound
as time t increases. The e�ect of this variance increase can be seen in Figure 1.10
where the processes start to move away from their mean functions � t (note that
� = 0 and .2 in that example).

As in classical statistics, it is more convenient to deal with a measure of association
between �1 and 1, and this leads to the following definition.

Definition 1.3 The autocorrelation function (ACF) is defined as

⇢(s, t) = �(s, t)
p

�(s, s)�(t, t)
. (1.15)

The ACF measures the linear predictability of the series at time t, say xt , using only
the value xs . We can show easily that �1  ⇢(s, t)  1 using the Cauchy–Schwarz
inequality.1.4 If we can predict xt perfectly from xs through a linear relationship,
xt = �0 + �1xs, then the correlation will be +1 when �1 > 0, and �1 when �1 < 0.
Hence, we have a rough measure of the ability to forecast the series at time t from
the value at time s.

Often, we would like to measure the predictability of another series yt from the
series xs . Assuming both series have finite variances, we have the following definition.

Definition 1.4 The cross-covariance function between two series, xt and yt , is

�xy(s, t) = cov(xs, yt ) = E[(xs � µxs)(yt � µyt )]. (1.16)

There is also a scaled version of the cross-covariance function.

Definition 1.5 The cross-correlation function (CCF) is given by

⇢xy(s, t) =
�xy(s, t)

p

�x(s, s)�y(t, t)
. (1.17)

1.4 The Cauchy–Schwarz inequality implies |�(s, t) |2  �(s, s)�(t, t).
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1.4 Stationary Time Series 19

We may easily extend the above ideas to the case of more than two series, say,
xt1, xt2, . . . , xtr ; that is, multivariate time series with r components. For example, the
extension of (1.10) in this case is

�jk(s, t) = E[(xs j � µs j)(xtk � µtk)] j, k = 1, 2, . . . , r . (1.18)

In the definitions above, the autocovariance and cross-covariance functions may
change as one moves along the series because the values depend on both s and t, the
locations of the points in time. In Example 1.17, the autocovariance function depends
on the separation of xs and xt , say, h = |s� t |, and not on where the points are located
in time. As long as the points are separated by h units, the location of the two points
does not matter. This notion, called weak stationarity, when the mean is constant, is
fundamental in allowing us to analyze sample time series data when only a single
series is available.

1.4 Stationary Time Series

The preceding definitions of the mean and autocovariance functions are completely
general. Although we have not made any special assumptions about the behavior of
the time series, many of the preceding examples have hinted that a sort of regularity
may exist over time in the behavior of a time series. We introduce the notion of
regularity using a concept called stationarity.

Definition 1.6 A strictly stationary time series is one for which the probabilistic
behavior of every collection of values

{xt1, xt2, . . . , xtk }

is identical to that of the time shifted set

{xt1+h, xt2+h, . . . , xtk+h}.

That is,

Pr{xt1  c1, . . . , xt
k

 ck} = Pr{xt1+h  c1, . . . , xt
k

+h  ck} (1.19)

for all k = 1, 2, ..., all time points t1, t2, . . . , tk , all numbers c1, c2, . . . , ck , and all time
shifts h = 0,±1,±2, ... .

If a time series is strictly stationary, then all of the multivariate distribution
functions for subsets of variables must agree with their counterparts in the shifted set
for all values of the shift parameter h. For example, when k = 1, (1.19) implies that

Pr{xs  c} = Pr{xt  c} (1.20)

for any time points s and t. This statement implies, for example, that the probability
the value of a time series sampled hourly is negative at 1 �� is the same as at 10 ��.
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20 1 Characteristics of Time Series

In addition, if the mean function, µt , of the series exists, (1.20) implies that µs = µt
for all s and t, and hence µt must be constant. Note, for example, that a random walk
process with drift is not strictly stationary because its mean function changes with
time; see Example 1.14.

When k = 2, we can write (1.19) as

Pr{xs  c1, xt  c2} = Pr{xs+h  c1, xt+h  c2} (1.21)

for any time points s and t and shift h. Thus, if the variance function of the process
exists, (1.20)–(1.21) imply that the autocovariance function of the series xt satisfies

�(s, t) = �(s + h, t + h)

for all s and t and h. We may interpret this result by saying the autocovariance function
of the process depends only on the time di�erence between s and t, and not on the
actual times.

The version of stationarity in Definition 1.6 is too strong for most applications.
Moreover, it is di�cult to assess strict stationarity from a single data set. Rather than
imposing conditions on all possible distributions of a time series, we will use a milder
version that imposes conditions only on the first two moments of the series. We now
have the following definition.

Definition 1.7 A weakly stationary time series, xt , is a finite variance process such
that

(i) the mean value function, µt , defined in (1.9) is constant and does not depend on
time t, and

(ii) the autocovariance function, �(s, t), defined in (1.10) depends on s and t only
through their di�erence |s � t |.

Henceforth, we will use the term stationary to mean weakly stationary; if a process
is stationary in the strict sense, we will use the term strictly stationary.

Stationarity requires regularity in the mean and autocorrelation functions so that
these quantities (at least) may be estimated by averaging. It should be clear from
the discussion of strict stationarity following Definition 1.6 that a strictly stationary,
finite variance, time series is also stationary. The converse is not true unless there are
further conditions. One important case where stationarity implies strict stationarity
is if the time series is Gaussian [meaning all finite distributions, (1.19), of the series
are Gaussian]. We will make this concept more precise at the end of this section.

Because the mean function, E(xt ) = µt , of a stationary time series is independent
of time t, we will write

µt = µ. (1.22)

Also, because the autocovariance function, �(s, t), of a stationary time series, xt ,
depends on s and t only through their di�erence |s� t |, we may simplify the notation.
Let s = t + h, where h represents the time shift or lag. Then

�(t + h, t) = cov(xt+h, xt ) = cov(xh, x0) = �(h, 0)
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1.4 Stationary Time Series 21

because the time di�erence between times t+h and t is the same as the time di�erence
between times h and 0. Thus, the autocovariance function of a stationary time series
does not depend on the time argument t. Henceforth, for convenience, we will drop
the second argument of �(h, 0).

Definition 1.8 The autocovariance function of a stationary time series will be
written as

�(h) = cov(xt+h, xt ) = E[(xt+h � µ)(xt � µ)]. (1.23)

Definition 1.9 The autocorrelation function (ACF) of a stationary time series will
be written using (1.15) as

⇢(h) = �(t + h, t)
p

�(t + h, t + h)�(t, t)
=
�(h)
�(0) . (1.24)

The Cauchy–Schwarz inequality shows again that �1  ⇢(h)  1 for all h,
enabling one to assess the relative importance of a given autocorrelation value by
comparing with the extreme values �1 and 1.

Example 1.19 Stationarity of White Noise
The mean and autocovariance functions of the white noise series discussed in
Example 1.8 and Example 1.16 are easily evaluated as µwt = 0 and

�w(h) = cov(wt+h,wt ) =
(

�2
w h = 0,

0 h , 0.

Thus, white noise satisfies the conditions of Definition 1.7 and is weakly stationary
or stationary. If the white noise variates are also normally distributed or Gaussian,
the series is also strictly stationary, as can be seen by evaluating (1.19) using the fact
that the noise would also be iid. The autocorrelation function is given by ⇢w(0) = 1
and ⇢(h) = 0 for h , 0.

Example 1.20 Stationarity of a Moving Average
The three-point moving average process of Example 1.9 is stationary because, from
Example 1.13 and Example 1.17, the mean and autocovariance functions µvt = 0,
and

�v(h) =

8

>

>

>

>

><

>

>

>

>

>

:

3
9�

2
w h = 0,

2
9�

2
w h = ±1,

1
9�

2
w h = ±2,

0 |h| > 2

are independent of time t, satisfying the conditions of Definition 1.7.
The autocorrelation function is given by
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Fig. 1.12. Autocorrelation function of a three-point moving average.

⇢v(h) =

8

>

>

>

>

><

>

>

>

>

>

:

1 h = 0,
2
3 h = ±1,
1
3 h = ±2,
0 |h| > 2.

Figure 1.12 shows a plot of the autocorrelations as a function of lag h. Note that
the ACF is symmetric about lag zero.

Example 1.21 A Random Walk is Not Stationary
A random walk is not stationary because its autocovariance function, �(s, t) =
min{s, t}�2

w , depends on time; see Example 1.18 and Problem 1.8. Also, the random
walk with drift violates both conditions of Definition 1.7 because, as shown in
Example 1.14, the mean function, µxt = �t, is also a function of time t.

Example 1.22 Trend Stationarity
For example, if xt = ↵ + �t + yt , where yt is stationary, then the mean function
is µx,t = E(xt ) = ↵ + �t + µy , which is not independent of time. Therefore, the
process is not stationary. The autocovariance function, however, is independent of
time, because �x(h) = cov(xt+h, xt ) = E[(xt+h � µx,t+h)(xt � µx,t )] = E[(yt+h �
µy)(yt � µy)] = �y(h). Thus, the model may be considered as having stationary
behavior around a linear trend; this behavior is sometimes called trend stationarity.
An example of such a process is the price of chicken series displayed in Figure 2.1.

The autocovariance function of a stationary process has several special properties.
First, �(h) is non-negative definite (see Problem 1.25) ensuring that variances of linear
combinations of the variates xt will never be negative. That is, for any n � 1, and
constants a1, . . . , an,

0  var(a1x1 + · · · + anxn) =
n

’

j=1

n
’

k=1
ajak�( j � k) , (1.25)

using Property 1.1. Also, the value at h = 0, namely
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1.4 Stationary Time Series 23

�(0) = E[(xt � µ)2] (1.26)

is the variance of the time series and the Cauchy–Schwarz inequality implies

|�(h)|  �(0).

A final useful property, noted in a previous example, is that the autocovariance
function of a stationary series is symmetric around the origin; that is,

�(h) = �(�h) (1.27)

for all h. This property follows because

�((t + h) � t) = cov(xt+h, xt ) = cov(xt, xt+h) = �(t � (t + h)),

which shows how to use the notation as well as proving the result.
When several series are available, a notion of stationarity still applies with addi-

tional conditions.

Definition 1.10 Two time series, say, xt and yt , are said to be jointly stationary if
they are each stationary, and the cross-covariance function

�xy(h) = cov(xt+h, yt ) = E[(xt+h � µx)(yt � µy)] (1.28)

is a function only of lag h.

Definition 1.11 The cross-correlation function (CCF) of jointly stationary time
series xt and yt is defined as

⇢xy(h) =
�xy(h)

p

�x(0)�y(0)
. (1.29)

Again, we have the result �1  ⇢xy(h)  1 which enables comparison with
the extreme values �1 and 1 when looking at the relation between xt+h and yt .
The cross-correlation function is not generally symmetric about zero, i.e., typically
⇢xy(h) , ⇢xy(�h). This is an important concept; it should be clear that cov(x2, y1)
and cov(x1, y2) need not be the same. It is the case, however, that

⇢xy(h) = ⇢yx(�h), (1.30)

which can be shown by manipulations similar to those used to show (1.27).

Example 1.23 Joint Stationarity
Consider the two series, xt and yt , formed from the sum and di�erence of two
successive values of a white noise process, say,

xt = wt + wt�1 and yt = wt � wt�1,
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Fig. 1.13. Demonstration of the results of Example 1.24 when ` = 5. The title shows which
side leads.

where wt are independent random variables with zero means and variance �2
w . It

is easy to show that �x(0) = �y(0) = 2�2
w and �x(1) = �x(�1) = �2

w, �y(1) =
�y(�1) = ��2

w . Also,

�xy(1) = cov(xt+1, yt ) = cov(wt+1 + wt,wt � wt�1) = �2
w

because only one term is nonzero. Similarly, �xy(0) = 0, �xy(�1) = ��2
w . We

obtain, using (1.29),

⇢xy(h) =

8

>

>

>

>

><

>

>

>

>

>

:

0 h = 0,
1/2 h = 1,
�1/2 h = �1,

0 |h| � 2.
Clearly, the autocovariance and cross-covariance functions depend only on the lag
separation, h, so the series are jointly stationary.

Example 1.24 Prediction Using Cross-Correlation
As a simple example of cross-correlation, consider the problem of determining
possible leading or lagging relations between two series xt and yt . If the model

yt = Axt�` + wt

holds, the series xt is said to lead yt for ` > 0 and is said to lag yt for ` < 0. Hence,
the analysis of leading and lagging relations might be important in predicting the
value of yt from xt . Assuming that the noise wt is uncorrelated with the xt series,
the cross-covariance function can be computed as

�yx(h) = cov(yt+h, xt ) = cov(Axt+h�` + wt+h , xt )
= cov(Axt+h�` , xt ) = A�x(h � `).

Since (Cauchy–Schwarz) the largest absolute value of �x(h � `) is �x(0), i.e., when
h = `, the cross-covariance function will look like the autocovariance of the input
series xt , and it will have a peak on the positive side if xt leads yt and a peak on
the negative side if xt lags yt . Below is the R code of an example where xt is white
noise, ` = 5, and with �̂yx(h) shown in Figure 1.13.
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1.4 Stationary Time Series 25

x = rnorm(100)
y = lag(x, -5) + rnorm(100)
ccf(y, x, ylab='CCovF', type='covariance')

The concept of weak stationarity forms the basis for much of the analysis per-
formed with time series. The fundamental properties of the mean and autocovariance
functions (1.22) and (1.23) are satisfied by many theoretical models that appear to
generate plausible sample realizations. In Example 1.9 and Example 1.10, two series
were generated that produced stationary looking realizations, and in Example 1.20, we
showed that the series in Example 1.9 was, in fact, weakly stationary. Both examples
are special cases of the so-called linear process.

Definition 1.12 A linear process, xt , is defined to be a linear combination of white
noise variates wt , and is given by

xt = µ +
1
’

j=�1
 jwt�j,

1
’

j=�1
| j | < 1. (1.31)

For the linear process (see Problem 1.11), we may show that the autocovariance
function is given by

�x(h) = �2
w

1
’

j=�1
 j+h j (1.32)

for h � 0; recall that �x(�h) = �x(h). This method exhibits the autocovariance
function of the process in terms of the lagged products of the coe�cients. We only
need

Õ1
j=�1  

2
j < 1 for the process to have finite variance, but we will discuss this

further in Chapter 5. Note that, for Example 1.9, we have  0 =  �1 =  1 = 1/3
and the result in Example 1.20 comes out immediately. The autoregressive series in
Example 1.10 can also be put in this form, as can the general autoregressive moving
average processes considered in Chapter 3.

Notice that the linear process (1.31) is dependent on the future ( j < 0), the present
( j = 0), and the past ( j > 0). For the purpose of forecasting, a future dependent model
will be useless. Consequently, we will focus on processes that do not depend on the
future. Such models are called causal, and a causal linear process has  j = 0 for
j < 0; we will discuss this further in Chapter 3.

Finally, as previously mentioned, an important case in which a weakly stationary
series is also strictly stationary is the normal or Gaussian series.

Definition 1.13 A process, {xt }, is said to be a Gaussian process if the n-dimensional
vectors x = (xt1, xt2, . . . , xtn )0, for every collection of distinct time points t1, t2, . . . , tn,
and every positive integer n, have a multivariate normal distribution.

Defining the n ⇥ 1 mean vector E(x) ⌘ µ = (µt1, µt2, . . . , µtn )0 and the n ⇥ n
covariance matrix as var(x) ⌘ � = {�(ti, tj); i, j = 1, . . . , n}, which is assumed to be
positive definite, the multivariate normal density function can be written as

f (x) = (2⇡)�n/2 |� |�1/2 exp
⇢

�1
2
(x � µ)0��1(x � µ)

�

, (1.33)
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26 1 Characteristics of Time Series

for x 2 Rn, where | · | denotes the determinant.
We list some important items regarding linear and Gaussian processes.

• If a Gaussian time series, {xt }, is weakly stationary, then µt is constant and
�(ti, tj) = �(|ti � tj |), so that the vector µ and the matrix � are independent of
time. These facts imply that all the finite distributions, (1.33), of the series {xt }
depend only on time lag and not on the actual times, and hence the series must be
strictly stationary. In a sense, weak stationarity and normality go hand-in-hand
in that we will base our analyses on the idea that it is enough for the first two
moments to behave nicely. We use the multivariate normal density in the form
given above as well as in a modified version, applicable to complex random
variables throughout the text.

• A result called the Wold Decomposition (Theorem B.5) states that a stationary
non-deterministic time series is a causal linear process (but with

Õ

 2
j < 1).

A linear process need not be Gaussian, but if a time series is Gaussian, then it
is a causal linear process with wt ⇠ iid N(0,�2

w). Hence, stationary Gaussian
processes form the basis of modeling many time series.

• It is not enough for the marginal distributions to be Gaussian for the process to be
Gaussian. It is easy to construct a situation where X and Y are normal, but (X,Y )
is not bivariate normal; e.g., let X and Z be independent normals and let Y = Z
if X Z > 0 and Y = �Z if X Z  0.

1.5 Estimation of Correlation

Although the theoretical autocorrelation and cross-correlation functions are useful
for describing the properties of certain hypothesized models, most of the analyses
must be performed using sampled data. This limitation means the sampled points
x1, x2, . . . , xn only are available for estimating the mean, autocovariance, and au-
tocorrelation functions. From the point of view of classical statistics, this poses a
problem because we will typically not have iid copies of xt that are available for
estimating the covariance and correlation functions. In the usual situation with only
one realization, however, the assumption of stationarity becomes critical. Somehow,
we must use averages over this single realization to estimate the population means
and covariance functions.

Accordingly, if a time series is stationary, the mean function (1.22) µt = µ is
constant so that we can estimate it by the sample mean,

x̄ =
1
n

n
’

t=1
xt . (1.34)

In our case, E(x̄) = µ, and the standard error of the estimate is the square root of
var(x̄), which can be computed using first principles (recall Property 1.1), and is
given by


