
i
i

“tsa4_trimmed” — 2017/12/8 — 15:01 — page 26 — #36 i
i

i
i

i
i

26 1 Characteristics of Time Series

for x 2 Rn, where | · | denotes the determinant.
We list some important items regarding linear and Gaussian processes.

• If a Gaussian time series, {xt }, is weakly stationary, then µt is constant and
�(ti, tj) = �(|ti � tj |), so that the vector µ and the matrix � are independent of
time. These facts imply that all the finite distributions, (1.33), of the series {xt }
depend only on time lag and not on the actual times, and hence the series must be
strictly stationary. In a sense, weak stationarity and normality go hand-in-hand
in that we will base our analyses on the idea that it is enough for the first two
moments to behave nicely. We use the multivariate normal density in the form
given above as well as in a modified version, applicable to complex random
variables throughout the text.

• A result called the Wold Decomposition (Theorem B.5) states that a stationary
non-deterministic time series is a causal linear process (but with

Õ

 2
j < 1).

A linear process need not be Gaussian, but if a time series is Gaussian, then it
is a causal linear process with wt ⇠ iid N(0,�2

w). Hence, stationary Gaussian
processes form the basis of modeling many time series.

• It is not enough for the marginal distributions to be Gaussian for the process to be
Gaussian. It is easy to construct a situation where X and Y are normal, but (X,Y )
is not bivariate normal; e.g., let X and Z be independent normals and let Y = Z
if X Z > 0 and Y = �Z if X Z  0.

1.5 Estimation of Correlation

Although the theoretical autocorrelation and cross-correlation functions are useful
for describing the properties of certain hypothesized models, most of the analyses
must be performed using sampled data. This limitation means the sampled points
x1, x2, . . . , xn only are available for estimating the mean, autocovariance, and au-
tocorrelation functions. From the point of view of classical statistics, this poses a
problem because we will typically not have iid copies of xt that are available for
estimating the covariance and correlation functions. In the usual situation with only
one realization, however, the assumption of stationarity becomes critical. Somehow,
we must use averages over this single realization to estimate the population means
and covariance functions.

Accordingly, if a time series is stationary, the mean function (1.22) µt = µ is
constant so that we can estimate it by the sample mean,

x̄ =
1
n

n
’

t=1
xt . (1.34)

In our case, E(x̄) = µ, and the standard error of the estimate is the square root of
var(x̄), which can be computed using first principles (recall Property 1.1), and is
given by
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var(x̄) = var

 

1
n

n
’

t=1
xt

!

=
1
n2 cov

 

n
’

t=1
xt,

n
’

s=1
xs

!

=
1
n2

⇣

n�x(0) + (n � 1)�x(1) + (n � 2)�x(2) + · · · + �x(n � 1)

+ (n � 1)�x(�1) + (n � 2)�x(�2) + · · · + �x(1 � n)
⌘

=
1
n

n
’

h=�n

⇣

1 � |h|
n

⌘

�x(h). (1.35)

If the process is white noise, (1.35) reduces to the familiar �2
x/n recalling that

�x(0) = �2
x . Note that, in the case of dependence, the standard error of x̄ may be

smaller or larger than the white noise case depending on the nature of the correlation
structure (see Problem 1.19)

The theoretical autocovariance function, (1.23), is estimated by the sample auto-
covariance function defined as follows.

Definition 1.14 The sample autocovariance function is defined as

�̂(h) = n�1
n�h
’

t=1
(xt+h � x̄)(xt � x̄), (1.36)

with �̂(�h) = �̂(h) for h = 0, 1, . . . , n � 1.

The sum in (1.36) runs over a restricted range because xt+h is not available for
t + h > n. The estimator in (1.36) is preferred to the one that would be obtained by
dividing by n � h because (1.36) is a non-negative definite function. Recall that the
autocovariance function of a stationary process is non-negative definite [(1.25); also,
see Problem 1.25] ensuring that variances of linear combinations of the variates xt
will never be negative. And because a variance is never negative, the estimate of that
variance

cvar(a1x1 + · · · + anxn) =
n

’

j=1

n
’

k=1
ajak �̂( j � k) ,

should also be non-negative. The estimator in (1.36) guarantees this result, but no
such guarantee exists if we divide by n � h. Note that neither dividing by n nor n � h
in (1.36) yields an unbiased estimator of �(h).

Definition 1.15 The sample autocorrelation function is defined, analogously to
(1.24), as

⇢̂(h) = �̂(h)
�̂(0) . (1.37)

The sample autocorrelation function has a sampling distribution that allows us to
assess whether the data comes from a completely random or white series or whether
correlations are statistically significant at some lags.
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Fig. 1.14. Display for Example 1.25. For the SOI series, the scatterplots show pairs of values
one month apart (left) and six months apart (right). The estimated correlation is displayed in
the box.

Example 1.25 Sample ACF and Scatterplots
Estimating autocorrelation is similar to estimating of correlation in the usual setup
where we have pairs of observations, say (xi, yi), for i = 1, . . . , n. For example, if we
have time series data xt for t = 1, . . . , n, then the pairs of observations for estimating
⇢(h) are the n� h pairs given by {(xt, xt+h); t = 1, . . . , n� h}. Figure 1.14 shows an
example using the SOI series where ⇢̂(1) = .604 and ⇢̂(6) = �.187. The following
code was used for Figure 1.14.
(r = round(acf(soi, 6, plot=FALSE)$acf[-1], 3)) # first 6 sample acf values
[1] 0.604 0.374 0.214 0.050 -0.107 -0.187

par(mfrow=c(1,2))
plot(lag(soi,-1), soi); legend('topleft', legend=r[1])
plot(lag(soi,-6), soi); legend('topleft', legend=r[6])

Property 1.2 Large-Sample Distribution of the ACF
Under general conditions,1.5 if xt is white noise, then for n large, the sample ACF,

⇢̂x(h), for h = 1, 2, . . . ,H, where H is fixed but arbitrary, is approximately normally
distributed with zero mean and standard deviation given by

�⇢̂
x

(h) =
1p
n
. (1.38)

Based on the previous result, we obtain a rough method of assessing whether peaks
in ⇢̂(h) are significant by determining whether the observed peak is outside the interval
±2/pn (or plus/minus two standard errors); for a white noise sequence, approximately
95% of the sample ACFs should be within these limits. The applications of this
property develop because many statistical modeling procedures depend on reducing
a time series to a white noise series using various kinds of transformations. After
such a procedure is applied, the plotted ACFs of the residuals should then lie roughly
within the limits given above.
1.5 The general conditions are that x

t

is iid with finite fourth moment. A su�cient condition for this to
hold is that x

t

is white Gaussian noise. Precise details are given in Theorem A.7 in Appendix A.
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Example 1.26 A Simulated Time Series
To compare the sample ACF for various sample sizes to the theoretical ACF,
consider a contrived set of data generated by tossing a fair coin, letting xt = 1 when
a head is obtained and xt = �1 when a tail is obtained. Then, construct yt as

yt = 5 + xt � .7xt�1. (1.39)

To simulate data, we consider two cases, one with a small sample size (n = 10)
and another with a moderate sample size (n = 100).
set.seed(101010)
x1 = 2*rbinom(11, 1, .5) - 1 # simulated sequence of coin tosses
x2 = 2*rbinom(101, 1, .5) - 1
y1 = 5 + filter(x1, sides=1, filter=c(1,-.7))[-1]
y2 = 5 + filter(x2, sides=1, filter=c(1,-.7))[-1]
plot.ts(y1, type='s'); plot.ts(y2, type='s') # plot both series (not shown)
c(mean(y1), mean(y2)) # the sample means
[1] 5.080 5.002

acf(y1, lag.max=4, plot=FALSE) # 1/
p

10 = .32
Autocorrelations of series 'y1', by lag

0 1 2 3 4
1.000 -0.688 0.425 -0.306 -0.007

acf(y2, lag.max=4, plot=FALSE) # 1/
p

100 = .1
Autocorrelations of series 'y2', by lag

0 1 2 3 4
1.000 -0.480 -0.002 -0.004 0.000

# Note that the sample ACF at lag zero is always 1 (Why?).

The theoretical ACF can be obtained from the model (1.39) using the fact that
the mean of xt is zero and the variance of xt is one. It can be shown that

⇢y(1) =
�.7

1 + .72 = �.47

and ⇢y(h) = 0 for |h| > 1 (Problem 1.24). It is interesting to compare the theoretical
ACF with sample ACFs for the realization where n = 10 and the other realization
where n = 100; note the increased variability in the smaller size sample.

Example 1.27 ACF of a Speech Signal
Computing the sample ACF as in the previous example can be thought of as
matching the time series h units in the future, say, xt+h against itself, xt . Figure 1.15
shows the ACF of the speech series of Figure 1.3. The original series appears to
contain a sequence of repeating short signals. The ACF confirms this behavior,
showing repeating peaks spaced at about 106-109 points. Autocorrelation functions
of the short signals appear, spaced at the intervals mentioned above. The distance
between the repeating signals is known as the pitch period and is a fundamental
parameter of interest in systems that encode and decipher speech. Because the series
is sampled at 10,000 points per second, the pitch period appears to be between .0106
and .0109 seconds. To compute the sample ACF in R, use acf(speech, 250).





i
i

“tsa4_trimmed” — 2017/12/8 — 15:01 — page 30 — #40 i
i

i
i

i
i

30 1 Characteristics of Time Series

0 50 100 150 200 250

−0
.5

0.
0

0.
5

1.
0

LAG

AC
F

Fig. 1.15. ACF of the speech series.

Definition 1.16 The estimators for the cross-covariance function, �xy(h), as given
in (1.28) and the cross-correlation, ⇢xy(h), in (1.11) are given, respectively, by the
sample cross-covariance function

�̂xy(h) = n�1
n�h
’

t=1
(xt+h � x̄)(yt � ȳ), (1.40)

where �̂xy(�h) = �̂yx(h) determines the function for negative lags, and the sample
cross-correlation function

⇢̂xy(h) =
�̂xy(h)

p

�̂x(0)�̂y(0)
. (1.41)

The sample cross-correlation function can be examined graphically as a function
of lag h to search for leading or lagging relations in the data using the property
mentioned in Example 1.24 for the theoretical cross-covariance function. Because
�1  ⇢̂xy(h)  1, the practical importance of peaks can be assessed by comparing
their magnitudes with their theoretical maximum values. Furthermore, for xt and yt
independent linear processes of the form (1.31), we have the following property.

Property 1.3 Large-Sample Distribution of Cross-Correlation
The large sample distribution of ⇢̂xy(h) is normal with mean zero and

�⇢̂
xy

=
1p
n

(1.42)

if at least one of the processes is independent white noise (see Theorem A.8).
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Fig. 1.16. Sample ACFs of the SOI series (top) and of the Recruitment series (middle), and the
sample CCF of the two series (bottom); negative lags indicate SOI leads Recruitment. The lag
axes are in terms of seasons (12 months).

Example 1.28 SOI and Recruitment Correlation Analysis
The autocorrelation and cross-correlation functions are also useful for analyzing
the joint behavior of two stationary series whose behavior may be related in some
unspecified way. In Example 1.5 (see Figure 1.5), we have considered simultaneous
monthly readings of the SOI and the number of new fish (Recruitment) computed
from a model. Figure 1.16 shows the autocorrelation and cross-correlation functions
(ACFs and CCF) for these two series. Both of the ACFs exhibit periodicities
corresponding to the correlation between values separated by 12 units. Observations
12 months or one year apart are strongly positively correlated, as are observations at
multiples such as 24, 36, 48, . . .Observations separated by six months are negatively
correlated, showing that positive excursions tend to be associated with negative
excursions six months removed.

The sample CCF in Figure 1.16, however, shows some departure from the cyclic
component of each series and there is an obvious peak at h = �6. This result implies
that SOI measured at time t � 6 months is associated with the Recruitment series
at time t. We could say the SOI leads the Recruitment series by six months. The
sign of the CCF is negative, leading to the conclusion that the two series move
in di�erent directions; that is, increases in SOI lead to decreases in Recruitment
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and vice versa. We will discover in Chapter 2 that there is a relationship between
the series, but the relationship is nonlinear. The dashed lines shown on the plots
indicate ±2/

p
453 [see (1.42)], but since neither series is noise, these lines do not

apply. To reproduce Figure 1.16 in R, use the following commands:
par(mfrow=c(3,1))
acf(soi, 48, main="Southern Oscillation Index")
acf(rec, 48, main="Recruitment")
ccf(soi, rec, 48, main="SOI vs Recruitment", ylab="CCF")

Example 1.29 Prewhitening and Cross Correlation Analysis
Although we do not have all the tools necessary yet, it is worthwhile to discuss the
idea of prewhitening a series prior to a cross-correlation analysis. The basic idea is
simple; in order to use Property 1.3, at least one of the series must be white noise.
If this is not the case, there is no simple way to tell if a cross-correlation estimate is
significantly di�erent from zero. Hence, in Example 1.28, we were only guessing
at the linear dependence relationship between SOI and Recruitment.

For example, in Figure 1.17 we generated two series, xt and yt , for t = 1, . . . , 120
independently as

xt = 2 cos(2⇡ t 1
12 ) + wt1 and yt = 2 cos(2⇡ [t + 5] 1

12 ) + wt2

where {wt1,wt2; t = 1, . . . , 120} are all independent standard normals. The series
are made to resemble SOI and Recruitment. The generated data are shown in the
top row of the figure. The middle row of Figure 1.17 shows the sample ACF of
each series, each of which exhibits the cyclic nature of each series. The bottom
row (left) of Figure 1.17 shows the sample CCF between xt and yt , which appears
to show cross-correlation even though the series are independent. The bottom row
(right) also displays the sample CCF between xt and the prewhitened yt , which
shows that the two sequences are uncorrelated. By prewhtiening yt , we mean that
the signal has been removed from the data by running a regression of yt on cos(2⇡t)
and sin(2⇡t) [see Example 2.10] and then putting ỹt = yt � ŷt , where ŷt are the
predicted values from the regression.

The following code will reproduce Figure 1.17.
set.seed(1492)
num=120; t=1:num
X = ts(2*cos(2*pi*t/12) + rnorm(num), freq=12)
Y = ts(2*cos(2*pi*(t+5)/12) + rnorm(num), freq=12)
Yw = resid( lm(Y~ cos(2*pi*t/12) + sin(2*pi*t/12), na.action=NULL) )
par(mfrow=c(3,2), mgp=c(1.6,.6,0), mar=c(3,3,1,1) )
plot(X)
plot(Y)
acf(X,48, ylab='ACF(X)')
acf(Y,48, ylab='ACF(Y)')
ccf(X,Y,24, ylab='CCF(X,Y)')
ccf(X,Yw,24, ylab='CCF(X,Yw)', ylim=c(-.6,.6))
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Fig. 1.17. Display for Example 1.29. Top row; The generated series. Middle row: The sample
ACF of each series. Bottom row; The sample CCF of the series (left) and the sample CCF of
the first series with the prewhitened second series (right).

1.6 Vector-Valued and Multidimensional Series

We frequently encounter situations in which the relationships between a number
of jointly measured time series are of interest. For example, in the previous sec-
tions, we considered discovering the relationships between the SOI and Recruit-
ment series. Hence, it will be useful to consider the notion of a vector time series
xt = (xt1, xt2, . . . , xtp)0, which contains as its components p univariate time series.
We denote the p ⇥ 1 column vector of the observed series as xt . The row vector x 0

t is
its transpose. For the stationary case, the p ⇥ 1 mean vector

µ = E(xt ) (1.43)

of the form µ = (µt1, µt2, . . . , µtp)0 and the p ⇥ p autocovariance matrix

�(h) = E[(xt+h � µ)(xt � µ)0] (1.44)

can be defined, where the elements of the matrix �(h) are the cross-covariance
functions

�i j(h) = E[(xt+h,i � µi)(xt j � µj)] (1.45)
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Fig. 1.18. Two-dimensional time series of temperature measurements taken on a rectangular
field (64 ⇥ 36 with 17-foot spacing). Data are from Bazza et al. (1988).

for i, j = 1, . . . , p. Because �i j(h) = �ji(�h), it follows that

�(�h) = � 0(h). (1.46)

Now, the sample autocovariance matrix of the vector series xt is the p⇥ p matrix
of sample cross-covariances, defined as

�̂(h) = n�1
n�h
’

t=1
(xt+h � x̄)(xt � x̄)0, (1.47)

where

x̄ = n�1
n

’

t=1
xt (1.48)

denotes the p ⇥ 1 sample mean vector. The symmetry property of the theoretical
autocovariance (1.46) extends to the sample autocovariance (1.47), which is defined
for negative values by taking

�̂(�h) = �̂(h)0. (1.49)

In many applied problems, an observed series may be indexed by more than time
alone. For example, the position in space of an experimental unit might be described
by two coordinates, say, s1 and s2. We may proceed in these cases by defining a
multidimensional process xs as a function of the r ⇥ 1 vector s = (s1, s2, . . . , sr )0,
where si denotes the coordinate of the ith index.
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Fig. 1.19. Row averages of the two-dimensional soil temperature profile. x̄s1, ··· =
Õ

s2 xs1,s2/36.

Example 1.30 Soil Surface Temperatures
As an example, the two-dimensional (r = 2) temperature series xs1,s2 in Figure 1.18
is indexed by a row number s1 and a column number s2 that represent positions on
a 64 ⇥ 36 spatial grid set out on an agricultural field. The value of the temperature
measured at row s1 and column s2, is denoted by xs = xs1,s2. We can note from
the two-dimensional plot that a distinct change occurs in the character of the two-
dimensional surface starting at about row 40, where the oscillations along the row
axis become fairly stable and periodic. For example, averaging over the 36 columns,
we may compute an average value for each s1 as in Figure 1.19. It is clear that the
noise present in the first part of the two-dimensional series is nicely averaged out,
and we see a clear and consistent temperature signal.

To generate Figure 1.18 and Figure 1.19 in R, use the following commands:
persp(1:64, 1:36, soiltemp, phi=25, theta=25, scale=FALSE, expand=4,

ticktype="detailed", xlab="rows", ylab="cols", zlab="temperature")
plot.ts(rowMeans(soiltemp), xlab="row", ylab="Average Temperature")

The autocovariance function of a stationary multidimensional process, xs , can be
defined as a function of the multidimensional lag vector, say, h = (h1, h2, . . . , hr )0, as

�(h) = E[(xs+h � µ)(xs � µ)], (1.50)

where
µ = E(xs) (1.51)

does not depend on the spatial coordinate s. For the two dimensional temperature
process, (1.50) becomes

�(h1, h2) = E[(xs1+h1,s2+h2 � µ)(xs1,s2 � µ)], (1.52)

which is a function of lag, both in the row (h1) and column (h2) directions.
The multidimensional sample autocovariance function is defined as

�̂(h) = (S1S2 · · · Sr )�1
’

s1

’

s2

· · ·
’

s
r

(xs+h � x̄)(xs � x̄), (1.53)
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where s = (s1, s2, . . . , sr )0 and the range of summation for each argument is 1  si 
Si � hi , for i = 1, . . . , r . The mean is computed over the r-dimensional array, that is,

x̄ = (S1S2 · · · Sr )�1
’

s1

’

s2

· · ·
’

s
r

xs1,s2, · · · ,sr , (1.54)

where the arguments si are summed over 1  si  Si . The multidimensional sample
autocorrelation function follows, as usual, by taking the scaled ratio

⇢̂(h) = �̂(h)
�̂(0) . (1.55)

Example 1.31 Sample ACF of the Soil Temperature Series
The autocorrelation function of the two-dimensional (2d) temperature process can
be written in the form

⇢̂(h1, h2) =
�̂(h1, h2)
�̂(0, 0) ,

where
�̂(h1, h2) = (S1S2)�1

’

s1

’

s2

(xs1+h1,s2+h2 � x̄)(xs1,s2 � x̄)

Figure 1.20 shows the autocorrelation function for the temperature data, and we note
the systematic periodic variation that appears along the rows. The autocovariance
over columns seems to be strongest for h1 = 0, implying columns may form
replicates of some underlying process that has a periodicity over the rows. This
idea can be investigated by examining the mean series over columns as shown in
Figure 1.19.

The easiest way (that we know of) to calculate a 2d ACF in R is by using the
fast Fourier transform (FFT) as shown below. Unfortunately, the material needed to
understand this approach is given in Chapter 4, Section 4.3. The 2d autocovariance
function is obtained in two steps and is contained in cs below; �̂(0, 0) is the (1,1)
element so that ⇢̂(h1, h2) is obtained by dividing each element by that value. The
2d ACF is contained in rs below, and the rest of the code is simply to arrange the
results to yield a nice display.
fs = Mod(fft(soiltemp-mean(soiltemp)))^2/(64*36)
cs = Re(fft(fs, inverse=TRUE)/sqrt(64*36)) # ACovF
rs = cs/cs[1,1] # ACF
rs2 = cbind(rs[1:41,21:2], rs[1:41,1:21])
rs3 = rbind(rs2[41:2,], rs2)
par(mar = c(1,2.5,0,0)+.1)
persp(-40:40, -20:20, rs3, phi=30, theta=30, expand=30, scale="FALSE",

ticktype="detailed", xlab="row lags", ylab="column lags",
zlab="ACF")

The sampling requirements for multidimensional processes are rather severe be-
cause values must be available over some uniform grid in order to compute the ACF.
In some areas of application, such as in soil science, we may prefer to sample a
limited number of rows or transects and hope these are essentially replicates of the
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Fig. 1.20. Two-dimensional autocorrelation function for the soil temperature data.

basic underlying phenomenon of interest. One-dimensional methods can then be ap-
plied. When observations are irregular in time space, modifications to the estimators
need to be made. Systematic approaches to the problems introduced by irregularly
spaced observations have been developed by Journel and Huijbregts (1978) or Cressie
(1993). We shall not pursue such methods in detail here, but it is worth noting that
the introduction of the variogram

2Vx(h) = var{xs+h � xs} (1.56)

and its sample estimator

2V̂x(h) =
1

N(h)
’

s

(xs+h � xs)2 (1.57)

play key roles, where N(h) denotes both the number of points located within h,
and the sum runs over the points in the neighborhood. Clearly, substantial indexing
di�culties will develop from estimators of the kind, and often it will be di�cult
to find non-negative definite estimators for the covariance function. Problem 1.27
investigates the relation between the variogram and the autocovariance function in
the stationary case.
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Problems

Section 1.1

1.1 To compare the earthquake and explosion signals, plot the data displayed in
Figure 1.7 on the same graph using di�erent colors or di�erent line types and comment
on the results. (The R code in Example 1.11 may be of help on how to add lines to
existing plots.)

1.2 Consider a signal-plus-noise model of the general form xt = st + wt , where wt

is Gaussian white noise with �2
w = 1. Simulate and plot n = 200 observations from

each of the following two models.

(a) xt = st + wt , for t = 1, ..., 200, where

st =
⇢

0, t = 1, . . . , 100
10 exp{� (t�100)

20 } cos(2⇡t/4), t = 101, . . . , 200.

Hint:
s = c(rep(0,100), 10*exp(-(1:100)/20)*cos(2*pi*1:100/4))
x = s + rnorm(200)
plot.ts(x)

(b) xt = st + wt , for t = 1, . . . , 200, where

st =
⇢

0, t = 1, . . . , 100
10 exp{� (t�100)

200 } cos(2⇡t/4), t = 101, . . . , 200.

(c) Compare the general appearance of the series (a) and (b) with the earthquake
series and the explosion series shown in Figure 1.7. In addition, plot (or sketch)
and compare the signal modulators (a) exp{�t/20} and (b) exp{�t/200}, for
t = 1, 2, . . . , 100.

Section 1.2

1.3 (a) Generate n = 100 observations from the autoregression

xt = �.9xt�2 + wt

with �w = 1, using the method described in Example 1.10. Next, apply the
moving average filter

vt = (xt + xt�1 + xt�2 + xt�3)/4

to xt , the data you generated. Now plot xt as a line and superimpose vt as a dashed
line. Comment on the behavior of xt and how applying the moving average filter
changes that behavior. [Hints: Use v = filter(x, rep(1/4, 4), sides = 1)
for the filter and note that the R code in Example 1.11 may be of help on how to
add lines to existing plots.]
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(b) Repeat (a) but with
xt = cos(2⇡t/4).

(c) Repeat (b) but with added N(0, 1) noise,

xt = cos(2⇡t/4) + wt .

(d) Compare and contrast (a)–(c); i.e., how does the moving average change each
series.

Section 1.3

1.4 Show that the autocovariance function can be written as

�(s, t) = E[(xs � µs)(xt � µt )] = E(xsxt ) � µsµt,

where E[xt ] = µt .

1.5 For the two series, xt , in Problem 1.2 (a) and (b):

(a) Compute and plot the mean functions µx(t), for t = 1, . . . , 200.
(b) Calculate the autocovariance functions, �x(s, t), for s, t = 1, . . . , 200.

Section 1.4

1.6 Consider the time series

xt = �1 + �2t + wt,

where �1 and �2 are known constants and wt is a white noise process with variance
�2
w .

(a) Determine whether xt is stationary.
(b) Show that the process yt = xt � xt�1 is stationary.
(c) Show that the mean of the moving average

vt =
1

2q + 1

q
’

j=�q
xt�j

is �1 + �2t, and give a simplified expression for the autocovariance function.

1.7 For a moving average process of the form

xt = wt�1 + 2wt + wt+1,

where wt are independent with zero means and variance �2
w , determine the autoco-

variance and autocorrelation functions as a function of lag h = s� t and plot the ACF
as a function of h.
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1.8 Consider the random walk with drift model

xt = � + xt�1 + wt,

for t = 1, 2, . . . , with x0 = 0, where wt is white noise with variance �2
w .

(a) Show that the model can be written as xt = �t +
Õt

k=1 wk .
(b) Find the mean function and the autocovariance function of xt .
(c) Argue that xt is not stationary.
(d) Show ⇢x(t � 1, t) =

q

t�1
t ! 1 as t ! 1. What is the implication of this result?

(e) Suggest a transformation to make the series stationary, and prove that the trans-
formed series is stationary. (Hint: See Problem 1.6b.)

1.9 A time series with a periodic component can be constructed from

xt = U1 sin(2⇡!0t) +U2 cos(2⇡!0t),

where U1 and U2 are independent random variables with zero means and E(U2
1 ) =

E(U2
2 ) = �2. The constant !0 determines the period or time it takes the process to

make one complete cycle. Show that this series is weakly stationary with autocovari-
ance function

�(h) = �2 cos(2⇡!0h).

1.10 Suppose we would like to predict a single stationary series xt with zero mean
and autocorrelation function �(h) at some time in the future, say, t + `, for ` > 0.

(a) If we predict using only xt and some scale multiplier A, show that the mean-square
prediction error

MSE(A) = E[(xt+` � Axt )2]
is minimized by the value

A = ⇢(`).
(b) Show that the minimum mean-square prediction error is

MSE(A) = �(0)[1 � ⇢2(`)].

(c) Show that if xt+` = Axt , then ⇢(`) = 1 if A > 0, and ⇢(`) = �1 if A < 0.

1.11 Consider the linear process defined in (1.31).

(a) Verify that the autocovariance function of the process is given by (1.32). Use
the result to verify your answer to Problem 1.7. Hint: For h � 0, cov(xt+h, xt ) =
cov(Õk  kwt+h�k,

Õ

j  jwt�j). For each j 2 Z, the only “survivor” will be when
k = h + j.

(b) Show that xt exists as a limit in mean square (see Appendix A).

1.12 For two weakly stationary series xt and yt , verify (1.30).
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1.13 Consider the two series
xt = wt

yt = wt � ✓wt�1 + ut,

where wt and ut are independent white noise series with variances �2
w and �2

u ,
respectively, and ✓ is an unspecified constant.

(a) Express the ACF, ⇢y(h), for h = 0,±1,±2, . . . of the series yt as a function of
�2
w,�

2
u , and ✓.

(b) Determine the CCF, ⇢xy(h) relating xt and yt .
(c) Show that xt and yt are jointly stationary.

1.14 Let xt be a stationary normal process with mean µx and autocovariance function
�(h). Define the nonlinear time series

yt = exp{xt }.

(a) Express the mean function E(yt ) in terms of µx and �(0). The moment generating
function of a normal random variable x with mean µ and variance �2 is

Mx(�) = E[exp{�x}] = exp
⇢

µ� +
1
2
�2�2

�

.

(b) Determine the autocovariance function of yt . The sum of the two normal random
variables xt+h + xt is still a normal random variable.

1.15 Let wt , for t = 0,±1,±2, . . . be a normal white noise process, and consider the
series

xt = wtwt�1.

Determine the mean and autocovariance function of xt , and state whether it is sta-
tionary.

1.16 Consider the series
xt = sin(2⇡Ut),

t = 1, 2, . . ., where U has a uniform distribution on the interval (0, 1).

(a) Prove xt is weakly stationary.
(b) Prove xt is not strictly stationary.

1.17 Suppose we have the linear process xt generated by

xt = wt � ✓wt�1,

t = 0, 1, 2, . . ., where {wt } is independent and identically distributed with character-
istic function �w(·), and ✓ is a fixed constant. [Replace “characteristic function" with
“moment generating function" if instructed to do so.]
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(a) Express the joint characteristic function of x1, x2, . . . , xn, say,

�x1,x2,...,xn (�1, �2, . . . , �n),

in terms of �w(·).
(b) Deduce from (a) that xt is strictly stationary.

1.18 Suppose that xt is a linear process of the form (1.31). Prove

1
’

h=�1
|�(h)| < 1.

Section 1.5

1.19 Suppose xt = µ + wt + ✓wt�1, where wt ⇠ wn(0,�2
w).

(a) Show that mean function is E(xt ) = µ.
(b) Show that the autocovariance function of xt is given by �x(0) = �2

w(1 + ✓2),
�x(±1) = �2

w✓, and �x(h) = 0 otherwise.
(c) Show that xt is stationary for all values of ✓ 2 R.
(d) Use (1.35) to calculate var(x̄) for estimating µ when (i) ✓ = 1, (ii) ✓ = 0, and (iii)

✓ = �1
(e) In time series, the sample size n is typically large, so that (n�1)

n ⇡ 1. With this as
a consideration, comment on the results of part (d); in particular, how does the
accuracy in the estimate of the mean µ change for the three di�erent cases?

1.20 (a) Simulate a series of n = 500 Gaussian white noise observations as in Exam-
ple 1.8 and compute the sample ACF, ⇢̂(h), to lag 20. Compare the sample ACF
you obtain to the actual ACF, ⇢(h). [Recall Example 1.19.]

(b) Repeat part (a) using only n = 50. How does changing n a�ect the results?

1.21 (a) Simulate a series of n = 500 moving average observations as in Example 1.9
and compute the sample ACF, ⇢̂(h), to lag 20. Compare the sample ACF you
obtain to the actual ACF, ⇢(h). [Recall Example 1.20.]

(b) Repeat part (a) using only n = 50. How does changing n a�ect the results?

1.22 Although the model in Problem 1.2(a) is not stationary (Why?), the sample ACF
can be informative. For the data you generated in that problem, calculate and plot the
sample ACF, and then comment.

1.23 Simulate a series of n = 500 observations from the signal-plus-noise model
presented in Example 1.12 with �2

w = 1. Compute the sample ACF to lag 100 of the
data you generated and comment.

1.24 For the time series yt described in Example 1.26, verify the stated result that
⇢y(1) = �.47 and ⇢y(h) = 0 for h > 1.
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1.25 A real-valued function g(t), defined on the integers, is non-negative definite if
and only if

n
’

i=1

n
’

j=1
aig(ti � tj)aj � 0

for all positive integers n and for all vectors a = (a1, a2, . . . , an)0 and t =
(t1, t2, . . . , tn)0. For the matrix G = {g(ti � tj); i, j = 1, 2, . . . , n}, this implies that
a0Ga � 0 for all vectors a. It is called positive definite if we can replace ‘�’ with ‘>’
for all a , 0, the zero vector.

(a) Prove that �(h), the autocovariance function of a stationary process, is a non-
negative definite function.

(b) Verify that the sample autocovariance �̂(h) is a non-negative definite function.

Section 1.6

1.26 Consider a collection of time series x1t, x2t, . . . , xNt that are observing some
common signal µt observed in noise processes e1t, e2t, . . . , eNt , with a model for the
j-th observed series given by

xjt = µt + ejt .

Suppose the noise series have zero means and are uncorrelated for di�erent j. The
common autocovariance functions of all series are given by �e(s, t). Define the sample
mean

x̄t =
1
N

N
’

j=1
xjt .

(a) Show that E[x̄t ] = µt .
(b) Show that E[(x̄t � µ)2)] = N�1�e(t, t).
(c) How can we use the results in estimating the common signal?

1.27 A concept used in geostatistics, see Journel and Huijbregts (1978) or Cressie
(1993), is that of the variogram, defined for a spatial process xs , s = (s1, s2), for
s1, s2 = 0,±1,±2, ..., as

Vx(h) =
1
2

E[(xs+h � xs)2],

where h = (h1, h2), for h1, h2 = 0,±1,±2, ... Show that, for a stationary process, the
variogram and autocovariance functions can be related through

Vx(h) = �(0) � �(h),

where �(h) is the usual lag h covariance function and 0 = (0, 0). Note the easy
extension to any spatial dimension.
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44 1 Characteristics of Time Series

The following problems require the material given in Appendix A

1.28 Suppose xt = �0 + �1t, where �0 and �1 are constants. Prove as n ! 1,
⇢̂x(h) ! 1 for fixed h, where ⇢̂x(h) is the ACF (1.37).

1.29 (a) Suppose xt is a weakly stationary time series with mean zero and with
absolutely summable autocovariance function, �(h), such that

1
’

h=�1
�(h) = 0.

Prove that
p

n x̄
p! 0, where x̄ is the sample mean (1.34).

(b) Give an example of a process that satisfies the conditions of part (a). What is
special about this process?

1.30 Let xt be a linear process of the form (A.43)–(A.44). If we define

�̃(h) = n�1
n

’

t=1
(xt+h � µx)(xt � µx),

show that
n1/2 ��̃(h) � �̂(h)

�

= op(1).
Hint: The Markov Inequality

Pr{|x | � ✏} < E|x |
✏

can be helpful for the cross-product terms.

1.31 For a linear process of the form

xt =
1
’

j=0
� jwt�j,

where {wt } satisfies the conditions of Theorem A.7 and |�| < 1, show that
p

n
(⇢̂x(1) � ⇢x(1))

p

1 � ⇢2
x(1)

d! N(0, 1),

and construct a 95% confidence interval for � when ⇢̂x(1) = .64 and n = 100.

1.32 Let {xt ; t = 0,±1,±2, . . .} be iid(0,�2).
(a) For h � 1 and k � 1, show that xt xt+h and xsxs+k are uncorrelated for all s , t.
(b) For fixed h � 1, show that the h ⇥ 1 vector

��2n�1/2
n

’

t=1
(xt xt+1, . . . , xt xt+h)0

d! (z1, . . . , zh)0

where z1, . . . , zh are iid N(0, 1) random variables. [Hint: Use the Cramér-Wold
device.]
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(c) Show, for each h � 1,

n�1/2
"

n
’

t=1
xt xt+h �

n�h
’

t=1
(xt � x̄)(xt+h � x̄)

#

p! 0 as n ! 1

where x̄ = n�1 Õn
t=1 xt .

(d) Noting that n�1 Õn
t=1 x2

t

p! �2 by the WLLN, conclude that

n1/2 [⇢̂(1), . . . , ⇢̂(h)]0 d! (z1, . . . , zh)0

where ⇢̂(h) is the sample ACF of the data x1, . . . , xn.


