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Chapter 3

ARIMA Models

Classical regression is often insu�cient for explaining all of the interesting dynamics
of a time series. For example, the ACF of the residuals of the simple linear regression
fit to the price of chicken data (see Example 2.4) reveals additional structure in the
data that regression did not capture. Instead, the introduction of correlation that may
be generated through lagged linear relations leads to proposing the autoregressive
(AR) and autoregressive moving average (ARMA) models that were presented in
Whittle (1951). Adding nonstationary models to the mix leads to the autoregressive
integrated moving average (ARIMA) model popularized in the landmark work by
Box and Jenkins (1970). The Box–Jenkins method for identifying ARIMA models is
given in this chapter along with techniques for parameter estimation and forecasting
for these models. A partial theoretical justification of the use of ARMA models is
discussed in Section B.4.

3.1 Autoregressive Moving Average Models

The classical regression model of Chapter 2 was developed for the static case, namely,
we only allow the dependent variable to be influenced by current values of the
independent variables. In the time series case, it is desirable to allow the dependent
variable to be influenced by the past values of the independent variables and possibly
by its own past values. If the present can be plausibly modeled in terms of only the
past values of the independent inputs, we have the enticing prospect that forecasting
will be possible.

I����������� �� A������������� M�����

Autoregressive models are based on the idea that the current value of the series,
xt , can be explained as a function of p past values, xt�1, xt�2, . . . , xt�p , where p
determines the number of steps into the past needed to forecast the current value. As
a typical case, recall Example 1.10 in which data were generated using the model

xt = xt�1 � .90xt�2 + wt,
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78 3 ARIMA Models

where wt is white Gaussian noise with �2
w = 1. We have now assumed the current

value is a particular linear function of past values. The regularity that persists in
Figure 1.9 gives an indication that forecasting for such a model might be a distinct
possibility, say, through some version such as

xnn+1 = xn � .90xn�1,

where the quantity on the left-hand side denotes the forecast at the next period n + 1
based on the observed data, x1, x2, . . . , xn. We will make this notion more precise in
our discussion of forecasting (Section 3.4).

The extent to which it might be possible to forecast a real data series from its
own past values can be assessed by looking at the autocorrelation function and the
lagged scatterplot matrices discussed in Chapter 2. For example, the lagged scatterplot
matrix for the Southern Oscillation Index (SOI), shown in Figure 2.8, gives a distinct
indication that lags 1 and 2, for example, are linearly associated with the current
value. The ACF shown in Figure 1.16 shows relatively large positive values at lags
1, 2, 12, 24, and 36 and large negative values at 18, 30, and 42. We note also the
possible relation between the SOI and Recruitment series indicated in the scatterplot
matrix shown in Figure 2.9. We will indicate in later sections on transfer function and
vector AR modeling how to handle the dependence on values taken by other series.

The preceding discussion motivates the following definition.

Definition 3.1 An autoregressive model of order p, abbreviated AR(p), is of the
form

xt = �1xt�1 + �2xt�2 + · · · + �pxt�p + wt, (3.1)
where xt is stationary, wt ⇠ wn(0,�2

w), and �1, �2, . . . , �p are constants (�p , 0).
The mean of xt in (3.1) is zero. If the mean, µ, of xt is not zero, replace xt by xt � µ
in (3.1),

xt � µ = �1(xt�1 � µ) + �2(xt�2 � µ) + · · · + �p(xt�p � µ) + wt,

or write
xt = ↵ + �1xt�1 + �2xt�2 + · · · + �pxt�p + wt, (3.2)

where ↵ = µ(1 � �1 � · · · � �p).

We note that (3.2) is similar to the regression model of Section 2.1, and hence
the term auto (or self) regression. Some technical di�culties, however, develop from
applying that model because the regressors, xt�1, . . . , xt�p , are random components,
whereas zt was assumed to be fixed. A useful form follows by using the backshift
operator (2.29) to write the AR(p) model, (3.1), as

(1 � �1B � �2B2 � · · · � �pBp)xt = wt, (3.3)

or even more concisely as
�(B)xt = wt . (3.4)

The properties of �(B) are important in solving (3.4) for xt . This leads to the following
definition.
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3.1 Autoregressive Moving Average Models 79

Definition 3.2 The autoregressive operator is defined to be

�(B) = 1 � �1B � �2B2 � · · · � �pBp . (3.5)

Example 3.1 The AR(1) Model
We initiate the investigation of AR models by considering the first-order model,
AR(1), given by xt = �xt�1 + wt . Iterating backwards k times, we get

xt = �xt�1 + wt = �(�xt�2 + wt�1) + wt

= �2xt�2 + �wt�1 + wt
...

= �k xt�k +
k�1
’

j=0
� jwt�j .

This method suggests that, by continuing to iterate backward, and provided that
|�| < 1 and supt var(xt ) < 1, we can represent an AR(1) model as a linear process
given by3.1

xt =
1
’

j=0
� jwt�j . (3.6)

Representation (3.6) is called the stationary solution of the model. In fact, by simple
substitution,

1
’

j=0
� jwt�j

|       {z       }
x
t

= �
⇣

1
’

k=0
�kwt�1�k

|          {z          }
x
t�1

⌘

+ wt .

The AR(1) process defined by (3.6) is stationary with mean

E(xt ) =
1
’

j=0
� jE(wt�j) = 0,

and autocovariance function,

�(h) = cov(xt+h, xt ) = E
2

6

6

6

6

4

 1
’

j=0
� jwt+h�j

!  1
’

k=0
�kwt�k

!

3

7

7

7

7

5

= E
⇥

⇣

wt+h + · · · + �hwt + �
h+1wt�1 + · · ·

⌘

(wt + �wt�1 + · · · )
⇤

= �2
w

1
’

j=0
�h+j� j = �2

w�
h

1
’

j=0
�2j =

�2
w�

h

1 � �2 , h � 0.

(3.7)

3.1 Note that lim
k!1 E

⇣

x
t

� Õ

k�1
j=0 � jw

t� j

⌘2
= lim

k!1 �2kE
⇣

x2
t�k

⌘

= 0, so (3.6) exists in the mean
square sense (see Appendix A for a definition).
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80 3 ARIMA Models

Recall that �(h) = �(�h), so we will only exhibit the autocovariance function for
h � 0. From (3.7), the ACF of an AR(1) is

⇢(h) = �(h)
�(0) = �

h, h � 0, (3.8)

and ⇢(h) satisfies the recursion

⇢(h) = � ⇢(h � 1), h = 1, 2, . . . . (3.9)

We will discuss the ACF of a general AR(p) model in Section 3.3.

Example 3.2 The Sample Path of an AR(1) Process
Figure 3.1 shows a time plot of two AR(1) processes, one with � = .9 and one
with � = �.9; in both cases, �2

w = 1. In the first case, ⇢(h) = .9h , for h � 0, so
observations close together in time are positively correlated with each other. This
result means that observations at contiguous time points will tend to be close in
value to each other; this fact shows up in the top of Figure 3.1 as a very smooth
sample path for xt . Now, contrast this with the case in which � = �.9, so that
⇢(h) = (�.9)h , for h � 0. This result means that observations at contiguous time
points are negatively correlated but observations two time points apart are positively
correlated. This fact shows up in the bottom of Figure 3.1, where, for example, if
an observation, xt , is positive, the next observation, xt+1, is typically negative, and
the next observation, xt+2, is typically positive. Thus, in this case, the sample path
is very choppy.

The following R code can be used to obtain a figure similar to Figure 3.1:
par(mfrow=c(2,1))
plot(arima.sim(list(order=c(1,0,0), ar=.9), n=100), ylab="x",

main=(expression(AR(1)~~~phi==+.9)))
plot(arima.sim(list(order=c(1,0,0), ar=-.9), n=100), ylab="x",

main=(expression(AR(1)~~~phi==-.9)))

Example 3.3 Explosive AR Models and Causality
In Example 1.18, it was discovered that the random walk xt = xt�1 + wt is not
stationary. We might wonder whether there is a stationary AR(1) process with
|�| > 1. Such processes are called explosive because the values of the time series
quickly become large in magnitude. Clearly, because |�| j increases without bound
as j ! 1,

Õk�1
j=0 �

jwt�j will not converge (in mean square) as k ! 1, so the
intuition used to get (3.6) will not work directly. We can, however, modify that
argument to obtain a stationary model as follows. Write xt+1 = �xt +wt+1, in which
case,

xt = ��1xt+1 � ��1wt+1 = �
�1

⇣

��1xt+2 � ��1wt+2

⌘

� ��1wt+1

...

= ��k xt+k �
k�1
’

j=1
��jwt+j, (3.10)
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AR(1)   φ = +0.9

x

0 20 40 60 80 100

−2
0

2
4

6

AR(1)   φ = −0.9

x

0 20 40 60 80 100

−4
0

2
4

Time

Fig. 3.1. Simulated AR(1) models: � = .9 (top); � = �.9 (bottom).

by iterating forward k steps. Because |�|�1 < 1, this result suggests the stationary
future dependent AR(1) model

xt = �
1
’

j=1
��jwt+j . (3.11)

The reader can verify that this is stationary and of the AR(1) form xt = �xt�1 +wt .
Unfortunately, this model is useless because it requires us to know the future to be
able to predict the future. When a process does not depend on the future, such as
the AR(1) when |�| < 1, we will say the process is causal. In the explosive case
of this example, the process is stationary, but it is also future dependent, and not
causal.

Example 3.4 Every Explosion Has a Cause
Excluding explosive models from consideration is not a problem because the models
have causal counterparts. For example, if

xt = �xt�1 + wt with |�| > 1

and wt ⇠ iid N(0,�2
w), then using (3.11), {xt } is a non-causal stationary Gaussian

process with E(xt ) = 0 and

�x(h) = cov(xt+h, xt ) = cov ©

≠

´

�
1
’

j=1
��jwt+h+j, �

1
’

k=1
��kwt+k

™

Æ

¨

= �2
w�

�2 ��h/(1 � ��2).
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82 3 ARIMA Models

Thus, using (3.7), the causal process defined by

yt = �
�1yt�1 + vt

where vt ⇠ iid N(0,�2
w�

�2) is stochastically equal to the xt process (i.e., all finite
distributions of the processes are the same). For example, if xt = 2xt�1 + wt with
�2
w = 1, then yt =

1
2 yt�1 + vt with �2

v = 1/4 is an equivalent causal process (see
Problem 3.3). This concept generalizes to higher orders, but it is easier to show
using Chapter 4 techniques; see Example 4.8.

The technique of iterating backward to get an idea of the stationary solution of
AR models works well when p = 1, but not for larger orders. A general technique is
that of matching coe�cients. Consider the AR(1) model in operator form

�(B)xt = wt, (3.12)

where �(B) = 1 � �B, and |�| < 1. Also, write the model in equation (3.6) using
operator form as

xt =
1
’

j=0
 jwt�j =  (B)wt, (3.13)

where  (B) = Õ1
j=0  jB j and  j = � j . Suppose we did not know that  j = � j . We

could substitute  (B)wt from (3.13) for xt in (3.12) to obtain

�(B) (B)wt = wt . (3.14)

The coe�cients of B on the left-hand side of (3.14) must be equal to those on
right-hand side of (3.14), which means

(1 � �B)(1 +  1B +  2B2 + · · · +  jB j + · · · ) = 1. (3.15)

Reorganizing the coe�cients in (3.15),

1 + ( 1 � �)B + ( 2 �  1�)B2 + · · · + ( j �  j�1�)B j + · · · = 1,

we see that for each j = 1, 2, . . ., the coe�cient of B j on the left must be zero because
it is zero on the right. The coe�cient of B on the left is ( 1 � �), and equating this to
zero,  1 � � = 0, leads to  1 = �. Continuing, the coe�cient of B2 is ( 2 �  1�), so
 2 = �2. In general,

 j =  j�1�,

with  0 = 1, which leads to the solution  j = � j .
Another way to think about the operations we just performed is to consider the

AR(1) model in operator form, �(B)xt = wt . Now multiply both sides by ��1(B)
(assuming the inverse operator exists) to get

��1(B)�(B)xt = ��1(B)wt,

or
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xt = ��1(B)wt .

We know already that

��1(B) = 1 + �B + �2B2 + · · · + � jB j + · · · ,

that is, ��1(B) is  (B) in (3.13). Thus, we notice that working with operators is like
working with polynomials. That is, consider the polynomial �(z) = 1 � �z, where z
is a complex number and |�| < 1. Then,

��1(z) = 1
(1 � �z) = 1 + �z + �2z2 + · · · + � j z j + · · · , |z |  1,

and the coe�cients of B j in ��1(B) are the same as the coe�cients of z j in ��1(z). In
other words, we may treat the backshift operator, B, as a complex number, z. These
results will be generalized in our discussion of ARMA models. We will find the
polynomials corresponding to the operators useful in exploring the general properties
of ARMA models.

I����������� �� M����� A������ M�����

As an alternative to the autoregressive representation in which the xt on the left-hand
side of the equation are assumed to be combined linearly, the moving average model
of order q, abbreviated as MA(q), assumes the white noise wt on the right-hand side
of the defining equation are combined linearly to form the observed data.

Definition 3.3 The moving average model of order q, or MA(q) model, is defined
to be

xt = wt + ✓1wt�1 + ✓2wt�2 + · · · + ✓qwt�q, (3.16)

where wt ⇠ wn(0,�2
w), and ✓1, ✓2, . . . , ✓q (✓q , 0) are parameters.3.2

The system is the same as the infinite moving average defined as the linear process
(3.13), where  0 = 1,  j = ✓ j, for j = 1, . . . , q, and  j = 0 for other values. We may
also write the MA(q) process in the equivalent form

xt = ✓(B)wt, (3.17)

using the following definition.

Definition 3.4 The moving average operator is

✓(B) = 1 + ✓1B + ✓2B2 + · · · + ✓qBq . (3.18)

Unlike the autoregressive process, the moving average process is stationary for any
values of the parameters ✓1, . . . , ✓q; details of this result are provided in Section 3.3.

3.2 Some texts and software packages write the MA model with negative coe�cients; that is, x
t

=
w
t

� ✓1wt�1 � ✓2wt�2 � · · · � ✓
q

w
t�q .
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Fig. 3.2. Simulated MA(1) models: ✓ = .9 (top); ✓ = �.9 (bottom).

Example 3.5 The MA(1) Process
Consider the MA(1) model xt = wt + ✓wt�1. Then, E(xt ) = 0,

�(h) =
8

>

>

><

>

>

>

:

(1 + ✓2)�2
w h = 0,

✓�2
w h = 1,

0 h > 1,

and the ACF is

⇢(h) =
8

>

><

>

>

:

✓

(1+✓2)
h = 1,

0 h > 1.

Note |⇢(1)|  1/2 for all values of ✓ (Problem 3.1). Also, xt is correlated with
xt�1, but not with xt�2, xt�3, . . . . Contrast this with the case of the AR(1) model in
which the correlation between xt and xt�k is never zero. When ✓ = .9, for example,
xt and xt�1 are positively correlated, and ⇢(1) = .497. When ✓ = �.9, xt and xt�1
are negatively correlated, ⇢(1) = �.497. Figure 3.2 shows a time plot of these two
processes with �2

w = 1. The series for which ✓ = .9 is smoother than the series for
which ✓ = �.9.

A figure similar to Figure 3.2 can be created in R as follows:
par(mfrow = c(2,1))
plot(arima.sim(list(order=c(0,0,1), ma=.9), n=100), ylab="x",

main=(expression(MA(1)~~~theta==+.5)))
plot(arima.sim(list(order=c(0,0,1), ma=-.9), n=100), ylab="x",

main=(expression(MA(1)~~~theta==-.5)))
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Example 3.6 Non-uniqueness of MA Models and Invertibility
Using Example 3.5, we note that for an MA(1) model, ⇢(h) is the same for ✓ and
1
✓ ; try 5 and 1

5 , for example. In addition, the pair �2
w = 1 and ✓ = 5 yield the same

autocovariance function as the pair �2
w = 25 and ✓ = 1/5, namely,

�(h) =
8

>

>

><

>

>

>

:

26 h = 0,
5 h = 1,
0 h > 1.

Thus, the MA(1) processes

xt = wt +
1
5wt�1, wt ⇠ iid N(0, 25)

and
yt = vt + 5vt�1, vt ⇠ iid N(0, 1)

are the same because of normality (i.e., all finite distributions are the same). We
can only observe the time series, xt or yt , and not the noise, wt or vt , so we cannot
distinguish between the models. Hence, we will have to choose only one of them.
For convenience, by mimicking the criterion of causality for AR models, we will
choose the model with an infinite AR representation. Such a process is called an
invertible process.

To discover which model is the invertible model, we can reverse the roles of
xt and wt (because we are mimicking the AR case) and write the MA(1) model
as wt = �✓wt�1 + xt . Following the steps that led to (3.6), if |✓ | < 1, then wt =
Õ1

j=0(�✓)j xt�j , which is the desired infinite AR representation of the model. Hence,
given a choice, we will choose the model with �2

w = 25 and ✓ = 1/5 because it is
invertible.

As in the AR case, the polynomial, ✓(z), corresponding to the moving average
operators, ✓(B), will be useful in exploring general properties of MA processes. For
example, following the steps of equations (3.12)–(3.15), we can write the MA(1)
model as xt = ✓(B)wt , where ✓(B) = 1 + ✓B. If |✓ | < 1, then we can write the model
as ⇡(B)xt = wt , where ⇡(B) = ✓�1(B). Let ✓(z) = 1 + ✓z, for |z |  1, then ⇡(z) =
✓�1(z) = 1/(1 + ✓z) = Õ1

j=0(�✓)j z j , and we determine that ⇡(B) = Õ1
j=0(�✓)jB j .

A������������� M����� A������ M�����

We now proceed with the general development of autoregressive, moving average, and
mixed autoregressive moving average (ARMA), models for stationary time series.

Definition 3.5 A time series {xt ; t = 0,±1,±2, . . .} is ARMA(p, q) if it is stationary
and

xt = �1xt�1 + · · · + �pxt�p + wt + ✓1wt�1 + · · · + ✓qwt�q, (3.19)

with �p , 0, ✓q , 0, and �2
w > 0. The parameters p and q are called the autoregres-

sive and the moving average orders, respectively. If xt has a nonzero mean µ, we set
↵ = µ(1 � �1 � · · · � �p) and write the model as
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86 3 ARIMA Models

xt = ↵ + �1xt�1 + · · · + �pxt�p + wt + ✓1wt�1 + · · · + ✓qwt�q , (3.20)

where wt ⇠ wn(0,�2
w).

As previously noted, when q = 0, the model is called an autoregressive model
of order p, AR(p), and when p = 0, the model is called a moving average model of
order q, MA(q). To aid in the investigation of ARMA models, it will be useful to
write them using the AR operator, (3.5), and the MA operator, (3.18). In particular,
the ARMA(p, q) model in (3.19) can then be written in concise form as

�(B)xt = ✓(B)wt . (3.21)

The concise form of the model points to a potential problem in that we can unneces-
sarily complicate the model by multiplying both sides by another operator, say

⌘(B)�(B)xt = ⌘(B)✓(B)wt ,

without changing the dynamics. Consider the following example.

Example 3.7 Parameter Redundancy
Consider a white noise process xt = wt . If we multiply both sides of the equation
by ⌘(B) = 1 � .5B, then the model becomes (1 � .5B)xt = (1 � .5B)wt , or

xt = .5xt�1 � .5wt�1 + wt, (3.22)

which looks like an ARMA(1, 1) model. Of course, xt is still white noise; nothing
has changed in this regard [i.e., xt = wt is the solution to (3.22)], but we have
hidden the fact that xt is white noise because of the parameter redundancy or
over-parameterization.

The consideration of parameter redundancy will be crucial when we discuss
estimation for general ARMA models. As this example points out, we might fit
an ARMA(1, 1) model to white noise data and find that the parameter estimates
are significant. If we were unaware of parameter redundancy, we might claim the
data are correlated when in fact they are not (Problem 3.20). Although we have not
yet discussed estimation, we present the following demonstration of the problem.
We generated 150 iid normals and then fit an ARMA(1, 1) to the data. Note that
�̂ = �.96 and ✓̂ = .95, and both are significant. Below is the R code (note that the
estimate called ‘intercept’ is really the estimate of the mean).
set.seed(8675309) # Jenny, I got your number
x = rnorm(150, mean=5) # generate iid N(5,1)s
arima(x, order=c(1,0,1)) # estimation
Coefficients:

ar1 ma1 intercept<= misnomer
-0.9595 0.9527 5.0462

s.e. 0.1688 0.1750 0.0727

Thus, forgetting the mean estimate, the fitted model looks like

(1 + .96B)xt = (1 + .95B)wt ,

which we should recognize as an over-parametrized model.
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Example 3.3, Example 3.6, and Example 3.7 point to a number of problems with
the general definition of ARMA(p, q) models, as given by (3.19), or, equivalently, by
(3.21). To summarize, we have seen the following problems:

(i) parameter redundant models,
(ii) stationary AR models that depend on the future, and
(iii) MA models that are not unique.

To overcome these problems, we will require some additional restrictions on the
model parameters. First, we make the following definitions.

Definition 3.6 The AR and MA polynomials are defined as

�(z) = 1 � �1z � · · · � �pzp, �p , 0, (3.23)

and
✓(z) = 1 + ✓1z + · · · + ✓qzq, ✓q , 0, (3.24)

respectively, where z is a complex number.

To address the first problem, we will henceforth refer to an ARMA(p, q) model to
mean that it is in its simplest form. That is, in addition to the original definition given
in equation (3.19), we will also require that �(z) and ✓(z) have no common factors.
So, the process, xt = .5xt�1 � .5wt�1 + wt , discussed in Example 3.7 is not referred
to as an ARMA(1, 1) process because, in its reduced form, xt is white noise.

To address the problem of future-dependent models, we formally introduce the
concept of causality.

Definition 3.7 An ARMA(p, q) model is said to be causal, if the time series {xt ; t =
0,±1,±2, . . .} can be written as a one-sided linear process:

xt =
1
’

j=0
 jwt�j =  (B)wt, (3.25)

where  (B) = Õ1
j=0  jB j , and

Õ1
j=0 | j | < 1; we set  0 = 1.

In Example 3.3, the AR(1) process, xt = �xt�1 +wt, is causal only when |�| < 1.
Equivalently, the process is causal only when the root of �(z) = 1 � �z is bigger
than one in absolute value. That is, the root, say, z0, of �(z) is z0 = 1/� (because
�(z0) = 0) and |z0 | > 1 because |�| < 1. In general, we have the following property.

Property 3.1 Causality of an ARMA(p, q) Process
An ARMA(p, q) model is causal if and only if �(z) , 0 for |z |  1. The coe�cients

of the linear process given in (3.25) can be determined by solving

 (z) =
1
’

j=0
 j z j =

✓(z)
�(z), |z |  1.
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88 3 ARIMA Models

Another way to phrase Property 3.1 is that an ARMA process is causal only when

the roots of �(z) lie outside the unit circle; that is, �(z) = 0 only when |z | > 1. Finally,
to address the problem of uniqueness discussed in Example 3.6, we choose the model
that allows an infinite autoregressive representation.

Definition 3.8 An ARMA(p, q) model is said to be invertible, if the time series {xt ; t =
0,±1,±2, . . .} can be written as

⇡(B)xt =
1
’

j=0
⇡j xt�j = wt, (3.26)

where ⇡(B) = Õ1
j=0 ⇡jB

j , and
Õ1

j=0 |⇡j | < 1; we set ⇡0 = 1.

Analogous to Property 3.1, we have the following property.

Property 3.2 Invertibility of an ARMA(p, q) Process
An ARMA(p, q) model is invertible if and only if ✓(z) , 0 for |z |  1. The

coe�cients ⇡j of ⇡(B) given in (3.26) can be determined by solving

⇡(z) =
1
’

j=0
⇡j z j =

�(z)
✓(z) , |z |  1.

Another way to phrase Property 3.2 is that an ARMA process is invertible only

when the roots of ✓(z) lie outside the unit circle; that is, ✓(z) = 0 only when |z | > 1.
The proof of Property 3.1 is given in Section B.2 (the proof of Property 3.2 is similar).
The following examples illustrate these concepts.

Example 3.8 Parameter Redundancy, Causality, Invertibility
Consider the process

xt = .4xt�1 + .45xt�2 + wt + wt�1 + .25wt�2,

or, in operator form,

(1 � .4B � .45B2)xt = (1 + B + .25B2)wt .

At first, xt appears to be an ARMA(2, 2) process. But notice that

�(B) = 1 � .4B � .45B2 = (1 + .5B)(1 � .9B)

and
✓(B) = (1 + B + .25B2) = (1 + .5B)2

have a common factor that can be canceled. After cancellation, the operators are
�(B) = (1 � .9B) and ✓(B) = (1 + .5B), so the model is an ARMA(1, 1) model,
(1 � .9B)xt = (1 + .5B)wt , or

xt = .9xt�1 + .5wt�1 + wt . (3.27)
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The model is causal because �(z) = (1 � .9z) = 0 when z = 10/9, which is
outside the unit circle. The model is also invertible because the root of ✓(z) =
(1 + .5z) is z = �2, which is outside the unit circle.

To write the model as a linear process, we can obtain the  -weights using
Property 3.1, �(z) (z) = ✓(z), or

(1 � .9z)(1 +  1z +  2z2 + · · · +  j z j + · · · ) = 1 + .5z.

Rearranging, we get

1 + ( 1 � .9)z + ( 2 � .9 1)z2 + · · · + ( j � .9 j�1)z j + · · · = 1 + .5z.

Matching the coe�cients of z on the left and right sides we get  1 � .9 = .5 and
 j � .9 j�1 = 0 for j > 1. Thus,  j = 1.4(.9)j�1 for j � 1 and (3.27) can be written
as

xt = wt + 1.4
1
’

j=1
.9j�1wt�j .

The values of  j may be calculated in R as follows:
ARMAtoMA(ar = .9, ma = .5, 10) # first 10 psi-weights
[1] 1.40 1.26 1.13 1.02 0.92 0.83 0.74 0.67 0.60 0.54

The invertible representation using Property 3.1 is obtained by matching coef-
ficients in ✓(z)⇡(z) = �(z),

(1 + .5z)(1 + ⇡1z + ⇡2z2 + ⇡3z3 + · · · ) = 1 � .9z.

In this case, the ⇡-weights are given by ⇡j = (�1)j 1.4 (.5)j�1, for j � 1, and hence,
because wt =

Õ1
j=0 ⇡j xt�j , we can also write (3.27) as

xt = 1.4
1
’

j=1
(�.5)j�1xt�j + wt .

The values of ⇡j may be calculated in R as follows by reversing the roles of wt and
xt ; i.e., write the model as wt = �.5wt�1 + xt � .9xt�1:
ARMAtoMA(ar = -.5, ma = -.9, 10) # first 10 pi-weights
[1] -1.400 .700 -.350 .175 -.087 .044 -.022 .011 -.006 .003

Example 3.9 Causal Conditions for an AR(2) Process
For an AR(1) model, (1 � �B)xt = wt , to be causal, the root of �(z) = 1 � �z must
lie outside of the unit circle. In this case, �(z) = 0 when z = 1/�, so it is easy
to go from the causal requirement on the root, |1/�| > 1, to a requirement on the
parameter, |�| < 1. It is not so easy to establish this relationship for higher order
models.

For example, the AR(2) model, (1 � �1B � �2B2)xt = wt , is causal when the
two roots of �(z) = 1� �1z� �2z2 lie outside of the unit circle. Using the quadratic
formula, this requirement can be written as
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The roots of �(z) may be real and distinct, real and equal, or a complex conjugate
pair. If we denote those roots by z1 and z2, we can write �(z) = (1� z�1

1 z)(1� z�1
2 z);

note that �(z1) = �(z2) = 0. The model can be written in operator form as (1 �
z�1
1 B)(1 � z�1

2 B)xt = wt . From this representation, it follows that �1 = (z�1
1 + z�1

2 )
and �2 = �(z1z2)�1. This relationship and the fact that |z1 | > 1 and |z2 | > 1 can be
used to establish the following equivalent condition for causality:

�1 + �2 < 1, �2 � �1 < 1, and |�2 | < 1. (3.28)

This causality condition specifies a triangular region in the parameter space; see
Figure 3.3 We leave the details of the equivalence to the reader (Problem 3.5).

3.2 Di�erence Equations

The study of the behavior of ARMA processes and their ACFs is greatly enhanced by a
basic knowledge of di�erence equations, simply because they are di�erence equations.
We will give a brief and heuristic account of the topic along with some examples of
the usefulness of the theory. For details, the reader is referred to Mickens (1990).

Suppose we have a sequence of numbers u0, u1, u2, . . . such that

un � ↵un�1 = 0, ↵ , 0, n = 1, 2, . . . . (3.29)

For example, recall (3.9) in which we showed that the ACF of an AR(1) process is a
sequence, ⇢(h), satisfying
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⇢(h) � �⇢(h � 1) = 0, h = 1, 2, . . . .

Equation (3.29) represents a homogeneous di�erence equation of order 1. To solve
the equation, we write:

u1 = ↵u0

u2 = ↵u1 = ↵
2u0

...

un = ↵un�1 = ↵
nu0.

Given an initial condition u0 = c, we may solve (3.29), namely, un = ↵nc.
In operator notation, (3.29) can be written as (1 � ↵B)un = 0. The polynomial

associated with (3.29) is ↵(z) = 1 � ↵z, and the root, say, z0, of this polynomial is
z0 = 1/↵; that is ↵(z0) = 0. We know a solution (in fact, the solution) to (3.29), with
initial condition u0 = c, is

un = ↵nc =
⇣

z�1
0

⌘n
c. (3.30)

That is, the solution to the di�erence equation (3.29) depends only on the initial
condition and the inverse of the root to the associated polynomial ↵(z).

Now suppose that the sequence satisfies

un � ↵1un�1 � ↵2un�2 = 0, ↵2 , 0, n = 2, 3, . . . (3.31)

This equation is a homogeneous di�erence equation of order 2. The corresponding
polynomial is

↵(z) = 1 � ↵1z � ↵2z2,

which has two roots, say, z1 and z2; that is, ↵(z1) = ↵(z2) = 0. We will consider two
cases. First suppose z1 , z2. Then the general solution to (3.31) is

un = c1z�n1 + c2z�n2 , (3.32)

where c1 and c2 depend on the initial conditions. The claim it is a solution can be
verified by direct substitution of (3.32) into (3.31):

�

c1z�n1 + c2z�n2
�

|              {z              }
u
n

� ↵1
�

c1z�(n�1)
1 + c2z�(n�1)

2
�

|                       {z                       }
u
n�1

�↵2
�

c1z�(n�2)
1 + c2z�(n�2)

2
�

|                       {z                       }
u
n�2

= c1z�n1

⇣

1 � ↵1z1 � ↵2z2
1

⌘

+ c2z�n2

⇣

1 � ↵1z2 � ↵2z2
2

⌘

= c1z�n1 ↵(z1) + c2z�n2 ↵(z2) = 0.

Given two initial conditions u0 and u1, we may solve for c1 and c2:

u0 = c1 + c2 and u1 = c1z�1
1 + c2z�1

2 ,

where z1 and z2 can be solved for in terms of ↵1 and ↵2 using the quadratic formula,
for example.
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When the roots are equal, z1 = z2 (= z0), a general solution to (3.31) is

un = z�n0 (c1 + c2n). (3.33)

This claim can also be verified by direct substitution of (3.33) into (3.31):

z�n0 (c1 + c2n)
|          {z          }

u
n

� ↵1
�

z�(n�1)
0 [c1 + c2(n � 1)]

�

|                         {z                         }
u
n�1

�↵2
�

z�(n�2)
0 [c1 + c2(n � 2)]

�

|                         {z                         }
u
n�2

= z�n0 (c1 + c2n)
⇣

1 � ↵1z0 � ↵2z2
0

⌘

+ c2z�n+1
0 (↵1 + 2↵2z0)

= c2z�n+1
0 (↵1 + 2↵2z0) .

To show that (↵1+2↵2z0) = 0,write 1�↵1z�↵2z2 = (1� z�1
0 z)2, and take derivatives

with respect to z on both sides of the equation to obtain (↵1+2↵2z) = 2z�1
0 (1� z�1

0 z).
Thus, (↵1 + 2↵2z0) = 2z�1

0 (1 � z�1
0 z0) = 0, as was to be shown. Finally, given two

initial conditions, u0 and u1, we can solve for c1 and c2:

u0 = c1 and u1 = (c1 + c2)z�1
0 .

It can also be shown that these solutions are unique.
To summarize these results, in the case of distinct roots, the solution to the

homogeneous di�erence equation of degree two was

un = z�n1 ⇥ (a polynomial in n of degree m1 � 1)
+ z�n2 ⇥ (a polynomial in n of degree m2 � 1), (3.34)

where m1 is the multiplicity of the root z1 and m2 is the multiplicity of the root z2. In
this example, of course, m1 = m2 = 1, and we called the polynomials of degree zero
c1 and c2, respectively. In the case of the repeated root, the solution was

un = z�n0 ⇥ (a polynomial in n of degree m0 � 1), (3.35)

where m0 is the multiplicity of the root z0; that is, m0 = 2. In this case, we wrote the
polynomial of degree one as c1 + c2n. In both cases, we solved for c1 and c2 given
two initial conditions, u0 and u1.

These results generalize to the homogeneous di�erence equation of order p:

un � ↵1un�1 � · · · � ↵pun�p = 0, ↵p , 0, n = p, p + 1, . . . . (3.36)

The associated polynomial is ↵(z) = 1�↵1z� · · ·�↵pzp . Suppose ↵(z) has r distinct
roots, z1 with multiplicity m1, z2 with multiplicity m2, . . . , and zr with multiplicity
mr , such that m1 +m2 + · · ·+mr = p. The general solution to the di�erence equation
(3.36) is

un = z�n1 P1(n) + z�n2 P2(n) + · · · + z�nr Pr (n), (3.37)

where Pj(n), for j = 1, 2, . . . , r , is a polynomial in n, of degree mj �1. Given p initial
conditions u0, . . . , up�1, we can solve for the Pj(n) explicitly.
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Example 3.10 The ACF of an AR(2) Process
Suppose xt = �1xt�1 + �2xt�2 + wt is a causal AR(2) process. Multiply each side
of the model by xt�h for h > 0, and take expectation:

E(xt xt�h) = �1E(xt�1xt�h) + �2E(xt�2xt�h) + E(wt xt�h).

The result is

�(h) = �1�(h � 1) + �2�(h � 2), h = 1, 2, . . . . (3.38)

In (3.38), we used the fact that E(xt ) = 0 and for h > 0,

E(wt xt�h) = E
⇣

wt

1
’

j=0
 jwt�h�j

⌘

= 0.

Divide (3.38) through by �(0) to obtain the di�erence equation for the ACF of the
process:

⇢(h) � �1⇢(h � 1) � �2⇢(h � 2) = 0, h = 1, 2, . . . . (3.39)
The initial conditions are ⇢(0) = 1 and ⇢(�1) = �1/(1 � �2), which is obtained by
evaluating (3.39) for h = 1 and noting that ⇢(1) = ⇢(�1).

Using the results for the homogeneous di�erence equation of order two, let z1
and z2 be the roots of the associated polynomial, �(z) = 1 � �1z � �2z2. Because
the model is causal, we know the roots are outside the unit circle: |z1 | > 1 and
|z2 | > 1. Now, consider the solution for three cases:
(i) When z1 and z2 are real and distinct, then

⇢(h) = c1z�h1 + c2z�h2 ,

so ⇢(h) ! 0 exponentially fast as h ! 1.
(ii) When z1 = z2 (= z0) are real and equal, then

⇢(h) = z�h0 (c1 + c2h),

so ⇢(h) ! 0 exponentially fast as h ! 1.
(iii) When z1 = z̄2 are a complex conjugate pair, then c2 = c̄1 (because ⇢(h) is real),

and
⇢(h) = c1z�h1 + c̄1 z̄�h1 .

Write c1 and z1 in polar coordinates, for example, z1 = |z1 |ei✓ , where ✓ is the
angle whose tangent is the ratio of the imaginary part and the real part of z1
(sometimes called arg(z1); the range of ✓ is [�⇡, ⇡]). Then, using the fact that
ei↵ + e�i↵ = 2 cos(↵), the solution has the form

⇢(h) = a|z1 |�h cos(h✓ + b),

where a and b are determined by the initial conditions. Again, ⇢(h) dampens
to zero exponentially fast as h ! 1, but it does so in a sinusoidal fashion. The
implication of this result is shown in the next example.
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Time
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Fig. 3.4. Simulated AR(2) model, n = 144 with �1 = 1.5 and �2 = �.75.

Example 3.11 An AR(2) with Complex Roots
Figure 3.4 shows n = 144 observations from the AR(2) model

xt = 1.5xt�1 � .75xt�2 + wt,

with �2
w = 1, and with complex roots chosen so the process exhibits pseudo-

cyclic behavior at the rate of one cycle every 12 time points. The autoregressive
polynomial for this model is �(z) = 1�1.5z+ .75z2. The roots of �(z) are 1± i/

p
3,

and ✓ = tan�1(1/
p

3) = 2⇡/12 radians per unit time. To convert the angle to cycles
per unit time, divide by 2⇡ to get 1/12 cycles per unit time. The ACF for this model
is shown in left-hand-side of Figure 3.5.

To calculate the roots of the polynomial and solve for arg in R:
z = c(1,-1.5,.75) # coefficients of the polynomial
(a = polyroot(z)[1]) # print one root = 1 + i/sqrt(3)
[1] 1+0.57735i

arg = Arg(a)/(2*pi) # arg in cycles/pt
1/arg # the pseudo period
[1] 12

To reproduce Figure 3.4:
set.seed(8675309)
ar2 = arima.sim(list(order=c(2,0,0), ar=c(1.5,-.75)), n = 144)
plot(ar2, axes=FALSE, xlab="Time")
axis(2); axis(1, at=seq(0,144,by=12)); box()
abline(v=seq(0,144,by=12), lty=2)

To calculate and display the ACF for this model:
ACF = ARMAacf(ar=c(1.5,-.75), ma=0, 50)
plot(ACF, type="h", xlab="lag")
abline(h=0)
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Example 3.12 The  -weights for an ARMA Model
For a causal ARMA(p, q) model, �(B)xt = ✓(B)wt , where the zeros of �(z) are
outside the unit circle, recall that we may write

xt =
1
’

j=0
 jwt�j,

where the  -weights are determined using Property 3.1.
For the pure MA(q) model,  0 = 1,  j = ✓ j , for j = 1, . . . , q, and  j = 0,

otherwise. For the general case of ARMA(p, q) models, the task of solving for the
 -weights is much more complicated, as was demonstrated in Example 3.8. The
use of the theory of homogeneous di�erence equations can help here. To solve for
the  -weights in general, we must match the coe�cients in �(z) (z) = ✓(z):

(1 � �1z � �2z2 � · · · )( 0 +  1z +  2z2 + · · · ) = (1 + ✓1z + ✓2z2 + · · · ).

The first few values are

 0 = 1
 1 � �1 0 = ✓1

 2 � �1 1 � �2 0 = ✓2
 3 � �1 2 � �2 1 � �3 0 = ✓3

...

where we would take � j = 0 for j > p, and ✓ j = 0 for j > q. The  -weights satisfy
the homogeneous di�erence equation given by

 j �
p

’

k=1
�k j�k = 0, j � max(p, q + 1), (3.40)

with initial conditions

 j �
j

’

k=1
�k j�k = ✓ j, 0  j < max(p, q + 1). (3.41)

The general solution depends on the roots of the AR polynomial �(z) = 1 � �1z �
· · · � �pzp , as seen from (3.40). The specific solution will, of course, depend on
the initial conditions.

Consider the ARMA process given in (3.27), xt = .9xt�1+ .5wt�1+wt . Because
max(p, q + 1) = 2, using (3.41), we have  0 = 1 and  1 = .9 + .5 = 1.4. By (3.40),
for j = 2, 3, . . . , the  -weights satisfy  j � .9 j�1 = 0. The general solution
is  j = c .9j . To find the specific solution, use the initial condition  1 = 1.4,
so 1.4 = .9c or c = 1.4/.9. Finally,  j = 1.4(.9)j�1, for j � 1, as we saw in
Example 3.8.

To view, for example, the first 50  -weights in R, use:
ARMAtoMA(ar=.9, ma=.5, 50) # for a list
plot(ARMAtoMA(ar=.9, ma=.5, 50)) # for a graph
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3.3 Autocorrelation and Partial Autocorrelation

We begin by exhibiting the ACF of an MA(q) process, xt = ✓(B)wt , where ✓(B) =
1 + ✓1B + · · · + ✓qBq . Because xt is a finite linear combination of white noise terms,
the process is stationary with mean

E(xt ) =
q

’

j=0
✓ jE(wt�j) = 0,

where we have written ✓0 = 1, and with autocovariance function

�(h) = cov (xt+h, xt ) = cov
⇣

q
’

j=0
✓ jwt+h�j,

q
’

k=0
✓kwt�k

⌘

=

(

�2
w

Õq�h
j=0 ✓ j✓ j+h, 0  h  q

0 h > q.
(3.42)

Recall that �(h) = �(�h), so we will only display the values for h � 0. Note that �(q)
cannot be zero because ✓q , 0. The cutting o� of �(h) after q lags is the signature of
the MA(q) model. Dividing (3.42) by �(0) yields the ACF of an MA(q):

⇢(h) =
8

>

>

><

>

>

>

:

Õq�h
j=0 ✓ j✓ j+h

1 + ✓2
1 + · · · + ✓2

q

1  h  q

0 h > q.

(3.43)

For a causal ARMA(p, q) model, �(B)xt = ✓(B)wt , where the zeros of �(z) are
outside the unit circle, write

xt =
1
’

j=0
 jwt�j . (3.44)

It follows immediately that E(xt ) = 0 and the autocovariance function of xt is

�(h) = cov(xt+h, xt ) = �2
w

1
’

j=0
 j j+h, h � 0. (3.45)

We could then use (3.40) and (3.41) to solve for the  -weights. In turn, we could
solve for �(h), and the ACF ⇢(h) = �(h)/�(0). As in Example 3.10, it is also possible
to obtain a homogeneous di�erence equation directly in terms of �(h). First, we write

�(h) = cov(xt+h, xt ) = cov
⇣

p
’

j=1
� j xt+h�j +

q
’

j=0
✓ jwt+h�j, xt

⌘

=

p
’

j=1
� j�(h � j) + �2

w

q
’

j=h

✓ j j�h, h � 0,
(3.46)
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where we have used the fact that, for h � 0,

cov(wt+h�j, xt ) = cov
⇣

wt+h�j,
1
’

k=0
 kwt�k

⌘

=  j�h�
2
w .

From (3.46), we can write a general homogeneous equation for the ACF of a causal
ARMA process:

�(h) � �1�(h � 1) � · · · � �p�(h � p) = 0, h � max(p, q + 1), (3.47)

with initial conditions

�(h) �
p

’

j=1
� j�(h � j) = �2

w

q
’

j=h

✓ j j�h, 0  h < max(p, q + 1). (3.48)

Dividing (3.47) and (3.48) through by �(0) will allow us to solve for the ACF,
⇢(h) = �(h)/�(0).

Example 3.13 The ACF of an AR(p)
In Example 3.10 we considered the case where p = 2. For the general case, it
follows immediately from (3.47) that

⇢(h) � �1⇢(h � 1) � · · · � �p⇢(h � p) = 0, h � p. (3.49)

Let z1, . . . , zr denote the roots of �(z), each with multiplicity m1, . . . ,mr , respec-
tively, where m1 + · · · + mr = p. Then, from (3.37), the general solution is

⇢(h) = z�h1 P1(h) + z�h2 P2(h) + · · · + z�hr Pr (h), h � p, (3.50)

where Pj(h) is a polynomial in h of degree mj � 1.
Recall that for a causal model, all of the roots are outside the unit circle, |zi | > 1,

for i = 1, . . . , r . If all the roots are real, then ⇢(h) dampens exponentially fast to
zero as h ! 1. If some of the roots are complex, then they will be in conjugate
pairs and ⇢(h) will dampen, in a sinusoidal fashion, exponentially fast to zero as
h ! 1. In the case of complex roots, the time series will appear to be cyclic in
nature. This, of course, is also true for ARMA models in which the AR part has
complex roots.

Example 3.14 The ACF of an ARMA(1, 1)
Consider the ARMA(1, 1) process xt = �xt�1 + ✓wt�1 + wt, where |�| < 1. Based
on (3.47), the autocovariance function satisfies

�(h) � ��(h � 1) = 0, h = 2, 3, . . . ,

and it follows from (3.29)–(3.30) that the general solution is

�(h) = c �h, h = 1, 2, . . . . (3.51)
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To obtain the initial conditions, we use (3.48):

�(0) = ��(1) + �2
w[1 + ✓� + ✓2] and �(1) = ��(0) + �2

w✓.

Solving for �(0) and �(1), we obtain:

�(0) = �2
w

1 + 2✓� + ✓2

1 � �2 and �(1) = �2
w

(1 + ✓�)(� + ✓)
1 � �2 .

To solve for c, note that from (3.51), �(1) = c � or c = �(1)/�. Hence, the specific
solution for h � 1 is

�(h) = �(1)
�

�h = �2
w

(1 + ✓�)(� + ✓)
1 � �2 �h�1.

Finally, dividing through by �(0) yields the ACF

⇢(h) = (1 + ✓�)(� + ✓)
1 + 2✓� + ✓2 �h�1, h � 1. (3.52)

Notice that the general pattern of ⇢(h) versus h in (3.52) is not di�erent from
that of an AR(1) given in (3.8). Hence, it is unlikely that we will be able to tell the
di�erence between an ARMA(1,1) and an AR(1) based solely on an ACF estimated
from a sample. This consideration will lead us to the partial autocorrelation function.

T�� P������ A�������������� F������� (PACF)

We have seen in (3.43), for MA(q) models, the ACF will be zero for lags greater
than q. Moreover, because ✓q , 0, the ACF will not be zero at lag q. Thus, the ACF
provides a considerable amount of information about the order of the dependence
when the process is a moving average process. If the process, however, is ARMA
or AR, the ACF alone tells us little about the orders of dependence. Hence, it is
worthwhile pursuing a function that will behave like the ACF of MA models, but for
AR models, namely, the partial autocorrelation function (PACF).

Recall that if X , Y , and Z are random variables, then the partial correlation
between X and Y given Z is obtained by regressing X on Z to obtain X̂ , regressing Y
on Z to obtain Ŷ , and then calculating

⇢XY |Z = corr{X � X̂, Y � Ŷ }.

The idea is that ⇢XY |Z measures the correlation between X and Y with the linear
e�ect of Z removed (or partialled out). If the variables are multivariate normal, then
this definition coincides with ⇢XY |Z = corr(X,Y | Z).

To motivate the idea for time series, consider a causal AR(1) model, xt = �xt�1 +
wt . Then,

�x(2) = cov(xt, xt�2) = cov(�xt�1 + wt, xt�2)
= cov(�2xt�2 + �wt�1 + wt, xt�2) = �2�x(0).
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This result follows from causality because xt�2 involves {wt�2,wt�3, . . .}, which are
all uncorrelated with wt and wt�1. The correlation between xt and xt�2 is not zero,
as it would be for an MA(1), because xt is dependent on xt�2 through xt�1. Suppose
we break this chain of dependence by removing (or partial out) the e�ect xt�1. That
is, we consider the correlation between xt � �xt�1 and xt�2 � �xt�1, because it is the
correlation between xt and xt�2 with the linear dependence of each on xt�1 removed.
In this way, we have broken the dependence chain between xt and xt�2. In fact,

cov(xt � �xt�1, xt�2 � �xt�1) = cov(wt, xt�2 � �xt�1) = 0.

Hence, the tool we need is partial autocorrelation, which is the correlation between
xs and xt with the linear e�ect of everything “in the middle” removed.

To formally define the PACF for mean-zero stationary time series, let x̂t+h , for
h � 2, denote the regression3.3 of xt+h on {xt+h�1, xt+h�2, . . . , xt+1}, which we write
as

x̂t+h = �1xt+h�1 + �2xt+h�2 + · · · + �h�1xt+1. (3.53)

No intercept term is needed in (3.53) because the mean of xt is zero (otherwise,
replace xt by xt � µx in this discussion). In addition, let x̂t denote the regression of
xt on {xt+1, xt+2, . . . , xt+h�1}, then

x̂t = �1xt+1 + �2xt+2 + · · · + �h�1xt+h�1. (3.54)

Because of stationarity, the coe�cients, �1, . . . , �h�1 are the same in (3.53) and
(3.54); we will explain this result in the next section, but it will be evident from the
examples.

Definition 3.9 The partial autocorrelation function (PACF) of a stationary process,
xt , denoted �hh , for h = 1, 2, . . . , is

�11 = corr(xt+1, xt ) = ⇢(1) (3.55)

and
�hh = corr(xt+h � x̂t+h, xt � x̂t ), h � 2. (3.56)

The reason for using a double subscript will become evident in the next section.
The PACF, �hh , is the correlation between xt+h and xt with the linear dependence
of {xt+1, . . . , xt+h�1} on each, removed. If the process xt is Gaussian, then �hh =
corr(xt+h, xt | xt+1, . . . , xt+h�1); that is, �hh is the correlation coe�cient between xt+h
and xt in the bivariate distribution of (xt+h, xt ) conditional on {xt+1, . . . , xt+h�1}.

3.3 The term regression here refers to regression in the population sense. That is, x̂
t+h is the linear combina-

tion of {x
t+h�1, xt+h�2, . . . , xt+1 } that minimizes the mean squared error E(x

t+h �Õ

h�1
j=1 ↵

j

x
t+ j )2.
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Fig. 3.5. The ACF and PACF of an AR(2) model with �1 = 1.5 and �2 = �.75.

Example 3.15 The PACF of an AR(1)
Consider the PACF of the AR(1) process given by xt = �xt�1 + wt , with |�| < 1.
By definition, �11 = ⇢(1) = �. To calculate �22, consider the regression of xt+2 on
xt+1, say, x̂t+2 = �xt+1. We choose � to minimize

E(xt+2 � x̂t+2)2 = E(xt+2 � �xt+1)2 = �(0) � 2��(1) + �2�(0).

Taking derivatives with respect to � and setting the result equal to zero, we have
� = �(1)/�(0) = ⇢(1) = �. Next, consider the regression of xt on xt+1, say
x̂t = �xt+1. We choose � to minimize

E(xt � x̂t )2 = E(xt � �xt+1)2 = �(0) � 2��(1) + �2�(0).

This is the same equation as before, so � = �. Hence,

�22 = corr(xt+2 � x̂t+2, xt � x̂t ) = corr(xt+2 � �xt+1, xt � �xt+1)
= corr(wt+2, xt � �xt+1) = 0

by causality. Thus, �22 = 0. In the next example, we will see that in this case,
�hh = 0 for all h > 1.

Example 3.16 The PACF of an AR(p)
The model implies xt+h =

Õp
j=1 � j xt+h�j+wt+h , where the roots of �(z) are outside

the unit circle. When h > p, the regression of xt+h on {xt+1, . . . , xt+h�1}, is

x̂t+h =
p

’

j=1
� j xt+h�j .

We have not proved this obvious result yet, but we will prove it in the next section.
Thus, when h > p,
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Table 3.1. Behavior of the ACF and PACF for ARMA Models

AR(p) MA(q) ARMA(p, q)
ACF Tails o� Cuts o� Tails o�

after lag q

PACF Cuts o� Tails o� Tails o�
after lag p

�hh = corr(xt+h � x̂t+h, xt � x̂t ) = corr(wt+h, xt � x̂t ) = 0,

because, by causality, xt � x̂t depends only on {wt+h�1,wt+h�2, . . .}; recall equation
(3.54). When h  p, �pp is not zero, and �11, . . . , �p�1,p�1 are not necessarily zero.
We will see later that, in fact, �pp = �p . Figure 3.5 shows the ACF and the PACF
of the AR(2) model presented in Example 3.11. To reproduce Figure 3.5 in R, use
the following commands:
ACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24)[-1]
PACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24, pacf=TRUE)
par(mfrow=c(1,2))
plot(ACF, type="h", xlab="lag", ylim=c(-.8,1)); abline(h=0)
plot(PACF, type="h", xlab="lag", ylim=c(-.8,1)); abline(h=0)

Example 3.17 The PACF of an Invertible MA(q)
For an invertible MA(q), we can write xt = �Õ1

j=1 ⇡j xt�j +wt . Moreover, no finite
representation exists. From this result, it should be apparent that the PACF will
never cut o�, as in the case of an AR(p).

For an MA(1), xt = wt + ✓wt�1, with |✓ | < 1, calculations similar to Exam-
ple 3.15 will yield �22 = �✓2/(1+ ✓2 + ✓4). For the MA(1) in general, we can show
that

�hh = � (�✓)h(1 � ✓2)
1 � ✓2(h+1) , h � 1.

In the next section, we will discuss methods of calculating the PACF. The PACF
for MA models behaves much like the ACF for AR models. Also, the PACF for AR
models behaves much like the ACF for MA models. Because an invertible ARMA
model has an infinite AR representation, the PACF will not cut o�. We may summarize
these results in Table 3.1.

Example 3.18 Preliminary Analysis of the Recruitment Series
We consider the problem of modeling the Recruitment series shown in Figure 1.5.
There are 453 months of observed recruitment ranging over the years 1950-1987.
The ACF and the PACF given in Figure 3.6 are consistent with the behavior of
an AR(2). The ACF has cycles corresponding roughly to a 12-month period, and
the PACF has large values for h = 1, 2 and then is essentially zero for higher
order lags. Based on Table 3.1, these results suggest that a second-order (p = 2)
autoregressive model might provide a good fit. Although we will discuss estimation
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Fig. 3.6. ACF and PACF of the Recruitment series. Note that the lag axes are in terms of season
(12 months in this case).

in detail in Section 3.5, we ran a regression (see Section 2.1) using the data triplets
{(x; z1, z2) : (x3; x2, x1), (x4; x3, x2), . . . , (x453; x452, x451)} to fit a model of the form

xt = �0 + �1xt�1 + �2xt�2 + wt

for t = 3, 4, . . . , 453. The estimates and standard errors (in parentheses) are �̂0 =
6.74(1.11), �̂1 = 1.35(.04), �̂2 = �.46(.04), and �̂2

w = 89.72.
The following R code can be used for this analysis. We use acf2 from astsa to

print and plot the ACF and PACF.
acf2(rec, 48) # will produce values and a graphic
(regr = ar.ols(rec, order=2, demean=FALSE, intercept=TRUE))
regr$asy.se.coef # standard errors of the estimates

3.4 Forecasting

In forecasting, the goal is to predict future values of a time series, xn+m, m = 1, 2, . . .,
based on the data collected to the present, x1:n = {x1, x2, . . . , xn}. Throughout this
section, we will assume xt is stationary and the model parameters are known. The
problem of forecasting when the model parameters are unknown will be discussed in
the next section; also, see Problem 3.26. The minimum mean square error predictor
of xn+m is

xnn+m = E(xn+m | x1:n) (3.57)
because the conditional expectation minimizes the mean square error

E [xn+m � g(x1:n)]2 , (3.58)

where g(x1:n) is a function of the observations x1:n; see Problem 3.14.

Frederic Paik Schoenberg

Frederic Paik Schoenberg
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First, we will restrict attention to predictors that are linear functions of the data,
that is, predictors of the form

xnn+m = ↵0 +
n

’

k=1
↵k xk, (3.59)

where ↵0, ↵1, . . . , ↵n are real numbers. We note that the ↵s depend on n and m, but for
now we drop the dependence from the notation. For example, if n = m = 1, then x1

2 is
the one-step-ahead linear forecast of x2 given x1. In terms of (3.59), x1

2 = ↵0 + ↵1x1.
But if n = 2, x2

3 is the one-step-ahead linear forecast of x3 given x1 and x2. In terms
of (3.59), x2

3 = ↵0 +↵1x1 +↵2x2, and in general, the ↵s in x1
2 and x2

3 will be di�erent.
Linear predictors of the form (3.59) that minimize the mean square prediction

error (3.58) are called best linear predictors (BLPs). As we shall see, linear prediction
depends only on the second-order moments of the process, which are easy to estimate
from the data. Much of the material in this section is enhanced by the theoretical
material presented in Appendix B. For example, Theorem B.3 states that if the
process is Gaussian, minimum mean square error predictors and best linear predictors
are the same. The following property, which is based on the Projection Theorem,
Theorem B.1, is a key result.

Property 3.3 Best Linear Prediction for Stationary Processes
Given data x1, . . . , xn, the best linear predictor, xnn+m = ↵0+

Õn
k=1 ↵k xk, of xn+m,

for m � 1, is found by solving

E
⇥

�

xn+m � xnn+m
�

xk
⇤

= 0, k = 0, 1, . . . , n, (3.60)

where x0 = 1, for ↵0, ↵1, . . . ↵n.

The equations specified in (3.60) are called the prediction equations, and they
are used to solve for the coe�cients {↵0, ↵1, . . . , ↵n}. The results of Property 3.3 can
also be obtained via least squares; i.e., to minimize Q = E(xn+m �Õn

k=0 ↵k xk)2 with
respect to the ↵s, solve @Q/@↵j = 0 for the ↵j , j = 0, 1, . . . , n. This leads to (3.60).

If E(xt ) = µ, the first equation (k = 0) of (3.60) implies

E(xnn+m) = E(xn+m) = µ.

Thus, taking expectation in (3.59), we have

µ = ↵0 +
n

’

k=1
↵k µ or ↵0 = µ

⇣

1 �
n

’

k=1
↵k

⌘

.

Hence, the form of the BLP is

xnn+m = µ +
n

’

k=1
↵k(xk � µ).

Thus, until we discuss estimation, there is no loss of generality in considering the
case that µ = 0, in which case, ↵0 = 0.
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First, consider one-step-ahead prediction. That is, given {x1, . . . , xn}, we wish to
forecast the value of the time series at the next time point, xn+1. The BLP of xn+1 is
of the form

xnn+1 = �n1xn + �n2xn�1 + · · · + �nnx1, (3.61)

where we now display the dependence of the coe�cients on n; in this case, ↵k in
(3.59) is �n,n+1�k in (3.61), for k = 1, . . . , n. Using Property 3.3, the coe�cients
{�n1, �n2, . . . , �nn} satisfy

E
h⇣

xn+1 �
n

’

j=1
�nj xn+1�j

⌘

xn+1�k
i

= 0, k = 1, . . . , n,

or
n

’

j=1
�nj�(k � j) = �(k), k = 1, . . . , n. (3.62)

The prediction equations (3.62) can be written in matrix notation as

�n�n = �n, (3.63)

where �n = {�(k � j)}n
j,k=1 is an n⇥n matrix, �n = (�n1, . . . , �nn)0 is an n⇥1 vector,

and �n = (�(1), . . . , �(n))0 is an n ⇥ 1 vector.
The matrix �n is nonnegative definite. If �n is singular, there are many solutions

to (3.63), but, by the Projection Theorem (Theorem B.1), xn
n+1 is unique. If �n is

nonsingular, the elements of �n are unique, and are given by

�n = �
�1
n �n. (3.64)

For ARMA models, the fact that �2
w > 0 and �(h) ! 0 as h ! 1 is enough to

ensure that �n is positive definite (Problem 3.12). It is sometimes convenient to write
the one-step-ahead forecast in vector notation

xnn+1 = �
0
nx, (3.65)

where x = (xn, xn�1, . . . , x1)0.
The mean square one-step-ahead prediction error is

Pn
n+1 = E(xn+1 � xnn+1)2 = �(0) � �0n��1

n �n. (3.66)

To verify (3.66) using (3.64) and (3.65),

E(xn+1 � xnn+1)2 = E(xn+1 � �0nx)2 = E(xn+1 � �0n��1
n x)2

= E(x2
n+1 � 2�0n��1

n xxn+1 + �
0
n�

�1
n xx 0��1

n �n)
= �(0) � 2�0n��1

n �n + �
0
n�

�1
n �n�

�1
n �n

= �(0) � �0n��1
n �n.
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Example 3.19 Prediction for an AR(2)
Suppose we have a causal AR(2) process xt = �1xt�1 + �2xt�2 + wt , and one
observation x1. Then, using equation (3.64), the one-step-ahead prediction of x2
based on x1 is

x1
2 = �11x1 =

�(1)
�(0) x1 = ⇢(1)x1.

Now, suppose we want the one-step-ahead prediction of x3 based on two observa-
tions x1 and x2; i.e., x2

3 = �21x2 + �22x1. We could use (3.62)

�21�(0) + �22�(1) = �(1)
�21�(1) + �22�(0) = �(2)

to solve for �21 and �22, or use the matrix form in (3.64) and solve
✓

�21
�22

◆

=

✓

�(0) �(1)
�(1) �(0)

◆�1 ✓

�(1)
�(2)

◆

,

but, it should be apparent from the model that x2
3 = �1x2+�2x1. Because �1x2+�2x1

satisfies the prediction equations (3.60),

E{[x3 � (�1x2 + �2x1)]x1} = E(w3x1) = 0,

E{[x3 � (�1x2 + �2x1)]x2} = E(w3x2) = 0,

it follows that, indeed, x2
3 = �1x2 + �2x1, and by the uniqueness of the coe�cients

in this case, that �21 = �1 and �22 = �2. Continuing in this way, it is easy to verify
that, for n � 2,

xnn+1 = �1xn + �2xn�1.

That is, �n1 = �1, �n2 = �2, and �nj = 0, for j = 3, 4, . . . , n.

From Example 3.19, it should be clear (Problem 3.45) that, if the time series is a
causal AR(p) process, then, for n � p,

xnn+1 = �1xn + �2xn�1 + · · · + �pxn�p+1. (3.67)

For ARMA models in general, the prediction equations will not be as simple as the
pure AR case. In addition, for n large, the use of (3.64) is prohibitive because it
requires the inversion of a large matrix. There are, however, iterative solutions that
do not require any matrix inversion. In particular, we mention the recursive solution
due to Levinson (1947) and Durbin (1960).

Property 3.4 The Durbin–Levinson Algorithm
Equations (3.64) and (3.66) can be solved iteratively as follows:

�00 = 0, P0
1 = �(0). (3.68)

For n � 1,
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106 3 ARIMA Models

�nn =
⇢(n) � Õn�1

k=1 �n�1,k ⇢(n � k)
1 � Õn�1

k=1 �n�1,k ⇢(k)
, Pn

n+1 = Pn�1
n (1 � �2

nn), (3.69)

where, for n � 2,

�nk = �n�1,k � �nn�n�1,n�k, k = 1, 2, . . . , n � 1. (3.70)

The proof of Property 3.4 is left as an exercise; see Problem 3.13.

Example 3.20 Using the Durbin–Levinson Algorithm
To use the algorithm, start with �00 = 0, P0

1 = �(0). Then, for n = 1,

�11 = ⇢(1), P1
2 = �(0)[1 � �2

11].

For n = 2,

�22 =
⇢(2) � �11 ⇢(1)
1 � �11 ⇢(1)

, �21 = �11 � �22�11,

P2
3 = P1

2 [1 � �2
22] = �(0)[1 � �2

11][1 � �2
22].

For n = 3,

�33 =
⇢(3) � �21 ⇢(2) � �22 ⇢(1)
1 � �21 ⇢(1) � �22 ⇢(2)

,

�32 = �22 � �33�21, �31 = �21 � �33�22,

P3
4 = P2

3 [1 � �2
33] = �(0)[1 � �2

11][1 � �2
22][1 � �2

33],

and so on. Note that, in general, the standard error of the one-step-ahead forecast is
the square root of

Pn
n+1 = �(0)

n
÷

j=1
[1 � �2

j j]. (3.71)

An important consequence of the Durbin–Levinson algorithm is (see Prob-
lem 3.13) as follows.

Property 3.5 Iterative Solution for the PACF
The PACF of a stationary process xt , can be obtained iteratively via (3.69) as

�nn, for n = 1, 2, . . . .

Using Property 3.5 and putting n = p in (3.61) and (3.67), it follows that for an
AR(p) model,

xp
p+1 = �p1 xp + �p2 xp�1 + · · · + �pp x1

= �1 xp + �2 xp�1 + · · · + �p x1.
(3.72)

Result (3.72) shows that for an AR(p) model, the partial autocorrelation coe�cient at
lag p, �pp , is also the last coe�cient in the model, �p , as was claimed in Example 3.16.
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Example 3.21 The PACF of an AR(2)
We will use the results of Example 3.20 and Property 3.5 to calculate the first three
values, �11, �22, �33, of the PACF. Recall from Example 3.10 that ⇢(h) � �1⇢(h �
1)��2⇢(h�2) = 0 for h � 1.When h = 1, 2, 3,we have ⇢(1) = �1/(1��2), ⇢(2) =
�1⇢(1) + �2, ⇢(3) � �1⇢(2) � �2⇢(1) = 0. Thus,

�11 = ⇢(1) =
�1

1 � �2

�22 =
⇢(2) � ⇢(1)2
1 � ⇢(1)2 =

h

�1

⇣

�1
1��2

⌘

+ �2

i

�
⇣

�1
1��2

⌘2

1 �
⇣

�1
1��2

⌘2 = �2

�21 = ⇢(1)[1 � �2] = �1

�33 =
⇢(3) � �1⇢(2) � �2⇢(1)
1 � �1⇢(1) � �2⇢(2)

= 0.

Notice that, as shown in (3.72), �22 = �2 for an AR(2) model.

So far, we have concentrated on one-step-ahead prediction, but Property 3.3
allows us to calculate the BLP of xn+m for any m � 1. Given data, {x1, . . . , xn}, the
m-step-ahead predictor is

xnn+m = �
(m)
n1 xn + �

(m)
n2 xn�1 + · · · + �(m)

nn x1, (3.73)

where {�(m)
n1 , �

(m)
n2 , . . . , �

(m)
nn } satisfy the prediction equations,

n
’

j=1
�(m)
nj E(xn+1�j xn+1�k) = E(xn+mxn+1�k), k = 1, . . . , n,

or
n

’

j=1
�(m)
nj �(k � j) = �(m + k � 1), k = 1, . . . , n. (3.74)

The prediction equations can again be written in matrix notation as

�n�
(m)
n = �(m)

n , (3.75)

where �(m)
n = (�(m), . . . , �(m + n � 1))0, and �(m)

n = (�(m)
n1 , . . . , �

(m)
nn )0 are n⇥1 vectors.

The mean square m-step-ahead prediction error is

Pn
n+m = E

�

xn+m � xnn+m
�2
= �(0) � �(m)0

n ��1
n �(m)

n . (3.76)

Another useful algorithm for calculating forecasts was given by Brockwell and
Davis (1991, Chapter 5). This algorithm follows directly from applying the projection
theorem (Theorem B.1) to the innovations, xt�xt�1

t , for t = 1, . . . , n, using the fact that
the innovations xt � xt�1

t and xs � xs�1
s are uncorrelated for s , t (see Problem 3.46).

We present the case in which xt is a mean-zero stationary time series.
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108 3 ARIMA Models

Property 3.6 The Innovations Algorithm
The one-step-ahead predictors, xt

t+1, and their mean-squared errors, Pt
t+1, can

be calculated iteratively as
x0

1 = 0, P0
1 = �(0)

xtt+1 =
t

’

j=1
✓t j(xt+1�j � xt�j

t+1�j), t = 1, 2, . . . (3.77)

Pt
t+1 = �(0) �

t�1
’

j=0
✓2
t,t�jP

j
j+1 t = 1, 2, . . . , (3.78)

where, for j = 0, 1, . . . , t � 1,

✓t,t�j =
⇣

�(t � j) �
j�1
’

k=0
✓ j, j�k✓t,t�kPk

k+1

⌘

�

P j
j+1. (3.79)

Given data x1, . . . , xn, the innovations algorithm can be calculated successively
for t = 1, then t = 2 and so on, in which case the calculation of xn

n+1 and Pn
n+1 is

made at the final step t = n. The m-step-ahead predictor and its mean-square error
based on the innovations algorithm (Problem 3.46) are given by

xnn+m =
n+m�1
’

j=m

✓n+m�1, j(xn+m�j � xn+m�j�1
n+m�j ), (3.80)

Pn
n+m = �(0) �

n+m�1
’

j=m

✓2
n+m�1, jP

n+m�j�1
n+m�j , (3.81)

where the ✓n+m�1, j are obtained by continued iteration of (3.79).

Example 3.22 Prediction for an MA(1)
The innovations algorithm lends itself well to prediction for moving average pro-
cesses. Consider an MA(1) model, xt = wt + ✓wt�1. Recall that �(0) = (1+ ✓2)�2

w ,
�(1) = ✓�2

w , and �(h) = 0 for h > 1. Then, using Property 3.6, we have

✓n1 = ✓�
2
w/Pn�1

n

✓nj = 0, j = 2, . . . , n

P0
1 = (1 + ✓2)�2

w

Pn
n+1 = (1 + ✓2 � ✓✓n1)�2

w .

Finally, from (3.77), the one-step-ahead predictor is

xnn+1 = ✓
⇣

xn � xn�1
n

⌘

�2
w/Pn�1

n .
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F���������� ARMA P��������

The general prediction equations (3.60) provide little insight into forecasting for
ARMA models in general. There are a number of di�erent ways to express these
forecasts, and each aids in understanding the special structure of ARMA prediction.
Throughout, we assume xt is a causal and invertible ARMA(p, q) process, �(B)xt =
✓(B)wt , where wt ⇠ iid N(0,�2

w). In the non-zero mean case, E(xt ) = µx , simply
replace xt with xt � µx in the model. First, we consider two types of forecasts. We
write xnn+m to mean the minimum mean square error predictor of xn+m based on the
data {xn, . . . , x1}, that is,

xnn+m = E(xn+m
�

� xn, . . . , x1).

For ARMA models, it is easier to calculate the predictor of xn+m, assuming we have
the complete history of the process {xn, xn�1, . . . , x1, x0, x�1, . . .}.We will denote the
predictor of xn+m based on the infinite past as

x̃n+m = E(xn+m
�

� xn, xn�1, . . . , x1, x0, x�1, . . .).

In general, xnn+m and x̃n+m are not the same, but the idea here is that, for large samples,
x̃n+m will provide a good approximation to xnn+m.

Now, write xn+m in its causal and invertible forms:

xn+m =
1
’

j=0
 jwn+m�j,  0 = 1 (3.82)

wn+m =

1
’

j=0
⇡j xn+m�j, ⇡0 = 1. (3.83)

Then, taking conditional expectations in (3.82), we have

x̃n+m =
1
’

j=0
 j w̃n+m�j =

1
’

j=m

 jwn+m�j, (3.84)

because, by causality and invertibility,

w̃t = E(wt

�

� xn, xn�1, . . . , x0, x�1, . . .) =
(

0 t > n
wt t  n.

Similarly, taking conditional expectations in (3.83), we have

0 = x̃n+m +
1
’

j=1
⇡j x̃n+m�j,

or

x̃n+m = �
m�1
’

j=1
⇡j x̃n+m�j �

1
’

j=m

⇡j xn+m�j, (3.85)
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110 3 ARIMA Models

using the fact E(xt
�

� xn, xn�1, . . . , x0, x�1, . . .) = xt , for t  n. Prediction is accom-
plished recursively using (3.85), starting with the one-step-ahead predictor, m = 1,
and then continuing for m = 2, 3, . . .. Using (3.84), we can write

xn+m � x̃n+m =
m�1
’

j=0
 jwn+m�j,

so the mean-square prediction error can be written as

Pn
n+m = E(xn+m � x̃n+m)2 = �2

w

m�1
’

j=0
 2
j . (3.86)

Also, we note, for a fixed sample size, n, the prediction errors are correlated. That is,
for k � 1,

E{(xn+m � x̃n+m)(xn+m+k � x̃n+m+k)} = �2
w

m�1
’

j=0
 j j+k . (3.87)

Example 3.23 Long-Range Forecasts
Consider forecasting an ARMA process with mean µx . Replacing xn+m with xn+m�
µx in (3.82), and taking conditional expectation as in (3.84), we deduce that the
m-step-ahead forecast can be written as

x̃n+m = µx +
1
’

j=m

 jwn+m�j . (3.88)

Noting that the  -weights dampen to zero exponentially fast, it is clear that

x̃n+m ! µx (3.89)

exponentially fast (in the mean square sense) as m ! 1. Moreover, by (3.86), the
mean square prediction error

Pn
n+m ! �2

w

1
’

j=0
 2
j = �x(0) = �2

x, (3.90)

exponentially fast as m ! 1.
It should be clear from (3.89) and (3.90) that ARMA forecasts quickly settle to

the mean with a constant prediction error as the forecast horizon, m, grows. This
e�ect can be seen in Figure 3.7 where the Recruitment series is forecast for 24
months; see Example 3.25.

When n is small, the general prediction equations (3.60) can be used easily.
When n is large, we would use (3.85) by truncating, because we do not observe
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x0, x�1, x�2, . . ., and only the data x1, x2, . . . , xn are available. In this case, we can
truncate (3.85) by setting

Õ1
j=n+m ⇡j xn+m�j = 0. The truncated predictor is then

written as

x̃nn+m = �
m�1
’

j=1
⇡j x̃nn+m�j �

n+m�1
’

j=m

⇡j xn+m�j, (3.91)

which is also calculated recursively, m = 1, 2, . . .. The mean square prediction error,
in this case, is approximated using (3.86).

For AR(p) models, and when n > p, equation (3.67) yields the exact predictor,
xnn+m, of xn+m, and there is no need for approximations. That is, for n > p, x̃nn+m =
x̃n+m = xnn+m. Also, in this case, the one-step-ahead prediction error is E(xn+1 �
xn
n+1)2 = �2

w . For pure MA(q) or ARMA(p, q) models, truncated prediction has a
fairly nice form.

Property 3.7 Truncated Prediction for ARMA
For ARMA(p, q) models, the truncated predictors for m = 1, 2, . . . , are

x̃nn+m = �1 x̃nn+m�1 + · · · + �p x̃nn+m�p + ✓1w̃
n
n+m�1 + · · · + ✓qw̃n

n+m�q, (3.92)

where x̃nt = xt for 1  t  n and x̃nt = 0 for t  0. The truncated prediction errors
are given by: w̃n

t = 0 for t  0 or t > n, and

w̃n
t = �(B)x̃nt � ✓1w̃

n
t�1 � · · · � ✓qw̃n

t�q

for 1  t  n.

Example 3.24 Forecasting an ARMA(1, 1) Series
Given data x1, . . . , xn, for forecasting purposes, write the model as

xn+1 = �xn + wn+1 + ✓wn.

Then, based on (3.92), the one-step-ahead truncated forecast is

x̃nn+1 = �xn + 0 + ✓w̃n
n .

For m � 2, we have
x̃nn+m = �x̃nn+m�1,

which can be calculated recursively, m = 2, 3, . . . .
To calculate w̃n

n , which is needed to initialize the successive forecasts, the model
can be written as wt = xt ��xt�1 � ✓wt�1 for t = 1, . . . , n. For truncated forecasting
using (3.92), put w̃n

0 = 0, x0 = 0, and then iterate the errors forward in time

w̃n
t = xt � �xt�1 � ✓w̃n

t�1, t = 1, . . . , n.

The approximate forecast variance is computed from (3.86) using the  -weights
determined as in Example 3.12. In particular, the -weights satisfy j = (�+✓)� j�1,
for j � 1. This result gives

Pn
n+m = �

2
w



1 + (� + ✓)2
m�1
’

j=1
�2(j�1)

�

= �2
w



1 +
(� + ✓)2(1 � �2(m�1))

(1 � �2)

�

.
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Fig. 3.7. Twenty-four month forecasts for the Recruitment series. The actual data shown are
from about January 1980 to September 1987, and then the forecasts plus and minus one
standard error are displayed.

To assess the precision of the forecasts, prediction intervals are typically cal-
culated along with the forecasts. In general, (1 � ↵) prediction intervals are of the
form

xnn+m ± c ↵
2

p

Pn
n+m, (3.93)

where c↵/2 is chosen to get the desired degree of confidence. For example, if the
process is Gaussian, then choosing c↵/2 = 2 will yield an approximate 95% prediction
interval for xn+m. If we are interested in establishing prediction intervals over more
than one time period, then c↵/2 should be adjusted appropriately, for example, by
using Bonferroni’s inequality [see (4.63) in Chapter 4 or Johnson and Wichern, 1992,
Chapter 5].

Example 3.25 Forecasting the Recruitment Series
Using the parameter estimates as the actual parameter values, Figure 3.7 shows the
result of forecasting the Recruitment series given in Example 3.18 over a 24-month
horizon, m = 1, 2, . . . , 24. The actual forecasts are calculated as

xnn+m = 6.74 + 1.35xnn+m�1 � .46xnn+m�2

for n = 453 and m = 1, 2, . . . , 12. Recall that xst = xt when t  s. The forecasts
errors Pn

n+m are calculated using (3.86). Recall that �̂2
w = 89.72, and using (3.40)

from Example 3.12, we have  j = 1.35 j�1 � .46 j�2 for j � 2, where  0 = 1 and
 1 = 1.35. Thus, for n = 453,

Pn
n+1 = 89.72,

Pn
n+2 = 89.72(1 + 1.352),

Pn
n+3 = 89.72(1 + 1.352 + [1.352 � .46]2),

and so on.
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Note how the forecast levels o� quickly and the prediction intervals are wide,
even though in this case the forecast limits are only based on one standard error;
that is, xnn+m ± p

Pn
n+m.

To reproduce the analysis and Figure 3.7, use the following commands:
regr = ar.ols(rec, order=2, demean=FALSE, intercept=TRUE)
fore = predict(regr, n.ahead=24)
ts.plot(rec, fore$pred, col=1:2, xlim=c(1980,1990), ylab="Recruitment")
U = fore$pred+fore$se; L = fore$pred-fore$se
xx = c(time(U), rev(time(U))); yy = c(L, rev(U))
polygon(xx, yy, border = 8, col = gray(.6, alpha = .2))
lines(fore$pred, type="p", col=2)

We complete this section with a brief discussion of backcasting. In backcasting,
we want to predict x1�m, for m = 1, 2, . . ., based on the data {x1, . . . , xn}. Write the
backcast as

xn1�m =
n

’

j=1
↵j xj . (3.94)

Analogous to (3.74), the prediction equations (assuming µx = 0) are

n
’

j=1
↵jE(xj xk) = E(x1�mxk), k = 1, . . . , n, (3.95)

or
n

’

j=1
↵j�(k � j) = �(m + k � 1), k = 1, . . . , n. (3.96)

These equations are precisely the prediction equations for forward prediction. That is,
↵j ⌘ �(m)

nj , for j = 1, . . . , n, where the �(m)
nj are given by (3.75). Finally, the backcasts

are given by
xn1�m = �

(m)
n1 x1 + · · · + �(m)

nn xn, m = 1, 2, . . . . (3.97)

Example 3.26 Backcasting an ARMA(1, 1)
Consider an ARMA(1, 1) process, xt = �xt�1 + ✓wt�1 + wt ; we will call this the
forward model. We have just seen that best linear prediction backward in time is
the same as best linear prediction forward in time for stationary models. Assuming
the models are Gaussian, we also have that minimum mean square error prediction
backward in time is the same as forward in time for ARMA models.3.4 Thus, the
process can equivalently be generated by the backward model,

xt = �xt+1 + ✓vt+1 + vt,

3.4 In the stationary Gaussian case, (a) the distribution of {x
n+1, xn, . . . , x1 } is the same as (b) the

distribution of {x0, x1 . . . , xn }. In forecasting we use (a) to obtain E(x
n+1 | x

n

, . . . , x1); in backcasting
we use (b) to obtain E(x0 | x1, . . . , xn). Because (a) and (b) are the same, the two problems are
equivalent.
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Fig. 3.8. Display for Example 3.26; backcasts from a simulated ARMA(1, 1).

where {vt } is a Gaussian white noise process with variance �2
w . We may write xt =

Õ1
j=0  jvt+j , where  0 = 1; this means that xt is uncorrelated with {vt�1, vt�2, . . .},

in analogy to the forward model.
Given data {x1, . . . ., xn}, truncate vnn = E(vn | x1, . . . ., xn) to zero and then

iterate backward. That is, put ṽnn = 0, as an initial approximation, and then generate
the errors backward

ṽnt = xt � �xt+1 � ✓ṽnt+1, t = (n � 1), (n � 2), . . . , 1.

Then,
x̃n0 = �x1 + ✓ṽ

n
1 + ṽ

n
0 = �x1 + ✓ṽ

n
1 ,

because ṽnt = 0 for t  0. Continuing, the general truncated backcasts are given by

x̃n1�m = �x̃n2�m, m = 2, 3, . . . .

To backcast data in R, simply reverse the data, fit the model and predict. In the
following, we backcasted a simulated ARMA(1,1) process; see Figure 3.8.
set.seed(90210)
x = arima.sim(list(order = c(1,0,1), ar =.9, ma=.5), n = 100)
xr = rev(x) # xr is the reversed data
pxr = predict(arima(xr, order=c(1,0,1)), 10) # predict the reversed data
pxrp = rev(pxr$pred) # reorder the predictors (for plotting)
pxrse = rev(pxr$se) # reorder the SEs
nx = ts(c(pxrp, x), start=-9) # attach the backcasts to the data
plot(nx, ylab=expression(X[~t]), main='Backcasting')
U = nx[1:10] + pxrse; L = nx[1:10] - pxrse
xx = c(-9:0, 0:-9); yy = c(L, rev(U))
polygon(xx, yy, border = 8, col = gray(0.6, alpha = 0.2))
lines(-9:0, nx[1:10], col=2, type='o')
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3.5 Estimation

Throughout this section, we assume we have n observations, x1, . . . , xn, from a causal
and invertible Gaussian ARMA(p, q) process in which, initially, the order parameters,
p and q, are known. Our goal is to estimate the parameters, �1, . . . , �p , ✓1, . . . , ✓q,
and �2

w . We will discuss the problem of determining p and q later in this section.
We begin with method of moments estimators. The idea behind these estimators

is that of equating population moments to sample moments and then solving for the
parameters in terms of the sample moments. We immediately see that, if E(xt ) =
µ, then the method of moments estimator of µ is the sample average, x̄. Thus,
while discussing method of moments, we will assume µ = 0. Although the method
of moments can produce good estimators, they can sometimes lead to suboptimal
estimators. We first consider the case in which the method leads to optimal (e�cient)
estimators, that is, AR(p) models,

xt = �1xt�1 + · · · + �pxt�p + wt,

where the first p + 1 equations of (3.47) and (3.48) lead to the following:

Definition 3.10 The Yule–Walker equations are given by

�(h) = �1�(h � 1) + · · · + �p�(h � p), h = 1, 2, . . . , p, (3.98)
�2
w = �(0) � �1�(1) � · · · � �p�(p). (3.99)

In matrix notation, the Yule–Walker equations are

�p� = �p, �2
w = �(0) � �0�p, (3.100)

where �p = {�(k � j)}p
j,k=1 is a p⇥ p matrix, � = (�1, . . . , �p)0 is a p⇥ 1 vector, and

�p = (�(1), . . . , �(p))0 is a p ⇥ 1 vector. Using the method of moments, we replace
�(h) in (3.100) by �̂(h) [see equation (1.36)] and solve

�̂ = �̂�1
p �̂p, �̂2

w = �̂(0) � �̂0p�̂�1
p �̂p . (3.101)

These estimators are typically called the Yule–Walker estimators. For calculation
purposes, it is sometimes more convenient to work with the sample ACF. By factoring
�̂(0) in (3.101), we can write the Yule–Walker estimates as

�̂ = R̂�1
p ⇢̂p, �̂2

w = �̂(0)
⇥

1 � ⇢̂0p R̂�1
p ⇢̂p

⇤

, (3.102)

where R̂p = { ⇢̂(k � j)}p
j,k=1 is a p ⇥ p matrix and ⇢̂p = (⇢̂(1), . . . , ⇢̂(p))0 is a p ⇥ 1

vector.
For AR(p) models, if the sample size is large, the Yule–Walker estimators are

approximately normally distributed, and �̂2
w is close to the true value of �2

w . We state
these results in Property 3.8; for details, see Section B.3.
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Property 3.8 Large Sample Results for Yule–Walker Estimators
The asymptotic (n ! 1) behavior of the Yule–Walker estimators in the case of

causal AR(p) processes is as follows:

p
n
�

�̂ � �
� d! N

⇣

0,�2
w�

�1
p

⌘

, �̂2
w

p! �2
w . (3.103)

The Durbin–Levinson algorithm, (3.68)–(3.70), can be used to calculate �̂without
inverting �̂p or R̂p , by replacing �(h) by �̂(h) in the algorithm. In running the
algorithm, we will iteratively calculate the h ⇥ 1 vector, �̂h = (�̂h1, . . . , �̂hh)0, for
h = 1, 2, . . .. Thus, in addition to obtaining the desired forecasts, the Durbin–Levinson
algorithm yields �̂hh , the sample PACF. Using (3.103), we can show the following
property.

Property 3.9 Large Sample Distribution of the PACF
For a causal AR(p) process, asymptotically (n ! 1),

p
n �̂hh

d! N (0, 1) , for h > p. (3.104)

Example 3.27 Yule–Walker Estimation for an AR(2) Process
The data shown in Figure 3.4 were n = 144 simulated observations from the AR(2)
model

xt = 1.5xt�1 � .75xt�2 + wt,

where wt ⇠ iid N(0, 1). For these data, �̂(0) = 8.903, ⇢̂(1) = .849, and ⇢̂(2) = .519.
Thus,

�̂ =

✓

�̂1
�̂2

◆

=



1 .849
.849 1

��1 ✓

.849

.519

◆

=

✓

1.463
�.723

◆

and
�̂2
w = 8.903



1 � (.849, .519)
✓

1.463
�.723

◆�

= 1.187.

By Property 3.8, the asymptotic variance–covariance matrix of �̂ is

1
144

1.187
8.903



1 .849
.849 1

��1
=



.0582 �.003
�.003 .0582

�

,

and it can be used to get confidence regions for, or make inferences about �̂ and
its components. For example, an approximate 95% confidence interval for �2 is
�.723 ± 2(.058), or (�.838,�.608), which contains the true value of �2 = �.75.

For these data, the first three sample partial autocorrelations are �̂11 = ⇢̂(1) =
.849, �̂22 = �̂2 = �.721, and �̂33 = �.085. According to Property 3.9, the asymp-
totic standard error of �̂33 is 1/

p
144 = .083, and the observed value, �.085, is

about only one standard deviation from �33 = 0.
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Example 3.28 Yule–Walker Estimation of the Recruitment Series
In Example 3.18 we fit an AR(2) model to the recruitment series using ordinary
least squares (OLS). For AR models, the estimators obtained via OLS and Yule-
Walker are nearly identical; we will see this when we discuss conditional sum of
squares estimation in (3.111)–(3.116).

Below are the results of fitting the same model using Yule-Walker estimation in
R, which are nearly identical to the values in Example 3.18.
rec.yw = ar.yw(rec, order=2)
rec.yw$x.mean # = 62.26 (mean estimate)
rec.yw$ar # = 1.33, -.44 (coefficient estimates)
sqrt(diag(rec.yw$asy.var.coef)) # = .04, .04 (standard errors)
rec.yw$var.pred # = 94.80 (error variance estimate)

To obtain the 24 month ahead predictions and their standard errors, and then
plot the results (not shown) as in Example 3.25, use the R commands:
rec.pr = predict(rec.yw, n.ahead=24)
ts.plot(rec, rec.pr$pred, col=1:2)
lines(rec.pr$pred + rec.pr$se, col=4, lty=2)
lines(rec.pr$pred - rec.pr$se, col=4, lty=2)

In the case of AR(p) models, the Yule–Walker estimators given in (3.102) are
optimal in the sense that the asymptotic distribution, (3.103), is the best asymptotic
normal distribution. This is because, given initial conditions, AR(p) models are linear
models, and the Yule–Walker estimators are essentially least squares estimators. If we
use method of moments for MA or ARMA models, we will not get optimal estimators
because such processes are nonlinear in the parameters.

Example 3.29 Method of Moments Estimation for an MA(1)
Consider the time series

xt = wt + ✓wt�1,

where |✓ | < 1. The model can then be written as

xt =
1
’

j=1
(�✓)j xt�j + wt,

which is nonlinear in ✓. The first two population autocovariances are �(0) = �2
w(1+

✓2) and �(1) = �2
w✓, so the estimate of ✓ is found by solving:

⇢̂(1) = �̂(1)
�̂(0)

=
✓̂

1 + ✓̂2
.

Two solutions exist, so we would pick the invertible one. If | ⇢̂(1)|  1
2 , the solutions

are real, otherwise, a real solution does not exist. Even though |⇢(1)| < 1
2 for an

invertible MA(1), it may happen that | ⇢̂(1)| � 1
2 because it is an estimator. For

example, the following simulation in R produces a value of ⇢̂(1) = .507 when the
true value is ⇢(1) = .9/(1 + .92) = .497.
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set.seed(2)
ma1 = arima.sim(list(order = c(0,0,1), ma = 0.9), n = 50)
acf(ma1, plot=FALSE)[1] # = .507 (lag 1 sample ACF)

When | ⇢̂(1)| < 1
2 , the invertible estimate is

✓̂ =
1 �

p

1 � 4⇢̂(1)2
2⇢̂(1) . (3.105)

It can be shown that3.5

✓̂ ⇠ AN
✓

✓,
1 + ✓2 + 4✓4 + ✓6 + ✓8

n(1 � ✓2)2
◆

;

AN is read asymptotically normal and is defined in Definition A.5. The maximum
likelihood estimator (which we discuss next) of ✓, in this case, has an asymptotic
variance of (1 � ✓2)/n. When ✓ = .5, for example, the ratio of the asymptotic
variance of the method of moments estimator to the maximum likelihood estimator
of ✓ is about 3.5. That is, for large samples, the variance of the method of moments
estimator is about 3.5 times larger than the variance of the MLE of ✓ when ✓ = .5.

M������ L��������� ��� L���� S������ E���������

To fix ideas, we first focus on the causal AR(1) case. Let

xt = µ + �(xt�1 � µ) + wt (3.106)

where |�| < 1 and wt ⇠ iid N(0,�2
w). Given data x1, x2, . . . , xn, we seek the likelihood

L(µ, �,�2
w) = f

⇣

x1, x2, . . . , xn
�

� µ, �,�2
w

⌘

.

In the case of an AR(1), we may write the likelihood as

L(µ, �,�2
w) = f (x1) f (x2

�

� x1) · · · f (xn
�

� xn�1),

where we have dropped the parameters in the densities, f (·), to ease the notation.
Because xt

�

� xt�1 ⇠ N
�

µ + �(xt�1 � µ), �2
w

�

, we have

f (xt
�

� xt�1) = fw[(xt � µ) � �(xt�1 � µ)],

where fw(·) is the density of wt , that is, the normal density with mean zero and
variance �2

w . We may then write the likelihood as

L(µ, �,�w) = f (x1)
n

÷

t=2
fw [(xt � µ) � �(xt�1 � µ)] .

3.5 The result follows from Theorem A.7 and the delta method. See the proof of Theorem A.7 for details
on the delta method.
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To find f (x1), we can use the causal representation

x1 = µ +
1
’

j=0
� jw1�j

to see that x1 is normal, with mean µ and variance �2
w/(1��2). Finally, for an AR(1),

the likelihood is

L(µ, �,�2
w) = (2⇡�2

w)�n/2(1 � �2)1/2 exp


�S(µ, �)
2�2

w

�

, (3.107)

where

S(µ, �) = (1 � �2)(x1 � µ)2 +
n

’

t=2
[(xt � µ) � �(xt�1 � µ)]2 . (3.108)

Typically, S(µ, �) is called the unconditional sum of squares. We could have also
considered the estimation of µ and � using unconditional least squares, that is,
estimation by minimizing S(µ, �).

Taking the partial derivative of the log of (3.107) with respect to �2
w and setting

the result equal to zero, we get the typical normal result that for any given values of µ
and � in the parameter space, �2

w = n�1S(µ, �) maximizes the likelihood. Thus, the
maximum likelihood estimate of �2

w is

�̂2
w = n�1S(µ̂, �̂), (3.109)

where µ̂ and �̂ are the MLEs of µ and �, respectively. If we replace n in (3.109) by
n � 2, we would obtain the unconditional least squares estimate of �2

w .
If, in (3.107), we take logs, replace �2

w by �̂2
w , and ignore constants, µ̂ and �̂ are

the values that minimize the criterion function

l(µ, �) = log
⇥

n�1S(µ, �)
⇤

� n�1 log(1 � �2); (3.110)

that is, l(µ, �) / �2 log L(µ, �, �̂2
w).3.6 Because (3.108) and (3.110) are complicated

functions of the parameters, the minimization of l(µ, �) or S(µ, �) is accomplished
numerically. In the case of AR models, we have the advantage that, conditional on
initial values, they are linear models. That is, we can drop the term in the likelihood
that causes the nonlinearity. Conditioning on x1, the conditional likelihood becomes

L(µ, �,�2
w

�

� x1) =
n

÷

t=2
fw [(xt � µ) � �(xt�1 � µ)]

= (2⇡�2
w)�(n�1)/2 exp



�Sc(µ, �)
2�2

w

�

, (3.111)

where the conditional sum of squares is
3.6 The criterion function is sometimes called the profile or concentrated likelihood.
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Sc(µ, �) =
n

’

t=2
[(xt � µ) � �(xt�1 � µ)]2 . (3.112)

The conditional MLE of �2
w is

�̂2
w = Sc(µ̂, �̂)/(n � 1), (3.113)

and µ̂ and �̂ are the values that minimize the conditional sum of squares, Sc(µ, �).
Letting ↵ = µ(1 � �), the conditional sum of squares can be written as

Sc(µ, �) =
n

’

t=2
[xt � (↵ + �xt�1)]2 . (3.114)

The problem is now the linear regression problem stated in Section 2.1. Following
the results from least squares estimation, we have ↵̂ = x̄(2) � �̂x̄(1), where x̄(1) =
(n� 1)�1 Õn�1

t=1 xt , and x̄(2) = (n� 1)�1 Õn
t=2 xt , and the conditional estimates are then

µ̂ =
x̄(2) � �̂x̄(1)

1 � �̂
(3.115)

�̂ =

Õn
t=2(xt � x̄(2))(xt�1 � x̄(1))

Õn
t=2(xt�1 � x̄(1))2

. (3.116)

From (3.115) and (3.116), we see that µ̂ ⇡ x̄ and �̂ ⇡ ⇢̂(1). That is, the Yule–Walker
estimators and the conditional least squares estimators are approximately the same.
The only di�erence is the inclusion or exclusion of terms involving the endpoints, x1
and xn. We can also adjust the estimate of �2

w in (3.113) to be equivalent to the least
squares estimator, that is, divide Sc(µ̂, �̂) by (n � 3) instead of (n � 1) in (3.113).

For general AR(p) models, maximum likelihood estimation, unconditional least
squares, and conditional least squares follow analogously to the AR(1) example. For
general ARMA models, it is di�cult to write the likelihood as an explicit function
of the parameters. Instead, it is advantageous to write the likelihood in terms of the
innovations, or one-step-ahead prediction errors, xt � xt�1

t . This will also be useful
in Chapter 6 when we study state-space models.

For a normal ARMA(p, q) model, let � = (µ, �1, . . . , �p, ✓1, . . . , ✓q)0 be the
(p + q + 1)-dimensional vector of the model parameters. The likelihood can be
written as

L(�,�2
w) =

n
÷

t=1
f (xt

�

� xt�1, . . . , x1).

The conditional distribution of xt given xt�1, . . . , x1 is Gaussian with mean xt�1
t and

variance Pt�1
t . Recall from (3.71) that Pt�1

t = �(0)Œt�1
j=1(1��2

j j). For ARMA models,
�(0) = �2

w

Õ1
j=0  

2
j , in which case we may write

Pt�1
t = �2

w

8

>

><

>

>

:

2

6

6

6

6

4

1
’

j=0
 2
j

3

7

7

7

7

5

2

6

6

6

6

4

t�1
÷

j=1
(1 � �2

j j)
3

7

7

7

7

5

9

>

>=

>

>

;

def
= �2

w rt,
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where rt is the term in the braces. Note that the rt terms are functions only of the
regression parameters and that they may be computed recursively as rt+1 = (1��2

tt )rt
with initial condition r1 =

Õ1
j=0  

2
j . The likelihood of the data can now be written as

L(�,�2
w) = (2⇡�2

w)�n/2 [r1(�)r2(�) · · · rn(�)]�1/2 exp


�S(�)
2�2

w

�

, (3.117)

where

S(�) =
n

’

t=1

 (xt � xt�1
t (�))2

rt (�)

�

. (3.118)

Both xt�1
t and rt are functions of � alone, and we make that fact explicit in (3.117)-

(3.118). Given values for � and �2
w , the likelihood may be evaluated using the

techniques of Section 3.4. Maximum likelihood estimation would now proceed by
maximizing (3.117) with respect to � and �2

w . As in the AR(1) example, we have

�̂2
w = n�1S(�̂), (3.119)

where �̂ is the value of � that minimizes the concentrated likelihood

l(�) = log
⇥

n�1S(�)
⇤

+ n�1
n

’

t=1
log rt (�). (3.120)

For the AR(1) model (3.106) discussed previously, recall that x0
1 = µ and xt�1

t =
µ + �(xt�1 � µ), for t = 2, . . . , n. Also, using the fact that �11 = � and �hh = 0 for
h > 1, we have r1 =

Õ1
j=0 �

2j = (1 � �2)�1, r2 = (1 � �2)�1(1 � �2) = 1, and in
general, rt = 1 for t = 2, . . . , n. Hence, the likelihood presented in (3.107) is identical
to the innovations form of the likelihood given by (3.117). Moreover, the generic
S(�) in (3.118) is S(µ, �) given in (3.108) and the generic l(�) in (3.120) is l(µ, �) in
(3.110).

Unconditional least squares would be performed by minimizing (3.118) with
respect to �. Conditional least squares estimation would involve minimizing (3.118)
with respect to � but where, to ease the computational burden, the predictions and
their errors are obtained by conditioning on initial values of the data. In general,
numerical optimization routines are used to obtain the actual estimates and their
standard errors.

Example 3.30 The Newton–Raphson and Scoring Algorithms
Two common numerical optimization routines for accomplishing maximum like-
lihood estimation are Newton–Raphson and scoring. We will give a brief account
of the mathematical ideas here. The actual implementation of these algorithms is
much more complicated than our discussion might imply. For details, the reader is
referred to any of the Numerical Recipes books, for example, Press et al. (1993).

Let l(�) be a criterion function of k parameters � = (�1, . . . , �k) that we wish
to minimize with respect to �. For example, consider the likelihood function given
by (3.110) or by (3.120). Suppose l(�̂) is the extremum that we are interested in
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finding, and �̂ is found by solving @l(�)/@�j = 0, for j = 1, . . . , k. Let l(1)(�)
denote the k ⇥ 1 vector of partials

l(1)(�) =
✓

@l(�)
@�1
, . . . ,

@l(�)
@�k

◆ 0
.

Note, l(1)(�̂) = 0, the k ⇥ 1 zero vector. Let l(2)(�) denote the k ⇥ k matrix of
second-order partials

l(2)(�) =
⇢

� @l2(�)
@�i@�j

�k

i, j=1
,

and assume l(2)(�) is nonsingular. Let �(0) be a “su�ciently good” initial estimator
of �. Then, using a Taylor expansion, we have the following approximation:

0 = l(1)(�̂) ⇡ l(1)(�(0)) � l(2)(�(0))
⇥

�̂ � �(0)
⇤

.

Setting the right-hand side equal to zero and solving for �̂ [call the solution �(1)],
we get

�(1) = �(0) +
h

l(2)(�(0))
i�1

l(1)(�(0)).

The Newton–Raphson algorithm proceeds by iterating this result, replacing �(0) by
�(1) to get �(2), and so on, until convergence. Under a set of appropriate conditions,
the sequence of estimators, �(1), �(2), . . ., will converge to �̂, the MLE of �.

For maximum likelihood estimation, the criterion function used is l(�) given
by (3.120); l(1)(�) is called the score vector, and l(2)(�) is called the Hessian. In the
method of scoring, we replace l(2)(�) by E[l(2)(�)], the information matrix. Under
appropriate conditions, the inverse of the information matrix is the asymptotic
variance–covariance matrix of the estimator �̂. This is sometimes approximated by
the inverse of the Hessian at �̂. If the derivatives are di�cult to obtain, it is possible
to use quasi-maximum likelihood estimation where numerical techniques are used
to approximate the derivatives.

Example 3.31 MLE for the Recruitment Series
So far, we have fit an AR(2) model to the Recruitment series using ordinary least
squares (Example 3.18) and using Yule–Walker (Example 3.28). The following is
an R session used to fit an AR(2) model via maximum likelihood estimation to the
Recruitment series; these results can be compared to the results in Example 3.18
and Example 3.28.
rec.mle = ar.mle(rec, order=2)
rec.mle$x.mean # 62.26
rec.mle$ar # 1.35, -.46
sqrt(diag(rec.mle$asy.var.coef)) # .04, .04
rec.mle$var.pred # 89.34

We now discuss least squares for ARMA(p, q) models via Gauss–Newton. For
general and complete details of the Gauss–Newton procedure, the reader is referred
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to Fuller (1996). As before, write � = (�1, . . . , �p, ✓1, . . . , ✓q)0, and for the ease of
discussion, we will put µ = 0. We write the model in terms of the errors

wt (�) = xt �
p

’

j=1
� j xt�j �

q
’

k=1
✓kwt�k(�), (3.121)

emphasizing the dependence of the errors on the parameters.
For conditional least squares, we approximate the residual sum of squares by

conditioning on x1, . . . , xp (if p > 0) and wp = wp�1 = wp�2 = · · · = w1�q = 0 (if
q > 0), in which case, given �, we may evaluate (3.121) for t = p + 1, p + 2, . . . , n.
Using this conditioning argument, the conditional error sum of squares is

Sc(�) =
n

’

t=p+1
w2
t (�). (3.122)

Minimizing Sc(�) with respect to � yields the conditional least squares estimates.
If q = 0, the problem is linear regression and no iterative technique is needed to
minimize Sc(�1, . . . , �p). If q > 0, the problem becomes nonlinear regression and
we will have to rely on numerical optimization.

When n is large, conditioning on a few initial values will have little influence
on the final parameter estimates. In the case of small to moderate sample sizes, one
may wish to rely on unconditional least squares. The unconditional least squares
problem is to choose � to minimize the unconditional sum of squares, which we have
generically denoted by S(�) in this section. The unconditional sum of squares can be
written in various ways, and one useful form in the case of ARMA(p, q) models is
derived in Box et al. (1994, Appendix A7.3). They showed (see Problem 3.19) the
unconditional sum of squares can be written as

S(�) =
n

’

t=�1
w̃2
t (�), (3.123)

where w̃t (�) = E(wt | x1, . . . , xn). When t  0, the ŵt (�) are obtained by backcasting.
As a practical matter, we approximate S(�) by starting the sum at t = �M+1, where M
is chosen large enough to guarantee

Õ�M
t=�1 w̃2

t (�) ⇡ 0. In the case of unconditional
least squares estimation, a numerical optimization technique is needed even when
q = 0.

To employ Gauss–Newton, let �(0) = (�(0)1 , . . . , �
(0)
p , ✓

(0)
1 , . . . , ✓

(0)
q )0 be an initial

estimate of �. For example, we could obtain �(0) by method of moments. The first-
order Taylor expansion of wt (�) is

wt (�) ⇡ wt (�(0)) �
�

� � �(0)
� 0 zt (�(0)), (3.124)

where

z0t (�(0)) =
✓

�@wt (�)
@�1

, . . . ,�@wt (�)
@�p+q

◆

�

�

�

�

�

�=�(0)

, t = 1, . . . , n.
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The linear approximation of Sc(�) is

Q(�) =
n

’

t=p+1

⇥

wt (�(0)) �
�

� � �(0)
� 0 zt (�(0))

⇤2 (3.125)

and this is the quantity that we will minimize. For approximate unconditional least
squares, we would start the sum in (3.125) at t = �M + 1, for a large value of M , and
work with the backcasted values.

Using the results of ordinary least squares (Section 2.1), we know

\(� � �(0)) =
⇣

n�1
n

’

t=p+1
zt (�(0))z0t (�(0))

⌘�1 ⇣
n�1

n
’

t=p+1
zt (�(0))wt (�(0))

⌘

(3.126)

minimizes Q(�). From (3.126), we write the one-step Gauss–Newton estimate as

�(1) = �(0) + �(�(0)), (3.127)

where �(�(0)) denotes the right-hand side of (3.126). Gauss–Newton estimation is
accomplished by replacing �(0) by �(1) in (3.127). This process is repeated by calcu-
lating, at iteration j = 2, 3, . . .,

�(j) = �(j�1) + �(�(j�1))

until convergence.

Example 3.32 Gauss–Newton for an MA(1)
Consider an invertible MA(1) process, xt = wt + ✓wt�1. Write the truncated errors
as

wt (✓) = xt � ✓wt�1(✓), t = 1, . . . , n, (3.128)

where we condition on w0(✓) = 0. Taking derivatives and negating,

� @wt (✓)
@✓

= wt�1(✓) + ✓
@wt�1(✓)

@✓
, t = 1, . . . , n, (3.129)

where @w0(✓)/@✓ = 0.We can also write (3.129) as

zt (✓) = wt�1(✓) � ✓zt�1(✓), t = 1, . . . , n, (3.130)

where zt (✓) = �@wt (✓)/@✓ and z0(✓) = 0.
Let ✓(0) be an initial estimate of ✓, for example, the estimate given in Exam-

ple 3.29. Then, the Gauss–Newton procedure for conditional least squares is given
by

✓(j+1) = ✓(j) +

Õn
t=1 zt (✓(j))wt (✓(j))
Õn

t=1 z2
t (✓(j))

, j = 0, 1, 2, . . . , (3.131)

where the values in (3.131) are calculated recursively using (3.128) and (3.130).
The calculations are stopped when |✓(j+1)�✓(j) |, or |Q(✓(j+1))�Q(✓(j))|, are smaller
than some preset amount.
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Fig. 3.9. ACF and PACF of transformed glacial varves.

Example 3.33 Fitting the Glacial Varve Series
Consider the series of glacial varve thicknesses from Massachusetts for n = 634
years, as analyzed in Example 2.7 and in Problem 2.8, where it was argued that
a first-order moving average model might fit the logarithmically transformed and
di�erenced varve series, say,

r log(xt ) = log(xt ) � log(xt�1) = log
✓

xt
xt�1

◆

,

which can be interpreted as being approximately the percentage change in the
thickness.

The sample ACF and PACF, shown in Figure 3.9, confirm the tendency of
r log(xt ) to behave as a first-order moving average process as the ACF has only a
significant peak at lag one and the PACF decreases exponentially. Using Table 3.1,
this sample behavior fits that of the MA(1) very well.

Since ⇢̂(1) = �.397, our initial estimate is ✓(0) = �.495 using (3.105). The
results of eleven iterations of the Gauss–Newton procedure, (3.131), starting with
✓(0) are given in Table 3.2. The final estimate is ✓̂ = ✓(11) = �.773; interim values
and the corresponding value of the conditional sum of squares, Sc(✓) given in
(3.122), are also displayed in the table. The final estimate of the error variance is
�̂2
w = 148.98/632 = .236 with 632 degrees of freedom (one is lost in di�erencing).

The value of the sum of the squared derivatives at convergence is
Õn

t=1 z2
t (✓(11)) =

368.741, and consequently, the estimated standard error of ✓̂ is
p

.236/368.741 =
.025;3.7 this leads to a t-value of�.773/.025 = �30.92 with 632 degrees of freedom.

Figure 3.10 displays the conditional sum of squares, Sc(✓) as a function of ✓,
as well as indicating the values of each step of the Gauss–Newton algorithm. Note

3.7 To estimate the standard error, we are using the standard regression results from (2.6) as an approxi-
mation
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Fig. 3.10. Conditional sum of squares versus values of the moving average parameter for
the glacial varve example, Example 3.33. Vertical lines indicate the values of the parameter
obtained via Gauss–Newton; see Table 3.2 for the actual values.

that the Gauss–Newton procedure takes large steps toward the minimum initially,
and then takes very small steps as it gets close to the minimizing value. When there
is only one parameter, as in this case, it would be easy to evaluate Sc(✓) on a grid
of points, and then choose the appropriate value of ✓ from the grid search. It would
be di�cult, however, to perform grid searches when there are many parameters.

The following code was used in this example.
x = diff(log(varve))
# Evaluate Sc on a Grid
c(0) -> w -> z
c() -> Sc -> Sz -> Szw
num = length(x)
th = seq(-.3,-.94,-.01)
for (p in 1:length(th)){

for (i in 2:num){ w[i] = x[i]-th[p]*w[i-1] }
Sc[p] = sum(w^2) }

plot(th, Sc, type="l", ylab=expression(S[c](theta)), xlab=expression(theta),
lwd=2)

# Gauss-Newton Estimation
r = acf(x, lag=1, plot=FALSE)$acf[-1]
rstart = (1-sqrt(1-4*(r^2)))/(2*r) # from (3.105)
c(0) -> w -> z
c() -> Sc -> Sz -> Szw -> para
niter = 12
para[1] = rstart
for (p in 1:niter){
for (i in 2:num){ w[i] = x[i]-para[p]*w[i-1]

z[i] = w[i-1]-para[p]*z[i-1] }
Sc[p] = sum(w^2)
Sz[p] = sum(z^2)
Szw[p] = sum(z*w)
para[p+1] = para[p] + Szw[p]/Sz[p] }



i
i

“tsa4_trimmed” — 2017/12/8 — 15:01 — page 127 — #137 i
i

i
i

i
i

3.5 Estimation 127

Table 3.2. Gauss–Newton Results for Example 3.33

j ✓(j) Sc(✓(j))
Õn

t=1 z2
t (✓(j))

0 �0.495 158.739 171.240
1 �0.668 150.747 235.266
2 �0.733 149.264 300.562
3 �0.756 149.031 336.823
4 �0.766 148.990 354.173
5 �0.769 148.982 362.167
6 �0.771 148.980 365.801
7 �0.772 148.980 367.446
8 �0.772 148.980 368.188
9 �0.772 148.980 368.522
10 �0.773 148.980 368.673
11 �0.773 148.980 368.741

round(cbind(iteration=0:(niter-1), thetahat=para[1:niter] , Sc , Sz ), 3)
abline(v = para[1:12], lty=2)
points(para[1:12], Sc[1:12], pch=16)

In the general case of causal and invertible ARMA(p, q) models, maximum like-
lihood estimation and conditional and unconditional least squares estimation (and
Yule–Walker estimation in the case of AR models) all lead to optimal estimators. The
proof of this general result can be found in a number of texts on theoretical time series
analysis (for example, Brockwell and Davis, 1991, or Hannan, 1970, to mention a few).
We will denote the ARMA coe�cient parameters by � = (�1, . . . , �p, ✓1, . . . , ✓q)0.

Property 3.10 Large Sample Distribution of the Estimators
Under appropriate conditions, for causal and invertible ARMA processes, the

maximum likelihood, the unconditional least squares, and the conditional least
squares estimators, each initialized by the method of moments estimator, all pro-
vide optimal estimators of �2

w and �, in the sense that �̂2
w is consistent, and the

asymptotic distribution of �̂ is the best asymptotic normal distribution. In particular,
as n ! 1, p

n
⇣

�̂ � �
⌘

d! N
⇣

0,�2
w ��1

p,q

⌘

. (3.132)

The asymptotic variance–covariance matrix of the estimator �̂ is the inverse of the
information matrix. In particular, the (p + q) ⇥ (p + q) matrix �p,q , has the form

�p,q =

✓

��� ��✓
�✓� �✓✓

◆

. (3.133)

The p ⇥ p matrix ��� is given by (3.100), that is, the i j-th element of ��� , for
i, j = 1, . . . , p, is �x(i � j) from an AR(p) process, �(B)xt = wt . Similarly, �✓✓ is
a q ⇥ q matrix with the i j-th element, for i, j = 1, . . . , q, equal to �y(i � j) from an
AR(q) process, ✓(B)yt = wt . The p ⇥ q matrix ��✓ = {�xy(i � j)}, for i = 1, . . . , p;
j = 1, . . . , q; that is, the i j-th element is the cross-covariance between the two AR
processes given by �(B)xt = wt and ✓(B)yt = wt . Finally, �✓� = � 0

�✓ is q ⇥ p.
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Further discussion of Property 3.10, including a proof for the case of least squares
estimators for AR(p) processes, can be found in Section B.3.

Example 3.34 Some Specific Asymptotic Distributions
The following are some specific cases of Property 3.10.
AR(1): �x(0) = �2

w/(1 � �2), so �2
w�

�1
1,0 = (1 � �2). Thus,

�̂ ⇠ AN
⇥

�, n�1(1 � �2)
⇤

. (3.134)

AR(2): The reader can verify that

�x(0) =
✓

1 � �2
1 + �2

◆

�2
w

(1 � �2)2 � �2
1

and �x(1) = �1�x(0)+�2�x(1). From these facts, we can compute��1
2,0 . In particular,

we have
✓

�̂1
�̂2

◆

⇠ AN
✓

�1
�2

◆

, n�1
✓

1 � �2
2 ��1(1 + �2)

sym 1 � �2
2

◆�

. (3.135)

MA(1): In this case, write ✓(B)yt = wt , or yt + ✓yt�1 = wt . Then, analogous to
the AR(1) case, �y(0) = �2

w/(1 � ✓2), so �2
w�

�1
0,1 = (1 � ✓2). Thus,

✓̂ ⇠ AN
⇥

✓, n�1(1 � ✓2)
⇤

. (3.136)

MA(2): Write yt + ✓1yt�1+ ✓2yt�2 = wt , so , analogous to the AR(2) case, we have
✓

✓̂1
✓̂2

◆

⇠ AN
✓

✓1
✓2

◆

, n�1
✓

1 � ✓2
2 ✓1(1 + ✓2)

sym 1 � ✓2
2

◆�

. (3.137)

ARMA(1,1): To calculate ��✓ , we must find �xy(0), where xt � �xt�1 = wt and
yt + ✓yt�1 = wt . We have

�xy(0) = cov(xt, yt ) = cov(�xt�1 + wt,�✓yt�1 + wt )
= ��✓�xy(0) + �2

w .

Solving, we find, �xy(0) = �2
w/(1 + �✓). Thus,

✓

�̂
✓̂

◆

⇠ AN

"

✓

�
✓

◆

, n�1


(1 � �2)�1 (1 + �✓)�1

sym (1 � ✓2)�1

��1
#

. (3.138)

Example 3.35 Overfitting Caveat
The asymptotic behavior of the parameter estimators gives us an additional insight
into the problem of fitting ARMA models to data. For example, suppose a time
series follows an AR(1) process and we decide to fit an AR(2) to the data. Do
any problems occur in doing this? More generally, why not simply fit large-order
AR models to make sure that we capture the dynamics of the process? After all,
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if the process is truly an AR(1), the other autoregressive parameters will not be
significant. The answer is that if we overfit, we obtain less e�cient, or less precise
parameter estimates. For example, if we fit an AR(1) to an AR(1) process, for large
n, var(�̂1) ⇡ n�1(1 � �2

1). But, if we fit an AR(2) to the AR(1) process, for large n,
var(�̂1) ⇡ n�1(1 � �2

2) = n�1 because �2 = 0. Thus, the variance of �1 has been
inflated, making the estimator less precise.

We do want to mention, however, that overfitting can be used as a diagnostic tool.
For example, if we fit an AR(2) model to the data and are satisfied with that model,
then adding one more parameter and fitting an AR(3) should lead to approximately
the same model as in the AR(2) fit. We will discuss model diagnostics in more
detail in Section 3.7.

The reader might wonder, for example, why the asymptotic distributions of �̂ from
an AR(1) and ✓̂ from an MA(1) are of the same form; compare (3.134) to (3.136). It
is possible to explain this unexpected result heuristically using the intuition of linear
regression. That is, for the normal regression model presented in Section 2.1 with no
intercept term, xt = �zt + wt , we know �̂ is normally distributed with mean �, and
from (2.6),

var
np

n
⇣

�̂ � �
⌘o

= n�2
w

 

n
’

t=1
z2
t

!�1

= �2
w

 

n�1
n

’

t=1
z2
t

!�1

.

For the causal AR(1) model given by xt = �xt�1 + wt , the intuition of regression
tells us to expect that, for n large,

p
n
�

�̂ � �
�

is approximately normal with mean zero and with variance given by

�2
w

 

n�1
n

’

t=2
x2
t�1

!�1

.

Now, n�1 Õn
t=2 x2

t�1 is the sample variance (recall that the mean of xt is zero) of the xt ,
so as n becomes large we would expect it to approach var(xt ) = �(0) = �2

w/(1 � �2).
Thus, the large sample variance of

p
n
�

�̂ � �
�

is

�2
w�x(0)�1 = �2

w

✓

�2
w

1 � �2

◆�1

= (1 � �2);

that is, (3.134) holds.
In the case of an MA(1), we may use the discussion of Example 3.32 to write

an approximate regression model for the MA(1). That is, consider the approximation
(3.130) as the regression model

zt (✓̂) = �✓zt�1(✓̂) + wt�1,
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where now, zt�1(✓̂) as defined in Example 3.32, plays the role of the regressor. Con-
tinuing with the analogy, we would expect the asymptotic distribution of

p
n
⇣

✓̂ � ✓
⌘

to be normal, with mean zero, and approximate variance

�2
w

 

n�1
n

’

t=2
z2
t�1(✓̂)

!�1

.

As in the AR(1) case, n�1 Õn
t=2 z2

t�1(✓̂) is the sample variance of the zt (✓̂) so, for large
n, this should be var{zt (✓)} = �z(0), say. But note, as seen from (3.130), zt (✓) is
approximately an AR(1) process with parameter �✓. Thus,

�2
w�z(0)�1 = �2

w

✓

�2
w

1 � (�✓)2
◆�1

= (1 � ✓2),

which agrees with (3.136). Finally, the asymptotic distributions of the AR parameter
estimates and the MA parameter estimates are of the same form because in the MA
case, the “regressors” are the di�erential processes zt (✓) that have AR structure, and
it is this structure that determines the asymptotic variance of the estimators. For a
rigorous account of this approach for the general case, see Fuller (1996, Theorem
5.5.4).

In Example 3.33, the estimated standard error of ✓̂ was .025. In that example, we
used regression results to estimate the standard error as the square root of

n�1�̂2
w

 

n�1
n

’

t=1
z2
t (✓̂)

!�1

=
�̂2
w

Õn
t=1 z2

t (✓̂)
,

where n = 632, �̂2
w = .236,

Õn
t=1 z2

t (✓̂) = 368.74 and ✓̂ = �.773. Using (3.136), we
could have also calculated this value using the asymptotic approximation, the square
root of (1 � (�.773)2)/632, which is also .025.

If n is small, or if the parameters are close to the boundaries, the asymptotic
approximations can be quite poor. The bootstrap can be helpful in this case; for a
broad treatment of the bootstrap, see Efron and Tibshirani (1994). We discuss the
case of an AR(1) here and leave the general discussion for Chapter 6. For now, we
give a simple example of the bootstrap for an AR(1) process.

Example 3.36 Bootstrapping an AR(1)
We consider an AR(1) model with a regression coe�cient near the boundary
of causality and an error process that is symmetric but not normal. Specifically,
consider the causal model

xt = µ + �(xt�1 � µ) + wt, (3.139)

where µ = 50, � = .95, and wt are iid double exponential (Laplace) with location
zero, and scale parameter � = 2. The density of wt is given by
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Fig. 3.11. One hundred observations generated from the model in Example 3.36.

f (w) = 1
2�

exp {�|w |/�} �1 < w < 1.

In this example, E(wt ) = 0 and var(wt ) = 2�2 = 8. Figure 3.11 shows n = 100
simulated observations from this process. This particular realization is interesting;
the data look like they were generated from a nonstationary process with three
di�erent mean levels. In fact, the data were generated from a well-behaved, albeit
non-normal, stationary and causal model. To show the advantages of the bootstrap,
we will act as if we do not know the actual error distribution. The data in Figure 3.11
were generated as follows.
set.seed(101010)
e = rexp(150, rate=.5); u = runif(150,-1,1); de = e*sign(u)
dex = 50 + arima.sim(n=100, list(ar=.95), innov=de, n.start=50)
plot.ts(dex, type='o', ylab=expression(X[~t]))

Using these data, we obtained the Yule–Walker estimates µ̂ = 45.25, �̂ = .96, and
�̂2
w = 7.88, as follows.
fit = ar.yw(dex, order=1)
round(cbind(fit$x.mean, fit$ar, fit$var.pred), 2)
[1,] 45.25 0.96 7.88

To assess the finite sample distribution of �̂ when n = 100, we simulated 1000
realizations of this AR(1) process and estimated the parameters via Yule–Walker.
The finite sampling density of the Yule–Walker estimate of �, based on the 1000
repeated simulations, is shown in Figure 3.12. Based on Property 3.10, we would
say that �̂ is approximately normal with mean � (which we supposedly do not know)
and variance (1� �2)/100, which we would approximate by (1� .962)/100 = .032;
this distribution is superimposed on Figure 3.12. Clearly the sampling distribution
is not close to normality for this sample size. The R code to perform the simulation
is as follows. We use the results at the end of the example
set.seed(111)
phi.yw = rep(NA, 1000)
for (i in 1:1000){
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e = rexp(150, rate=.5); u = runif(150,-1,1); de = e*sign(u)
x = 50 + arima.sim(n=100,list(ar=.95), innov=de, n.start=50)
phi.yw[i] = ar.yw(x, order=1)$ar }

The preceding simulation required full knowledge of the model, the parameter
values and the noise distribution. Of course, in a sampling situation, we would not
have the information necessary to do the preceding simulation and consequently
would not be able to generate a figure like Figure 3.12. The bootstrap, however,
gives us a way to attack the problem.

To simplify the discussion and the notation, we condition on x1 throughout the
example. In this case, the one-step-ahead predictors have a simple form,

xt�1
t = µ + �(xt�1 � µ), t = 2, . . . , 100.

Consequently, the innovations, ✏t = xt � xt�1
t , are given by

✏t = (xt � µ) � �(xt�1 � µ), t = 2, . . . , 100, (3.140)

each with MSPE Pt�1
t = E(✏2

t ) = E(w2
t ) = �2

w for t = 2, . . . , 100. We can use
(3.140) to write the model in terms of the innovations,

xt = xt�1
t + ✏t = µ + �(xt�1 � µ) + ✏t t = 2, . . . , 100. (3.141)

To perform the bootstrap simulation, we replace the parameters with their
estimates in (3.141), that is, µ̂ = 45.25 and �̂ = .96, and denote the resulting
sample innovations as {✏̂2, . . . , ✏̂100}. To obtain one bootstrap sample, first randomly
sample, with replacement, n = 99 values from the set of sample innovations; call the
sampled values {✏⇤2, . . . , ✏⇤100}. Now, generate a bootstrapped data set sequentially
by setting

x⇤t = 45.25 + .96(x⇤t�1 � 45.25) + ✏⇤t , t = 2, . . . , 100. (3.142)

with x⇤1 held fixed at x1. Next, estimate the parameters as if the data were x⇤t .
Call these estimates µ̂(1), �̂(1), and �2

w(1). Repeat this process a large num-
ber, B, of times, generating a collection of bootstrapped parameter estimates,
{ µ̂(b), �̂(b),�2

w(b); b = 1, . . . , B}. We can then approximate the finite sample dis-
tribution of an estimator from the bootstrapped parameter values. For example, we
can approximate the distribution of �̂ � � by the empirical distribution of �̂(b)� �̂,
for b = 1, . . . , B.

Figure 3.12 shows the bootstrap histogram of 500 bootstrapped estimates of �
using the data shown in Figure 3.11. Note that the bootstrap distribution of �̂ is
close to the distribution of �̂ shown in Figure 3.12. The following code was used to
perform the bootstrap.
set.seed(666) # not that 666
fit = ar.yw(dex, order=1) # assumes the data were retained
m = fit$x.mean # estimate of mean
phi = fit$ar # estimate of phi
nboot = 500 # number of bootstrap replicates
resids = fit$resid[-1] # the 99 innovations
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Fig. 3.12. Finite sample density of the Yule–Walker estimate of � (solid line) in Example 3.36
and the corresponding asymptotic normal density (dashed line). Bootstrap histogram of �̂
based on 500 bootstrapped samples.

x.star = dex # initialize x*
phi.star.yw = rep(NA, nboot)
# Bootstrap
for (i in 1:nboot) {
resid.star = sample(resids, replace=TRUE)
for (t in 1:99){ x.star[t+1] = m + phi*(x.star[t]-m) + resid.star[t] }

phi.star.yw[i] = ar.yw(x.star, order=1)$ar
}
# Picture
culer = rgb(.5,.7,1,.5)
hist(phi.star.yw, 15, main="", prob=TRUE, xlim=c(.65,1.05), ylim=c(0,14),

col=culer, xlab=expression(hat(phi)))
lines(density(phi.yw, bw=.02), lwd=2) # from previous simulation
u = seq(.75, 1.1, by=.001) # normal approximation
lines(u, dnorm(u, mean=.96, sd=.03), lty=2, lwd=2)
legend(.65, 14, legend=c('true distribution', 'bootstrap distribution',

'normal approximation'), bty='n', lty=c(1,0,2), lwd=c(2,0,2),
col=1, pch=c(NA,22,NA), pt.bg=c(NA,culer,NA), pt.cex=2.5)

3.6 Integrated Models for Nonstationary Data

In Chapter 1 and Chapter 2, we saw that if xt is a random walk, xt = xt�1 + wt ,
then by di�erencing xt , we find that rxt = wt is stationary. In many situations, time
series can be thought of as being composed of two components, a nonstationary trend
component and a zero-mean stationary component. For example, in Section 2.1 we
considered the model

xt = µt + yt, (3.143)
where µt = �0 + �1t and yt is stationary. Di�erencing such a process will lead to a
stationary process:
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rxt = xt � xt�1 = �1 + yt � yt�1 = �1 + ryt .

Another model that leads to first di�erencing is the case in which µt in (3.143) is
stochastic and slowly varying according to a random walk. That is,

µt = µt�1 + vt

where vt is stationary. In this case,

rxt = vt + ryt,

is stationary. If µt in (3.143) is a k-th order polynomial, µt =
Õk

j=0 �j t
j , then

(Problem 3.27) the di�erenced series rk xt is stationary. Stochastic trend models can
also lead to higher order di�erencing. For example, suppose

µt = µt�1 + vt and vt = vt�1 + et,

where et is stationary. Then, rxt = vt + ryt is not stationary, but

r2xt = et + r2yt

is stationary.
The integrated ARMA, or ARIMA, model is a broadening of the class of ARMA

models to include di�erencing.

Definition 3.11 A process xt is said to be ARIMA(p, d, q) if

rdxt = (1 � B)dxt

is ARMA(p, q). In general, we will write the model as

�(B)(1 � B)dxt = ✓(B)wt . (3.144)

If E(rdxt ) = µ, we write the model as

�(B)(1 � B)dxt = � + ✓(B)wt,

where � = µ(1 � �1 � · · · � �p).

Because of the nonstationarity, care must be taken when deriving forecasts. For
the sake of completeness, we discuss this issue briefly here, but we stress the fact that
both the theoretical and computational aspects of the problem are best handled via
state-space models. We discuss the theoretical details in Chapter 6. For information on
the state-space based computational aspects in R, see the ARIMA help files (?arima
and ?predict.Arima); our scripts sarima and sarima.for are basically wrappers for
these R scripts.

It should be clear that, since yt = rdxt is ARMA, we can use Section 3.4 methods
to obtain forecasts of yt , which in turn lead to forecasts for xt . For example, if d = 1,
given forecasts ynn+m for m = 1, 2, . . ., we have ynn+m = xnn+m � xn

n+m�1, so that
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xnn+m = ynn+m + xnn+m�1

with initial condition xn
n+1 = yn

n+1 + xn (noting xnn = xn).
It is a little more di�cult to obtain the prediction errors Pn

n+m, but for large
n, the approximation used in Section 3.4, equation (3.86), works well. That is, the
mean-squared prediction error can be approximated by

Pn
n+m = �

2
w

m�1
’

j=0
 ⇤2
j , (3.145)

where  ⇤
j is the coe�cient of z j in  ⇤(z) = ✓(z)/�(z)(1 � z)d .

To better understand integrated models, we examine the properties of some simple
cases; Problem 3.29 covers the ARIMA(1, 1, 0) case.
Example 3.37 Random Walk with Drift

To fix ideas, we begin by considering the random walk with drift model first
presented in Example 1.11, that is,

xt = � + xt�1 + wt,

for t = 1, 2, . . ., and x0 = 0. Technically, the model is not ARIMA, but we could
include it trivially as an ARIMA(0, 1, 0) model. Given data x1, . . . , xn, the one-step-
ahead forecast is given by

xnn+1 = E(xn+1
�

� xn, . . . , x1) = E(� + xn + wn+1
�

� xn, . . . , x1) = � + xn.

The two-step-ahead forecast is given by xn
n+2 = �+xn

n+1 = 2�+xn, and consequently,
the m-step-ahead forecast, for m = 1, 2, . . ., is

xnn+m = m � + xn, (3.146)

To obtain the forecast errors, it is convenient to recall equation (1.4); i.e.,
xn = n � +

Õn
j=1 wj , in which case we may write

xn+m = (n + m) � +
n+m
’

j=1
wj = m � + xn +

n+m
’

j=n+1
wj .

From this it follows that the m-step-ahead prediction error is given by

Pn
n+m = E(xn+m � xnn+m)2 = E

⇣

n+m
’

j=n+1
wj

⌘2
= m�2

w . (3.147)

Hence, unlike the stationary case (see Example 3.23), as the forecast horizon grows,
the prediction errors, (3.147), increase without bound and the forecasts follow a
straight line with slope � emanating from xn. We note that (3.145) is exact in this
case because  ⇤(z) = 1/(1 � z) = Õ1

j=0 z j for |z | < 1, so that  ⇤
j = 1 for all j.

The wt are Gaussian, so estimation is straightforward because the di�erenced
data, say yt = rxt , are independent and identically distributed normal variates with
mean � and variance �2

w . Consequently, optimal estimates of � and �2
w are the

sample mean and variance of the yt , respectively.

Frederic Paik Schoenberg
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Example 3.38 IMA(1, 1) and EWMA
The ARIMA(0,1,1), or IMA(1,1) model is of interest because many economic
time series can be successfully modeled this way. In addition, the model leads to
a frequently used, and abused, forecasting method called exponentially weighted
moving averages (EWMA). We will write the model as

xt = xt�1 + wt � �wt�1, (3.148)

with |� | < 1, for t = 1, 2, . . . , and x0 = 0, because this model formulation is easier
to work with here, and it leads to the standard representation for EWMA. We could
have included a drift term in (3.148), as was done in the previous example, but for
the sake of simplicity, we leave it out of the discussion. If we write

yt = wt � �wt�1,

we may write (3.148) as xt = xt�1 + yt . Because |� | < 1, yt has an invertible
representation, yt =

Õ1
j=1 �

j yt�j + wt , and substituting yt = xt � xt�1, we may
write

xt =
1
’

j=1
(1 � �)� j�1xt�j + wt . (3.149)

as an approximation for large t (put xt = 0 for t  0). Verification of (3.149) is left
to the reader (Problem 3.28). Using the approximation (3.149), we have that the
approximate one-step-ahead predictor, using the notation of Section 3.4, is

x̃n+1 =
1
’

j=1
(1 � �)� j�1xn+1�j

= (1 � �)xn + �
1
’

j=1
(1 � �)� j�1xn�j

= (1 � �)xn + � x̃n. (3.150)

From (3.150), we see that the new forecast is a linear combination of the old
forecast and the new observation. Based on (3.150) and the fact that we only
observe x1, . . . , xn, and consequently y1, . . . , yn (because yt = xt � xt�1; x0 = 0),
the truncated forecasts are

x̃nn+1 = (1 � �)xn + � x̃n�1
n , n � 1, (3.151)

with x̃0
1 = x1 as an initial value. The mean-square prediction error can be approxi-

mated using (3.145) by noting that  ⇤(z) = (1 � �z)/(1 � z) = 1 + (1 � �)Õ1
j=1 z j

for |z | < 1; consequently, for large n, (3.145) leads to

Pn
n+m ⇡ �2

w[1 + (m � 1)(1 � �)2].

In EWMA, the parameter 1 � � is often called the smoothing parameter and is
restricted to be between zero and one. Larger values of � lead to smoother forecasts.
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This method of forecasting is popular because it is easy to use; we need only retain
the previous forecast value and the current observation to forecast the next time
period. Unfortunately, as previously suggested, the method is often abused because
some forecasters do not verify that the observations follow an IMA(1, 1) process,
and often arbitrarily pick values of �. In the following, we show how to generate
100 observations from an IMA(1,1) model with � = �✓ = .8 and then calculate and
display the fitted EWMA superimposed on the data. This is accomplished using the
Holt-Winters command in R (see the help file ?HoltWinters for details; no output
is shown):
set.seed(666)
x = arima.sim(list(order = c(0,1,1), ma = -0.8), n = 100)
(x.ima = HoltWinters(x, beta=FALSE, gamma=FALSE)) # ↵ below is 1 � �
Smoothing parameter: alpha: 0.1663072

plot(x.ima)

3.7 Building ARIMA Models

There are a few basic steps to fitting ARIMA models to time series data. These steps
involve

• plotting the data,
• possibly transforming the data,
• identifying the dependence orders of the model,
• parameter estimation,
• diagnostics, and
• model choice.

First, as with any data analysis, we should construct a time plot of the data, and inspect
the graph for any anomalies. If, for example, the variability in the data grows with time,
it will be necessary to transform the data to stabilize the variance. In such cases, the
Box–Cox class of power transformations, equation (2.34), could be employed. Also,
the particular application might suggest an appropriate transformation. For example,
we have seen numerous examples where the data behave as xt = (1 + pt )xt�1, where
pt is a small percentage change from period t � 1 to t, which may be negative.
If pt is a relatively stable process, then r log(xt ) ⇡ pt will be relatively stable.
Frequently, r log(xt ) is called the return or growth rate. This general idea was used
in Example 3.33, and we will use it again in Example 3.39.

After suitably transforming the data, the next step is to identify preliminary values
of the autoregressive order, p, the order of di�erencing, d, and the moving average
order, q. A time plot of the data will typically suggest whether any di�erencing is
needed. If di�erencing is called for, then di�erence the data once, d = 1, and inspect
the time plot of rxt . If additional di�erencing is necessary, then try di�erencing
again and inspect a time plot of r2xt . Be careful not to overdi�erence because
this may introduce dependence where none exists. For example, xt = wt is serially
uncorrelated, but rxt = wt � wt�1 is MA(1). In addition to time plots, the sample

Frederic Paik Schoenberg
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Fig. 3.13. Top: Quarterly U.S. GNP from 1947(1) to 2002(3). Bottom: Sample ACF of the GNP
data. Lag is in terms of years.

ACF can help in indicating whether di�erencing is needed. Because the polynomial
�(z)(1 � z)d has a unit root, the sample ACF, ⇢̂(h), will not decay to zero fast as h
increases. Thus, a slow decay in ⇢̂(h) is an indication that di�erencing may be needed.

When preliminary values of d have been settled, the next step is to look at the
sample ACF and PACF of rdxt for whatever values of d have been chosen. Using
Table 3.1 as a guide, preliminary values of p and q are chosen. Note that it cannot be
the case that both the ACF and PACF cut o�. Because we are dealing with estimates,
it will not always be clear whether the sample ACF or PACF is tailing o� or cutting
o�. Also, two models that are seemingly di�erent can actually be very similar. With
this in mind, we should not worry about being so precise at this stage of the model
fitting. At this point, a few preliminary values of p, d, and q should be at hand, and
we can start estimating the parameters.

Example 3.39 Analysis of GNP Data
In this example, we consider the analysis of quarterly U.S. GNP from 1947(1) to
2002(3), n = 223 observations. The data are real U.S. gross national product in
billions of chained 1996 dollars and have been seasonally adjusted. The data were
obtained from the Federal Reserve Bank of St. Louis (http://research.stlouisfed.
org/). Figure 3.13 shows a plot of the data, say, yt . Because strong trend tends to
obscure other e�ects, it is di�cult to see any other variability in data except for
periodic large dips in the economy. When reports of GNP and similar economic
indicators are given, it is often in growth rate (percent change) rather than in actual
(or adjusted) values that is of interest. The growth rate, say, xt = r log(yt ), is plotted
in Figure 3.14, and it appears to be a stable process.
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Fig. 3.14. U.S. GNP quarterly growth rate. The horizontal line displays the average growth of
the process, which is close to 1%.

The sample ACF and PACF of the quarterly growth rate are plotted in Fig-
ure 3.15. Inspecting the sample ACF and PACF, we might feel that the ACF is
cutting o� at lag 2 and the PACF is tailing o�. This would suggest the GNP growth
rate follows an MA(2) process, or log GNP follows an ARIMA(0, 1, 2) model.
Rather than focus on one model, we will also suggest that it appears that the ACF
is tailing o� and the PACF is cutting o� at lag 1. This suggests an AR(1) model for
the growth rate, or ARIMA(1, 1, 0) for log GNP. As a preliminary analysis, we will
fit both models.

Using MLE to fit the MA(2) model for the growth rate, xt , the estimated model
is

x̂t = .008(.001) + .303(.065)ŵt�1 + .204(.064)ŵt�2 + ŵt, (3.152)
where �̂w = .0094 is based on 219 degrees of freedom. The values in parentheses
are the corresponding estimated standard errors. All of the regression coe�cients
are significant, including the constant. We make a special note of this because, as

a default, some computer packages do not fit a constant in a di�erenced model.

That is, these packages assume, by default, that there is no drift. In this example,
not including a constant leads to the wrong conclusions about the nature of the
U.S. economy. Not including a constant assumes the average quarterly growth rate
is zero, whereas the U.S. GNP average quarterly growth rate is about 1% (which
can be seen easily in Figure 3.14). We leave it to the reader to investigate what
happens when the constant is not included.

The estimated AR(1) model is

x̂t = .008(.001) (1 � .347) + .347(.063) x̂t�1 + ŵt, (3.153)

where �̂w = .0095 on 220 degrees of freedom; note that the constant in (3.153) is
.008 (1 � .347) = .005.

We will discuss diagnostics next, but assuming both of these models fit well,
how are we to reconcile the apparent di�erences of the estimated models (3.152)
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Fig. 3.15. Sample ACF and PACF of the GNP quarterly growth rate. Lag is in terms of years.

and (3.153)? In fact, the fitted models are nearly the same. To show this, consider
an AR(1) model of the form in (3.153) without a constant term; that is,

xt = .35xt�1 + wt,

and write it in its causal form, xt =
Õ1

j=0  jwt�j , where we recall  j = .35j . Thus,
 0 = 1, 1 = .350, 2 = .123, 3 = .043, 4 = .015, 5 = .005, 6 = .002, 7 =
.001, 8 = 0, 9 = 0, 10 = 0, and so forth. Thus,

xt ⇡ .35wt�1 + .12wt�2 + wt,

which is similar to the fitted MA(2) model in (3.153).
The analysis can be performed in R as follows.

plot(gnp)
acf2(gnp, 50)
gnpgr = diff(log(gnp)) # growth rate
plot(gnpgr)
acf2(gnpgr, 24)
sarima(gnpgr, 1, 0, 0) # AR(1)
sarima(gnpgr, 0, 0, 2) # MA(2)
ARMAtoMA(ar=.35, ma=0, 10) # prints psi-weights

The next step in model fitting is diagnostics. This investigation includes the
analysis of the residuals as well as model comparisons. Again, the first step involves a
time plot of the innovations (or residuals), xt� x̂t�1

t , or of the standardized innovations

et =
⇣

xt � x̂t�1
t

⌘

�

p
P̂t�1
t , (3.154)

where x̂t�1
t is the one-step-ahead prediction of xt based on the fitted model and P̂t�1

t

is the estimated one-step-ahead error variance. If the model fits well, the standardized
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residuals should behave as an iid sequence with mean zero and variance one. The
time plot should be inspected for any obvious departures from this assumption. Unless
the time series is Gaussian, it is not enough that the residuals are uncorrelated. For
example, it is possible in the non-Gaussian case to have an uncorrelated process for
which values contiguous in time are highly dependent. As an example, we mention
the family of GARCH models that are discussed in Chapter 5.

Investigation of marginal normality can be accomplished visually by looking at a
histogram of the residuals. In addition to this, a normal probability plot or a Q-Q plot
can help in identifying departures from normality. See Johnson and Wichern (1992,
Chapter 4) for details of this test as well as additional tests for multivariate normality.

There are several tests of randomness, for example the runs test, that could
be applied to the residuals. We could also inspect the sample autocorrelations of
the residuals, say, ⇢̂e(h), for any patterns or large values. Recall that, for a white
noise sequence, the sample autocorrelations are approximately independently and
normally distributed with zero means and variances 1/n. Hence, a good check on the
correlation structure of the residuals is to plot ⇢̂e(h) versus h along with the error
bounds of ±2/pn. The residuals from a model fit, however, will not quite have the
properties of a white noise sequence and the variance of ⇢̂e(h) can be much less than
1/n. Details can be found in Box and Pierce (1970) and McLeod (1978). This part of
the diagnostics can be viewed as a visual inspection of ⇢̂e(h) with the main concern
being the detection of obvious departures from the independence assumption.

In addition to plotting ⇢̂e(h), we can perform a general test that takes into con-
sideration the magnitudes of ⇢̂e(h) as a group. For example, it may be the case that,
individually, each ⇢̂e(h) is small in magnitude, say, each one is just slightly less that
2/pn in magnitude, but, collectively, the values are large. The Ljung–Box–Pierce
Q-statistic given by

Q = n(n + 2)
H
’

h=1

⇢̂2
e(h)

n � h
(3.155)

can be used to perform such a test. The value H in (3.155) is chosen somewhat
arbitrarily, typically, H = 20. Under the null hypothesis of model adequacy, asymp-
totically (n ! 1), Q ⇠ �2

H�p�q . Thus, we would reject the null hypothesis at level
↵ if the value of Q exceeds the (1 � ↵)-quantile of the �2

H�p�q distribution. De-
tails can be found in Box and Pierce (1970), Ljung and Box (1978), and Davies et
al. (1977). The basic idea is that if wt is white noise, then by Property 1.2, n⇢̂2

w(h),
for h = 1, . . . ,H, are asymptotically independent �2

1 random variables. This means
that n

ÕH
h=1 ⇢̂

2
w(h) is approximately a �2

H random variable. Because the test involves
the ACF of residuals from a model fit, there is a loss of p+ q degrees of freedom; the
other values in (3.155) are used to adjust the statistic to better match the asymptotic
chi-squared distribution.

Example 3.40 Diagnostics for GNP Growth Rate Example
We will focus on the MA(2) fit from Example 3.39; the analysis of the AR(1)
residuals is similar. Figure 3.16 displays a plot of the standardized residuals, the
ACF of the residuals, a boxplot of the standardized residuals, and the p-values
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Fig. 3.16. Diagnostics of the residuals from MA(2) fit on GNP growth rate.

associated with the Q-statistic, (3.155), at lags H = 3 through H = 20 (with
corresponding degrees of freedom H � 2).

Inspection of the time plot of the standardized residuals in Figure 3.16 shows
no obvious patterns. Notice that there may be outliers, with a few values exceeding
3 standard deviations in magnitude. The ACF of the standardized residuals shows
no apparent departure from the model assumptions, and the Q-statistic is never
significant at the lags shown. The normal Q-Q plot of the residuals shows that the
assumption of normality is reasonable, with the exception of the possible outliers.

The model appears to fit well. The diagnostics shown in Figure 3.16 are a
by-product of the sarima command from the previous example.3.8

3.8 The script tsdiag is available in R to run diagnostics for an ARIMA object, however, the script has
errors and we do not recommend using it.
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Fig. 3.17. Q-statistic p-values for the ARIMA(0, 1, 1) fit (top) and the ARIMA(1, 1, 1) fit (bottom)
to the logged varve data.

Example 3.41 Diagnostics for the Glacial Varve Series
In Example 3.33, we fit an ARIMA(0, 1, 1) model to the logarithms of the glacial
varve data and there appears to be a small amount of autocorrelation left in the
residuals and the Q-tests are all significant; see Figure 3.17.

To adjust for this problem, we fit an ARIMA(1, 1, 1) to the logged varve data
and obtained the estimates

�̂ = .23(.05), ✓̂ = �.89(.03), �̂
2
w = .23.

Hence the AR term is significant. The Q-statistic p-values for this model are also
displayed in Figure 3.17, and it appears this model fits the data well.

As previously stated, the diagnostics are byproducts of the individual sarima
runs. We note that we did not fit a constant in either model because there is no
apparent drift in the di�erenced, logged varve series. This fact can be verified
by noting the constant is not significant when the command no.constant=TRUE is
removed in the code:
sarima(log(varve), 0, 1, 1, no.constant=TRUE) # ARIMA(0,1,1)
sarima(log(varve), 1, 1, 1, no.constant=TRUE) # ARIMA(1,1,1)

In Example 3.39, we have two competing models, an AR(1) and an MA(2) on
the GNP growth rate, that each appear to fit the data well. In addition, we might
also consider that an AR(2) or an MA(3) might do better for forecasting. Perhaps
combining both models, that is, fitting an ARMA(1, 2) to the GNP growth rate, would
be the best. As previously mentioned, we have to be concerned with overfitting the
model; it is not always the case that more is better. Overfitting leads to less-precise
estimators, and adding more parameters may fit the data better but may also lead to
bad forecasts. This result is illustrated in the following example.
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Fig. 3.18. A perfect fit and a terrible forecast.

Example 3.42 A Problem with Overfitting
Figure 3.18 shows the U.S. population by o�cial census, every ten years from 1910
to 1990, as points. If we use these nine observations to predict the future population,
we can use an eight-degree polynomial so the fit to the nine observations is perfect.
The model in this case is

xt = �0 + �1t + �2t2 + · · · + �8t8 + wt .

The fitted line, which is plotted in the figure, passes through the nine observations.
The model predicts that the population of the United States will be close to zero in
the year 2000, and will cross zero sometime in the year 2002!

The final step of model fitting is model choice or model selection. That is, we must
decide which model we will retain for forecasting. The most popular techniques, AIC,
AICc, and BIC, were described in Section 2.1 in the context of regression models.

Example 3.43 Model Choice for the U.S. GNP Series
Returning to the analysis of the U.S. GNP data presented in Example 3.39 and
Example 3.40, recall that two models, an AR(1) and an MA(2), fit the GNP growth
rate well. To choose the final model, we compare the AIC, the AICc, and the BIC
for both models. These values are a byproduct of the sarima runs displayed at the
end of Example 3.39, but for convenience, we display them again here (recall the
growth rate data are in gnpgr):
sarima(gnpgr, 1, 0, 0) # AR(1)
$AIC: -8.294403 $AICc: -8.284898 $BIC: -9.263748

sarima(gnpgr, 0, 0, 2) # MA(2)
$AIC: -8.297693 $AICc: -8.287854 $BIC: -9.251711

The AIC and AICc both prefer the MA(2) fit, whereas the BIC prefers the
simpler AR(1) model. It is often the case that the BIC will select a model of smaller
order than the AIC or AICc. In either case, it is not unreasonable to retain the AR(1)
because pure autoregressive models are easier to work with.
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3.8 Regression with Autocorrelated Errors

In Section 2.1, we covered the classical regression model with uncorrelated errors
wt . In this section, we discuss the modifications that might be considered when the
errors are correlated. That is, consider the regression model

yt =
r

’

j=1
�j zt j + xt (3.156)

where xt is a process with some covariance function �x(s, t). In ordinary least squares,
the assumption is that xt is white Gaussian noise, in which case �x(s, t) = 0 for s , t
and �x(t, t) = �2, independent of t. If this is not the case, then weighted least squares
should be used.

Write the model in vector notation, y = Z� + x, where y = (y1, . . . , yn)0 and
x = (x1, . . . , xn)0 are n⇥1 vectors, � = (�1, . . . , �r )0 is r⇥1, and Z = [z1 | z2 | · · · | zn]0
is the n⇥ r matrix composed of the input variables. Let � = {�x(s, t)}, then ��1/2y =
��1/2Z� + ��1/2x, so that we can write the model as

y⇤ = Z⇤� + � ,

where y⇤ = ��1/2y, Z⇤ = ��1/2Z , and � = ��1/2x. Consequently, the covariance
matrix of � is the identity and the model is in the classical linear model form. It follows
that the weighted estimate of � is �̂w = (Z⇤0 Z⇤)�1Z⇤0 y⇤ = (Z 0��1Z)�1Z 0��1y, and
the variance-covariance matrix of the estimator is var(�̂w) = (Z 0��1Z)�1. If xt is
white noise, then � = �2I and these results reduce to the usual least squares results.

In the time series case, it is often possible to assume a stationary covariance
structure for the error process xt that corresponds to a linear process and try to find
an ARMA representation for xt . For example, if we have a pure AR(p) error, then

�(B)xt = wt,

and �(B) = 1 � �1B � · · · � �pBp is the linear transformation that, when applied to
the error process, produces the white noise wt . Multiplying the regression equation
through by the transformation �(B) yields,

�(B)yt
| {z }

y⇤
t

=

r
’

j=1
�j �(B)zt j

|  {z  }
z⇤
t j

+ �(B)xt
| {z }

w
t

,

and we are back to the linear regression model where the observations have been
transformed so that y⇤t = �(B)yt is the dependent variable, z⇤t j = �(B)zt j for j =
1, . . . , r , are the independent variables, but the �s are the same as in the original
model. For example, if p = 1, then y⇤t = yt � �yt�1 and z⇤t j = zt j � �zt�1, j .

In the AR case, we may set up the least squares problem as minimizing the error
sum of squares
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S(�, �) =
n

’

t=1
w2
t =

n
’

t=1

h

�(B)yt �
r

’

j=1
�j�(B)zt j

i2

with respect to all the parameters, � = {�1, . . . , �p} and � = {�1, . . . , �r }. Of course,
the optimization is performed using numerical methods.

If the error process is ARMA(p, q), i.e., �(B)xt = ✓(B)wt , then in the above
discussion, we transform by ⇡(B)xt = wt , where ⇡(B) = ✓(B)�1�(B). In this case the
error sum of squares also depends on ✓ = {✓1, . . . , ✓q}:

S(�, ✓, �) =
n

’

t=1
w2
t =

n
’

t=1

h

⇡(B)yt �
r

’

j=1
�j⇡(B)zt j

i2

At this point, the main problem is that we do not typically know the behavior
of the noise xt prior to the analysis. An easy way to tackle this problem was first
presented in Cochrane and Orcutt (1949), and with the advent of cheap computing is
modernized below:

(i) First, run an ordinary regression of yt on zt1, . . . , ztr (acting as if the errors are
uncorrelated). Retain the residuals, x̂t = yt �

Õr
j=1 �̂j zt j .

(ii) Identify ARMA model(s) for the residuals x̂t .
(iii) Run weighted least squares (or MLE) on the regression model with autocorre-

lated errors using the model specified in step (ii).
(iv) Inspect the residuals ŵt for whiteness, and adjust the model if necessary.

Example 3.44 Mortality, Temperature and Pollution
We consider the analyses presented in Example 2.2, relating mean adjusted tem-
perature Tt , and particulate levels Pt to cardiovascular mortality Mt . We consider
the regression model

Mt = �1 + �2t + �3Tt + �4T2
t + �5Pt + xt, (3.157)

where, for now, we assume that xt is white noise. The sample ACF and PACF of the
residuals from the ordinary least squares fit of (3.157) are shown in Figure 3.19,
and the results suggest an AR(2) model for the residuals.

Our next step is to fit the correlated error model (3.157), but where xt is AR(2),

xt = �1xt�1 + �2xt�2 + wt

and wt is white noise. The model can be fit using the sarima function as follows
(partial output shown).
trend = time(cmort); temp = tempr - mean(tempr); temp2 = temp^2
summary(fit <- lm(cmort~trend + temp + temp2 + part, na.action=NULL))
acf2(resid(fit), 52) # implies AR2
sarima(cmort, 2,0,0, xreg=cbind(trend,temp,temp2,part))
Coefficients:

ar1 ar2 intercept trend temp temp2 part
0.3848 0.4326 80.2116 -1.5165 -0.0190 0.0154 0.1545

s.e. 0.0436 0.0400 1.8072 0.4226 0.0495 0.0020 0.0272
sigma^2 estimated as 26.01: loglikelihood = -1549.04, aic = 3114.07
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Fig. 3.19. Sample ACF and PACF of the mortality residuals indicating an AR(2) process.

The residual analysis output from sarima (not shown) shows no obvious departure
of the residuals from whiteness.

Example 3.45 Regression with Lagged Variables (cont)
In Example 2.9 we fit the model

Rt = �0 + �1St�6 + �2Dt�6 + �3Dt�6 St�6 + wt,

where Rt is Recruitment, St is SOI, and Dt is a dummy variable that is 0 if St < 0
and 1 otherwise. However, residual analysis indicates that the residuals are not
white noise. The sample (P)ACF of the residuals indicates that an AR(2) model
might be appropriate, which is similar to the results of Example 3.44. We display
partial results of the final model below.
dummy = ifelse(soi<0, 0, 1)
fish = ts.intersect(rec, soiL6=lag(soi,-6), dL6=lag(dummy,-6), dframe=TRUE)
summary(fit <- lm(rec ~soiL6*dL6, data=fish, na.action=NULL))
attach(fish)
plot(resid(fit))
acf2(resid(fit)) # indicates AR(2)
intract = soiL6*dL6 # interaction term
sarima(rec,2,0,0, xreg = cbind(soiL6, dL6, intract))
$ttable

Estimate SE t.value p.value
ar1 1.3624 0.0440 30.9303 0.0000
ar2 -0.4703 0.0444 -10.5902 0.0000
intercept 64.8028 4.1121 15.7590 0.0000
soiL6 8.6671 2.2205 3.9033 0.0001
dL6 -2.5945 0.9535 -2.7209 0.0068
intract -10.3092 2.8311 -3.6415 0.0003
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3.9 Multiplicative Seasonal ARIMA Models

In this section, we introduce several modifications made to the ARIMA model to
account for seasonal and nonstationary behavior. Often, the dependence on the past
tends to occur most strongly at multiples of some underlying seasonal lag s. For
example, with monthly economic data, there is a strong yearly component occurring
at lags that are multiples of s = 12, because of the strong connections of all activity
to the calendar year. Data taken quarterly will exhibit the yearly repetitive period at
s = 4 quarters. Natural phenomena such as temperature also have strong components
corresponding to seasons. Hence, the natural variability of many physical, biological,
and economic processes tends to match with seasonal fluctuations. Because of this,
it is appropriate to introduce autoregressive and moving average polynomials that
identify with the seasonal lags. The resulting pure seasonal autoregressive moving
average model, say, ARMA(P,Q)s , then takes the form

�P(Bs)xt = ⇥Q(Bs)wt, (3.158)

where the operators

�P(Bs) = 1 ��1Bs ��2B2s � · · · ��PBPs (3.159)

and
⇥Q(Bs) = 1 +⇥1Bs +⇥2B2s + · · · +⇥QBQs (3.160)

are the seasonal autoregressive operator and the seasonal moving average opera-
tor of orders P and Q, respectively, with seasonal period s.

Analogous to the properties of nonseasonal ARMA models, the pure seasonal
ARMA(P,Q)s is causal only when the roots of�P(zs) lie outside the unit circle, and
it is invertible only when the roots of ⇥Q(zs) lie outside the unit circle.

Example 3.46 A Seasonal AR Series
A first-order seasonal autoregressive series that might run over months could be
written as

(1 ��B12)xt = wt

or
xt =�xt�12 + wt .

This model exhibits the series xt in terms of past lags at the multiple of the yearly
seasonal period s = 12 months. It is clear from the above form that estimation and
forecasting for such a process involves only straightforward modifications of the
unit lag case already treated. In particular, the causal condition requires |�| < 1.

We simulated 3 years of data from the model with � = .9, and exhibit the
theoretical ACF and PACF of the model. See Figure 3.20.
set.seed(666)
phi = c(rep(0,11),.9)
sAR = arima.sim(list(order=c(12,0,0), ar=phi), n=37)
sAR = ts(sAR, freq=12)
layout(matrix(c(1,1,2, 1,1,3), nc=2))
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Fig. 3.20. Data generated from a seasonal (s = 12) AR(1), and the true ACF and PACF of the
model xt = .9xt�12 + wt .

par(mar=c(3,3,2,1), mgp=c(1.6,.6,0))
plot(sAR, axes=FALSE, main='seasonal AR(1)', xlab="year", type='c')
Months = c("J","F","M","A","M","J","J","A","S","O","N","D")
points(sAR, pch=Months, cex=1.25, font=4, col=1:4)
axis(1, 1:4); abline(v=1:4, lty=2, col=gray(.7))
axis(2); box()
ACF = ARMAacf(ar=phi, ma=0, 100)
PACF = ARMAacf(ar=phi, ma=0, 100, pacf=TRUE)
plot(ACF,type="h", xlab="LAG", ylim=c(-.1,1)); abline(h=0)
plot(PACF, type="h", xlab="LAG", ylim=c(-.1,1)); abline(h=0)

For the first-order seasonal (s = 12) MA model, xt = wt + ⇥wt�12, it is easy to
verify that

�(0) = (1 +⇥2)�2

�(±12) = ⇥�2

�(h) = 0, otherwise.

Thus, the only nonzero correlation, aside from lag zero, is

⇢(±12) = ⇥/(1 +⇥2).

For the first-order seasonal (s = 12) AR model, using the techniques of the
nonseasonal AR(1), we have

�(0) = �2/(1 ��2)
�(±12k) = �2�k/(1 ��2) k = 1, 2, . . .

�(h) = 0, otherwise.

In this case, the only non-zero correlations are
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Table 3.3. Behavior of the ACF and PACF for Pure SARMA Models

AR(P)s MA(Q)s ARMA(P,Q)s
ACF* Tails o� at lags ks, Cuts o� after Tails o� at

k = 1, 2, . . . , lag Qs lags ks

PACF* Cuts o� after Tails o� at lags ks Tails o� at
lag Ps k = 1, 2, . . . , lags ks

*The values at nonseasonal lags h , ks, for k = 1, 2, . . ., are zero.

⇢(±12k) =�k, k = 0, 1, 2, . . . .

These results can be verified using the general result that �(h) = ��(h � 12), for
h � 1. For example, when h = 1, �(1) = ��(11), but when h = 11, we have
�(11) =��(1), which implies that �(1) = �(11) = 0. In addition to these results, the
PACF have the analogous extensions from nonseasonal to seasonal models. These
results are demonstrated in Figure 3.20.

As an initial diagnostic criterion, we can use the properties for the pure seasonal
autoregressive and moving average series listed in Table 3.3. These properties may
be considered as generalizations of the properties for nonseasonal models that were
presented in Table 3.1.

In general, we can combine the seasonal and nonseasonal operators into a multi-
plicative seasonal autoregressive moving average model, denoted by ARMA(p, q) ⇥
(P,Q)s , and write

�P(Bs)�(B)xt = ⇥Q(Bs)✓(B)wt (3.161)

as the overall model. Although the diagnostic properties in Table 3.3 are not strictly
true for the overall mixed model, the behavior of the ACF and PACF tends to show
rough patterns of the indicated form. In fact, for mixed models, we tend to see a
mixture of the facts listed in Table 3.1 and Table 3.3. In fitting such models, focusing
on the seasonal autoregressive and moving average components first generally leads
to more satisfactory results.

Example 3.47 A Mixed Seasonal Model
Consider an ARMA(0, 1) ⇥ (1, 0)12 model

xt =�xt�12 + wt + ✓wt�1,

where |�| < 1 and |✓ | < 1. Then, because xt�12, wt , and wt�1 are uncorrelated, and
xt is stationary, �(0) =�2�(0) + �2

w + ✓
2�2

w, or

�(0) = 1 + ✓2

1 ��2 �
2
w .

In addition, multiplying the model by xt�h , h > 0, and taking expectations, we have
�(1) = ��(11) + ✓�2

w , and �(h) = ��(h � 12), for h � 2. Thus, the ACF for this
model is
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Fig. 3.21. ACF and PACF of the mixed seasonal ARMA model xt = .8xt�12 + wt � .5wt�1.

⇢(12h) = �h h = 1, 2, . . .
⇢(12h � 1) = ⇢(12h + 1) = ✓

1 + ✓2�
h h = 0, 1, 2, . . . ,

⇢(h) = 0, otherwise.

The ACF and PACF for this model, with � = .8 and ✓ = �.5, are shown in
Figure 3.21. These type of correlation relationships, although idealized here, are
typically seen with seasonal data.

To reproduce Figure 3.21 in R, use the following commands:
phi = c(rep(0,11),.8)
ACF = ARMAacf(ar=phi, ma=-.5, 50)[-1] # [-1] removes 0 lag
PACF = ARMAacf(ar=phi, ma=-.5, 50, pacf=TRUE)
par(mfrow=c(1,2))
plot(ACF, type="h", xlab="LAG", ylim=c(-.4,.8)); abline(h=0)
plot(PACF, type="h", xlab="LAG", ylim=c(-.4,.8)); abline(h=0)

Seasonal persistence occurs when the process is nearly periodic in the season. For
example, with average monthly temperatures over the years, each January would be
approximately the same, each February would be approximately the same, and so on.
In this case, we might think of average monthly temperature xt as being modeled as

xt = St + wt,

where St is a seasonal component that varies a little from one year to the next,
according to a random walk,

St = St�12 + vt .

In this model, wt and vt are uncorrelated white noise processes. The tendency of data
to follow this type of model will be exhibited in a sample ACF that is large and decays
very slowly at lags h = 12k, for k = 1, 2, . . . . If we subtract the e�ect of successive
years from each other, we find that

(1 � B12)xt = xt � xt�12 = vt + wt � wt�12.

Frederic Paik Schoenberg


Frederic Paik Schoenberg


Frederic Paik Schoenberg




i
i

“tsa4_trimmed” — 2017/12/8 — 15:01 — page 152 — #162 i
i

i
i

i
i

152 3 ARIMA Models

This model is a stationary MA(1)12, and its ACF will have a peak only at lag 12.
In general, seasonal di�erencing can be indicated when the ACF decays slowly at
multiples of some season s, but is negligible between the periods. Then, a seasonal
di�erence of order D is defined as

rD
s xt = (1 � Bs)D xt, (3.162)

where D = 1, 2, . . ., takes positive integer values. Typically, D = 1 is su�cient to
obtain seasonal stationarity. Incorporating these ideas into a general model leads to
the following definition.

Definition 3.12 The multiplicative seasonal autoregressive integrated moving av-
erage model, or SARIMA model is given by

�P(Bs)�(B)rD
s rdxt = � +⇥Q(Bs)✓(B)wt, (3.163)

where wt is the usual Gaussian white noise process. The general model is denoted
as ARIMA(p, d, q) ⇥ (P,D,Q)s . The ordinary autoregressive and moving average
components are represented by polynomials �(B) and ✓(B) of orders p and q, respec-
tively, and the seasonal autoregressive and moving average components by �P(Bs)
and ⇥Q(Bs) of orders P and Q and ordinary and seasonal di�erence components by
rd = (1 � B)d and rD

s = (1 � Bs)D .

Example 3.48 An SARIMA Model
Consider the following model, which often provides a reasonable representation
for seasonal, nonstationary, economic time series. We exhibit the equations for the
model, denoted by ARIMA(0, 1, 1) ⇥ (0, 1, 1)12 in the notation given above, where
the seasonal fluctuations occur every 12 months. Then, with � = 0, the model
(3.163) becomes

r12rxt = ⇥(B12)✓(B)wt

or
(1 � B12)(1 � B)xt = (1 +⇥B12)(1 + ✓B)wt . (3.164)

Expanding both sides of (3.164) leads to the representation

(1 � B � B12 + B13)xt = (1 + ✓B +⇥B12 +⇥✓B13)wt,

or in di�erence equation form

xt = xt�1 + xt�12 � xt�13 + wt + ✓wt�1 +⇥wt�12 +⇥✓wt�13.

Note that the multiplicative nature of the model implies that the coe�cient of wt�13
is the product of the coe�cients of wt�1 and wt�12 rather than a free parameter.
The multiplicative model assumption seems to work well with many seasonal time
series data sets while reducing the number of parameters that must be estimated.
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Fig. 3.22. R data set AirPassengers, which are the monthly totals of international airline
passengers x, and the transformed data: lx = log xt , dlx = r log xt , and ddlx = r12r log xt .

Selecting the appropriate model for a given set of data from all of those represented
by the general form (3.163) is a daunting task, and we usually think first in terms of
finding di�erence operators that produce a roughly stationary series and then in terms
of finding a set of simple autoregressive moving average or multiplicative seasonal
ARMA to fit the resulting residual series. Di�erencing operations are applied first,
and then the residuals are constructed from a series of reduced length. Next, the ACF
and the PACF of these residuals are evaluated. Peaks that appear in these functions
can often be eliminated by fitting an autoregressive or moving average component
in accordance with the general properties of Table 3.1 and Table 3.3. In considering
whether the model is satisfactory, the diagnostic techniques discussed in Section 3.7
still apply.

Example 3.49 Air Passengers
We consider the R data set AirPassengers, which are the monthly totals of interna-
tional airline passengers, 1949 to 1960, taken from Box & Jenkins (1970). Various
plots of the data and transformed data are shown in Figure 3.22 and were obtained
as follows:
x = AirPassengers
lx = log(x); dlx = diff(lx); ddlx = diff(dlx, 12)
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Fig. 3.23. Sample ACF and PACF of ddlx (r12r log xt ).

plot.ts(cbind(x,lx,dlx,ddlx), main="")
# below of interest for showing seasonal RW (not shown here):
par(mfrow=c(2,1))
monthplot(dlx); monthplot(ddlx)

Note that x is the original series, which shows trend plus increasing variance. The
logged data are in lx, and the transformation stabilizes the variance. The logged data
are then di�erenced to remove trend, and are stored in dlx. It is clear the there is still
persistence in the seasons (i.e., dlxt ⇡ dlxt�12), so that a twelfth-order di�erence
is applied and stored in ddlx. The transformed data appears to be stationary and we
are now ready to fit a model.

The sample ACF and PACF of ddlx (r12r log xt ) are shown in Figure 3.23.
The R code is:
acf2(ddlx,50)

Seasonsal Component: It appears that at the seasons, the ACF is cutting o� a lag
1s (s = 12), whereas the PACF is tailing o� at lags 1s, 2s, 3s, 4s, . . . . These results
implies an SMA(1), P = 0, Q = 1, in the season (s = 12).
Non-Seasonsal Component: Inspecting the sample ACF and PACF at the lower lags,
it appears as though both are tailing o�. This suggests an ARMA(1, 1) within the
seasons, p = q = 1.

Thus, we first try an ARIMA(1, 1, 1) ⇥ (0, 1, 1)12 on the logged data:
sarima(lx, 1,1,1, 0,1,1,12)
Coefficients:

ar1 ma1 sma1
0.1960 -0.5784 -0.5643

s.e. 0.2475 0.2132 0.0747
sigma^2 estimated as 0.001341
$AIC -5.5726 $AICc -5.556713 $BIC -6.510729

However, the AR parameter is not significant, so we should try dropping one
parameter from the within seasons part. In this case, we try both an ARIMA(0, 1, 1)⇥
(0, 1, 1)12 and an ARIMA(1, 1, 0) ⇥ (0, 1, 1)12 model:
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Fig. 3.24. Residual analysis for the ARIMA(0, 1, 1) ⇥ (0, 1, 1)12 fit to the logged air passengers
data set.

sarima(lx, 0,1,1, 0,1,1,12)
Coefficients:

ma1 sma1
-0.4018 -0.5569

s.e. 0.0896 0.0731
sigma^2 estimated as 0.001348
$AIC -5.58133 $AICc -5.56625 $BIC -6.540082
sarima(lx, 1,1,0, 0,1,1,12)
Coefficients:

ar1 sma1
-0.3395 -0.5619

s.e. 0.0822 0.0748
sigma^2 estimated as 0.001367
$AIC -5.567081 $AICc -5.552002 $BIC -6.525834

All information criteria prefer the ARIMA(0, 1, 1) ⇥ (0, 1, 1)12 model, which is the
model displayed in (3.164). The residual diagnostics are shown in Figure 3.24, and
except for one or two outliers, the model seems to fit well.
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Fig. 3.25. Twelve month forecast using the ARIMA(0, 1, 1)⇥ (0, 1, 1)12 model on the logged air
passenger data set.

Finally, we forecast the logged data out twelve months, and the results are shown
in Figure 3.25.
sarima.for(lx, 12, 0,1,1, 0,1,1,12)

Problems

Section 3.1

3.1 For an MA(1), xt = wt + ✓wt�1, show that |⇢x(1)|  1/2 for any number ✓. For
which values of ✓ does ⇢x(1) attain its maximum and minimum?

3.2 Let {wt ; t = 0, 1, . . . } be a white noise process with variance �2
w and let |�| < 1

be a constant. Consider the process x0 = w0, and

xt = �xt�1 + wt, t = 1, 2, . . . .

We might use this method to simulate an AR(1) process from simulated white noise.

(a) Show that xt =
Õt

j=0 �
jwt�j for any t = 0, 1, . . . .

(b) Find the E(xt ).
(c) Show that, for t = 0, 1, . . .,

var(xt ) =
�2
w

1 � �2 (1 � �2(t+1))

(d) Show that, for h � 0,
cov(xt+h, xt ) = �hvar(xt )

(e) Is xt stationary?
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(f) Argue that, as t ! 1, the process becomes stationary, so in a sense, xt is
“asymptotically stationary."

(g) Comment on how you could use these results to simulate n observations of a
stationary Gaussian AR(1) model from simulated iid N(0,1) values.

(h) Now suppose x0 = w0/
p

1 � �2. Is this process stationary? Hint: Show var(xt ) is
constant.

3.3 Verify the calculations made in Example 3.4 as follows.
(a) Let xt = �xt�1 + wt where |�| > 1 and wt ⇠ iid N(0,�2

w). Show E(xt ) = 0 and
�x(h) = �2

w�
�2 ��h/(1 � ��2) for h � 0.

(b) Let yt = ��1yt�1 + vt where vt ⇠ iid N(0,�2
w�

�2) and � and �w are as in part (a).
Argue that yt is causal with the same mean function and autocovariance function
as xt .

3.4 Identify the following models as ARMA(p, q) models (watch out for parameter
redundancy), and determine whether they are causal and/or invertible:

(a) xt = .80xt�1 � .15xt�2 + wt � .30wt�1.
(b) xt = xt�1 � .50xt�2 + wt � wt�1.

3.5 Verify the causal conditions for an AR(2) model given in (3.28). That is, show
that an AR(2) is causal if and only if (3.28) holds.

Section 3.2

3.6 For the AR(2) model given by xt = �.9xt�2 +wt , find the roots of the autoregres-
sive polynomial, and then plot the ACF, ⇢(h).
3.7 For the AR(2) series shown below, use the results of Example 3.10 to determine a
set of di�erence equations that can be used to find the ACF ⇢(h), h = 0, 1, . . .; solve
for the constants in the ACF using the initial conditions. Then plot the ACF values to
lag 10 (use ARMAacf as a check on your answers).
(a) xt + 1.6xt�1 + .64xt�2 = wt .
(b) xt � .40xt�1 � .45xt�2 = wt .
(c) xt � 1.2xt�1 + .85xt�2 = wt .

Section 3.3

3.8 Verify the calculations for the autocorrelation function of an ARMA(1, 1) process
given in Example 3.14. Compare the form with that of the ACF for the ARMA(1, 0)
and the ARMA(0, 1) series. Plot the ACFs of the three series on the same graph for
� = .6, ✓ = .9, and comment on the diagnostic capabilities of the ACF in this case.

3.9 Generate n = 100 observations from each of the three models discussed in Prob-
lem 3.8. Compute the sample ACF for each model and compare it to the theoretical
values. Compute the sample PACF for each of the generated series and compare the
sample ACFs and PACFs with the general results given in Table 3.1.
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Section 3.4

3.10 Let xt represent the cardiovascular mortality series (cmort) discussed in Exam-
ple 2.2.

(a) Fit an AR(2) to xt using linear regression as in Example 3.18.
(b) Assuming the fitted model in (a) is the true model, find the forecasts over a four-

week horizon, xnn+m, for m = 1, 2, 3, 4, and the corresponding 95% prediction
intervals.

3.11 Consider the MA(1) series

xt = wt + ✓wt�1,

where wt is white noise with variance �2
w .

(a) Derive the minimum mean-square error one-step forecast based on the infinite
past, and determine the mean-square error of this forecast.

(b) Let x̃n
n+1 be the truncated one-step-ahead forecast as given in (3.92). Show that

E
⇥

(xn+1 � x̃nn+1)2
⇤

= �2(1 + ✓2+2n).

Compare the result with (a), and indicate how well the finite approximation works
in this case.

3.12 In the context of equation (3.63), show that, if �(0) > 0 and �(h) ! 0 as h ! 1,
then �n is positive definite.

3.13 Suppose xt is stationary with zero mean and recall the definition of the PACF
given by (3.55) and (3.56). That is, let

✏t = xt �
h�1
’

i=1
ai xt�i and �t�h = xt�h �

h�1
’

j=1
bj xt�j

be the two residuals where {a1, . . . , ah�1} and {b1, . . . , bh�1} are chosen so that they
minimize the mean-squared errors

E[✏2
t ] and E[�2

t�h].

The PACF at lag h was defined as the cross-correlation between ✏t and �t�h; that is,

�hh =
E(✏t�t�h)

q

E(✏2
t )E(�2

t�h)
.

Let Rh be the h ⇥ h matrix with elements ⇢(i � j) for i, j = 1, . . . , h, and let ⇢h =
(⇢(1), ⇢(2), . . . , ⇢(h))0 be the vector of lagged autocorrelations, ⇢(h) = corr(xt+h, xt ).
Let ⇢̃h = (⇢(h), ⇢(h � 1), . . . , ⇢(1))0 be the reversed vector. In addition, let xht denote
the BLP of xt given {xt�1, . . . , xt�h}:
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xht = ↵h1xt�1 + · · · + ↵hhxt�h,

as described in Property 3.3. Prove

�hh =
⇢(h) � ⇢̃0

h�1R�1
h�1⇢h

1 � ⇢̃0
h�1R�1

h�1 ⇢̃h�1
= ↵hh .

In particular, this result proves Property 3.4.
Hint: Divide the prediction equations [see (3.63)] by �(0) and write the matrix

equation in the partitioned form as
✓

Rh�1 ⇢̃h�1
⇢̃0
h�1 ⇢(0)

◆ ✓

↵1
↵hh

◆

=

✓

⇢h�1
⇢(h)

◆

,

where the h ⇥ 1 vector of coe�cients ↵ = (↵h1, . . . , ↵hh)0 is partitioned as ↵ =
(↵0

1, ↵hh)0.

3.14 Suppose we wish to find a prediction function g(x) that minimizes

MSE = E[(y � g(x))2],

where x and y are jointly distributed random variables with density function f (x, y).

(a) Show that MSE is minimized by the choice

g(x) = E(y
�

� x).

Hint:
MSE = EE[(y � g(x))2 | x].

(b) Apply the above result to the model

y = x2 + z,

where x and z are independent zero-mean normal variables with variance one.
Show that MSE = 1.

(c) Suppose we restrict our choices for the function g(x) to linear functions of the
form

g(x) = a + bx

and determine a and b to minimize MSE . Show that a = 1 and

b =
E(xy)
E(x2) = 0

and MSE = 3. What do you interpret this to mean?

3.15 For an AR(1) model, determine the general form of the m-step-ahead forecast
xtt+m and show

E[(xt+m � xtt+m)2] = �2
w

1 � �2m

1 � �2 .
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3.16 Consider the ARMA(1,1) model discussed in Example 3.8, equation (3.27); that
is, xt = .9xt�1 + .5wt�1 + wt . Show that truncated prediction as defined in (3.91) is
equivalent to truncated prediction using the recursive formula (3.92).

3.17 Verify statement (3.87), that for a fixed sample size, the ARMA prediction errors
are correlated.

Section 3.5

3.18 Fit an AR(2) model to the cardiovascular mortality series (cmort) discussed in
Example 2.2. using linear regression and using Yule–Walker.

(a) Compare the parameter estimates obtained by the two methods.
(b) Compare the estimated standard errors of the coe�cients obtained by linear re-

gression with their corresponding asymptotic approximations, as given in Prop-
erty 3.10.

3.19 Suppose x1, . . . , xn are observations from an AR(1) process with µ = 0.

(a) Show the backcasts can be written as xnt = �
1�t x1, for t  1.

(b) In turn, show, for t  1, the backcasted errors are

w̃t (�) = xnt � �xnt�1 = �
1�t (1 � �2)x1.

(c) Use the result of (b) to show
Õ1

t=�1 w̃2
t (�) = (1 � �2)x2

1 .
(d) Use the result of (c) to verify the unconditional sum of squares, S(�), can be

written as
Õn

t=�1 w̃2
t (�).

(e) Find xt�1
t and rt for 1  t  n, and show that

S(�) =
n

’

t=1
(xt � xt�1

t )2
�

rt .

3.20 Repeat the following numerical exercise three times. Generate n = 500 obser-
vations from the ARMA model given by

xt = .9xt�1 + wt � .9wt�1,

with wt ⇠ iid N(0, 1). Plot the simulated data, compute the sample ACF and PACF
of the simulated data, and fit an ARMA(1, 1) model to the data. What happened and
how do you explain the results?

3.21 Generate 10 realizations of length n = 200 each of an ARMA(1,1) process with
� = .9, ✓ = .5 and �2 = 1. Find the MLEs of the three parameters in each case and
compare the estimators to the true values.

3.22 Generate n = 50 observations from a Gaussian AR(1) model with � = .99 and
�w = 1. Using an estimation technique of your choice, compare the approximate
asymptotic distribution of your estimate (the one you would use for inference) with
the results of a bootstrap experiment (use B = 200).
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3.23 Using Example 3.32 as your guide, find the Gauss–Newton procedure for es-
timating the autoregressive parameter, �, from the AR(1) model, xt = �xt�1 + wt ,
given data x1, . . . , xn. Does this procedure produce the unconditional or the condi-
tional estimator? Hint: Write the model as wt (�) = xt � �xt�1; your solution should
work out to be a non-recursive procedure.

3.24 Consider the stationary series generated by

xt = ↵ + �xt�1 + wt + ✓wt�1,

where E(xt ) = µ, |✓ | < 1, |�| < 1 and the wt are iid random variables with zero mean
and variance �2

w .

(a) Determine the mean as a function of ↵ for the above model. Find the autocovari-
ance and ACF of the process xt , and show that the process is weakly stationary.
Is the process strictly stationary?

(b) Prove the limiting distribution as n ! 1 of the sample mean,

x̄ = n�1
n

’

t=1
xt,

is normal, and find its limiting mean and variance in terms of ↵, �, ✓, and �2
w .

(Note: This part uses results from Appendix A.)

3.25 A problem of interest in the analysis of geophysical time series involves a simple
model for observed data containing a signal and a reflected version of the signal with
unknown amplification factor a and unknown time delay �. For example, the depth
of an earthquake is proportional to the time delay � for the P wave and its reflected
form pP on a seismic record. Assume the signal, say st , is white and Gaussian with
variance �2

s , and consider the generating model

xt = st + ast�� .

(a) Prove the process xt is stationary. If |a| < 1, show that

st =
1
’

j=0
(�a)j xt�� j

is a mean square convergent representation for the signal st , for t = 1,±1,±2, . . ..
(b) If the time delay � is assumed to be known, suggest an approximate computational

method for estimating the parameters a and �2
s using maximum likelihood and

the Gauss–Newton method.
(c) If the time delay � is an unknown integer, specify how we could estimate the

parameters including �. Generate a n = 500 point series with a = .9, �2
w = 1 and

� = 5. Estimate the integer time delay � by searching over � = 3, 4, . . . , 7.
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3.26 Forecasting with estimated parameters� Let x1, x2, . . . , xn be a sample of size n
from a causal AR(1) process, xt = �xt�1 + wt . Let �̂ be the Yule–Walker estimator
of �.

(a) Show �̂ � � = Op(n�1/2). See Appendix A for the definition of Op(·).
(b) Let xn

n+1 be the one-step-ahead forecast of xn+1 given the data x1, . . . , xn, based
on the known parameter, �, and let x̂n

n+1 be the one-step-ahead forecast when the
parameter is replaced by �̂. Show xn

n+1 � x̂n
n+1 = Op(n�1/2).

Section 3.6

3.27 Suppose
yt = �0 + �1t + · · · + �qtq + xt, �q , 0,

where xt is stationary. First, show that rk xt is stationary for any k = 1, 2, . . . , and
then show that rk yt is not stationary for k < q, but is stationary for k � q.

3.28 Verify that the IMA(1,1) model given in (3.148) can be inverted and written as
(3.149).

3.29 For the ARIMA(1, 1, 0) model with drift, (1 � �B)(1 � B)xt = � + wt, let
yt = (1 � B)xt = rxt .

(a) Noting that yt is AR(1), show that, for j � 1,

ynn+j = � [1 + � + · · · + � j�1] + � j yn.

(b) Use part (a) to show that, for m = 1, 2, . . . ,

xnn+m = xn +
�

1 � �
h

m � �(1 � �m)
(1 � �)

i

+ (xn � xn�1)
�(1 � �m)
(1 � �) .

Hint: From (a), xnn+j � xn
n+j�1 = �

1�� j

1�� + �
j(xn � xn�1). Now sum both sides over

j from 1 to m.
(c) Use (3.145) to find Pn

n+m by first showing that  ⇤
0 = 1,  ⇤

1 = (1 + �), and
 ⇤
j � (1 + �) ⇤

j�1 + � 
⇤
j�2 = 0 for j � 2, in which case  ⇤

j =
1�� j+1

1�� , for j � 1.
Note that, as in Example 3.37, equation (3.145) is exact here.

3.30 For the logarithm of the glacial varve data, say, xt , presented in Example 3.33,
use the first 100 observations and calculate the EWMA, x̃t

t+1, given in (3.151) for
t = 1, . . . , 100, using � = .25, .50, and .75, and plot the EWMAs and the data
superimposed on each other. Comment on the results.
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Section 3.7

3.31 In Example 3.40, we presented the diagnostics for the MA(2) fit to the GNP
growth rate series. Using that example as a guide, complete the diagnostics for the
AR(1) fit.

3.32 Crude oil prices in dollars per barrel are in oil. Fit an ARIMA(p, d, q) model to
the growth rate performing all necessary diagnostics. Comment.

3.33 Fit an ARIMA(p, d, q) model to the global temperature data globtemp perform-
ing all of the necessary diagnostics. After deciding on an appropriate model, forecast
(with limits) the next 10 years. Comment.

3.34 Fit an ARIMA(p, d, q) model to the sulfur dioxide series, so2, performing all
of the necessary diagnostics. After deciding on an appropriate model, forecast the
data into the future four time periods ahead (about one month) and calculate 95%
prediction intervals for each of the four forecasts. Comment. (Sulfur dioxide is one
of the pollutants monitored in the mortality study described in Example 2.2.)

Section 3.8

3.35 Let St represent the monthly sales data in sales (n = 150), and let Lt be the
leading indicator in lead.

(a) Fit an ARIMA model to St , the monthly sales data. Discuss your model fitting
in a step-by-step fashion, presenting your (A) initial examination of the data, (B)
transformations, if necessary, (C) initial identification of the dependence orders
and degree of di�erencing, (D) parameter estimation, (E) residual diagnostics and
model choice.

(b) Use the CCF and lag plots between rSt and rLt to argue that a regression of rSt
on rLt�3 is reasonable. [Note that in lag2.plot(), the first named series is the
one that gets lagged.]

(c) Fit the regression model rSt = �0 + �1rLt�3 + xt , where xt is an ARMA
process (explain how you decided on your model for xt ). Discuss your results.
[See Example 3.45 for help on coding this problem.]

3.36 One of the remarkable technological developments in the computer industry has
been the ability to store information densely on a hard drive. In addition, the cost of
storage has steadily declined causing problems of too much data as opposed to big
data. The data set for this assignment is cpg, which consists of the median annual
retail price per GB of hard drives, say ct , taken from a sample of manufacturers from
1980 to 2008.

(a) Plot ct and describe what you see.
(b) Argue that the curve ct versus t behaves like ct ⇡ ↵e�t by fitting a linear regression

of log ct on t and then plotting the fitted line to compare it to the logged data.
Comment.
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164 3 ARIMA Models

(c) Inspect the residuals of the linear regression fit and comment.
(d) Fit the regression again, but now using the fact that the errors are autocorrelated.

Comment.

3.37 Redo Problem 2.2 without assuming the error term is white noise.

Section 3.9

3.38 Consider the ARIMA model

xt = wt +⇥wt�2.

(a) Identify the model using the notation ARIMA(p, d, q) ⇥ (P,D,Q)s .
(b) Show that the series is invertible for |⇥ | < 1, and find the coe�cients in the

representation

wt =

1
’

k=0
⇡k xt�k .

(c) Develop equations for the m-step ahead forecast, x̃n+m, and its variance based on
the infinite past, xn, xn�1, . . . .

3.39 Plot the ACF of the seasonal ARIMA(0, 1) ⇥ (1, 0)12 model with � = .8 and
✓ = .5.

3.40 Fit a seasonal ARIMA model of your choice to the chicken price data in chicken.
Use the estimated model to forecast the next 12 months.

3.41 Fit a seasonal ARIMA model of your choice to the unemployment data in unemp.
Use the estimated model to forecast the next 12 months.

3.42 Fit a seasonal ARIMA model of your choice to the unemployment data in
UnempRate. Use the estimated model to forecast the next 12 months.

3.43 Fit a seasonal ARIMA model of your choice to the U.S. Live Birth Series (birth).
Use the estimated model to forecast the next 12 months.

3.44 Fit an appropriate seasonal ARIMA model to the log-transformed Johnson and
Johnson earnings series (jj) of Example 1.1. Use the estimated model to forecast the
next 4 quarters.

The following problems require supplemental material given in Appendix B.

3.45 Suppose xt =
Õp

j=1 � j xt�j + wt , where �p , 0 and wt is white noise such that
wt is uncorrelated with {xk ; k < t}. Use the Projection Theorem, Theorem B.1, to
show that, for n > p, the BLP of xn+1 on sp{xk, k  n} is

x̂n+1 =

p
’

j=1
� j xn+1�j .
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3.46 Use the Projection Theorem to derive the Innovations Algorithm, Property 3.6,
equations (3.77)-(3.79). Then, use Theorem B.2 to derive the m-step-ahead forecast
results given in (3.80) and (3.81).

3.47 Consider the series xt = wt �wt�1, where wt is a white noise process with mean
zero and variance �2

w . Suppose we consider the problem of predicting xn+1, based on
only x1, . . . , xn. Use the Projection Theorem to answer the questions below.

(a) Show the best linear predictor is

xnn+1 = � 1
n + 1

n
’

k=1
k xk .

(b) Prove the mean square error is

E(xn+1 � xnn+1)2 =
n + 2
n + 1

�2
w .

3.48 Use Theorem B.2 and Theorem B.3 to verify (3.117).

3.49 Prove Theorem B.2.

3.50 Prove Property 3.2.
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