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INTRODUCTION:  

I chose to analyze a monthly streamflow time series dataset of the Liao river in the 

northeastern region of China.  I obtained the data from a colleague in my graduate program, 

the Civil and Environmental Engineering Department at UCLA.  The Chinese government is the 

agency that collected and stored the data.  Obtaining Chinese environmental data is difficult 

because China does not openly distribute its data. The colleague in my department was able to 

obtain the data for research and educational purposes.  It is a great dataset to run simulations 

on due to its length and integrity. 

 Environmental measurements of this time duration and integrity are difficult to find.  

Streamflow measurements were recorded for a span of 50 years, and consist of a total of 612 

data points.  The values recorded are the total rainfall accumulation for each month in units of 

volumetric flow rate, or cubic feet per second (cfs).         

The data presented in Figure 1 is the plot of the complete time series dataset analyzed 

in the project.  The data shows a very clear pattern on a yearly basis, as flow rate is markedly 

higher in the wet season and lower in the dry season.   The value of the dry season is consistent 

from year to year while the height of the wet season varies a lot in a semi-unpredictable 

pattern.   The data appear to be rather stationary as it has an almost constant mean.  The value 

of the wet season has a cyclical nature to it.  It seems to increase in small increments over a 

course of about ten years. This pattern can be seen most clearly in the data points of indexes 

260 to 350.  This pattern can be seen in the periodogram, once the major yearly cycle is 

removed. 

 The autocorrelation function(ACF) and partial autocorrelation function (PACF) graphs 

are produced to show the correlation between the values of the time series. ACF and PACF 

graphs are produced in such a way as to omit the display of the 0-lag value, which would distort 

the presentation of the data.   These plots are presented in Figure 3.  The ACF shows a strong 

correlation for values 12 months apart.  A negative correlation can be seen for values 6 months 

apart.  This can be seen less so in the PACF however the 12-month positive correlation is still 

there.  The PACF tapers off much more quickly than the ACF. 

The data was then analyzed to determine if a trend existed. Upon examination, the data 

seems to be weakly stationary with a slightly increasing mean. As can be seen in Figure 2, this 

slope of the mean is hardly detectable to the eye but it can be characterized by the equation 

y=.1906955x+1184.31. The slope of .1906 can probably be attributed to some natural 

phenomena like climate change, or shifting atmospheric weather patterns.  Once the trend was 

detected and subsequently removed, graphs were produced to determine the correlation of 

the data.   Figure 4 contains the detrended ACF and PACF graphs.  These plots appear be almost 

identical to the raw data ACF and PACF due to the small trend that was removed. 

   In Figure 5, differencing the data revealed more about the data.  The ACF takes on an 

interesting shape, rounded on the bottom and sharp top for positive correlation.  The ACF also 



seems to taper off very slowly. In the differenced PACF, the cutoff point of 11 is obvious.  Every 

PACF value after 11 seems to be statistically insignificant.   

 

REMOVING THE YEARLY CYCLE: 

At first, at this point of the analysis, I attempted to fit an ARMA model to the detrended 

and differenced data.  This endeavor was unsuccessful and as a result, I presented incorrect 

results for my class presentation.   Specifically, there is a large amount of autocorrelation in the 

residuals, and the Q tests were all significant.  I was unable to fit a model that would fix this.   

In order to successfully fit an ARMA model to my data, I first removed the obvious yearly 

cycle present in the data.  To remove the cycle, I first found the mean value for each of the 12 

months over the 50 years.  I then subtracted the mean monthly value from each monthly value 

to produce a new dataset.  This yielded a dataset that was closer to white noise as the 

protruding cycle was not detectable.  I then proceeded to detrend the data, as well as take the 

first difference of the data.  I then created ACF and PACF graphs for each of the operations. The 

trend on the cycle-normalized data can be seen in figure 6, the detrended, and differenced 

cycle-normalized ACF and PACF can be viewed in Figures 7 and 8.  

Analysis of these plots is much more interesting to analyze as the plots show much less 

cyclical behavior.  The ACF in Figure 8 shows strong positive correlations for early lags then 

negative values for later lags.  The PACF seems to have no pattern to its partial correlation.  The 

differenced data virtually eliminated significant auto-correlation.  The differenced PACF shows 

negative correlation for early lags and then quickly fades into insignificance.  

 

FITTING THE ARIMA MODEL: 

 In order to fit an Autoregressive Integrated Moving Average Model (ARIMA) model to 

the data, I used the R function:  Auto.Arima().   I used the data set which had the cycle removed 

and I took the first difference of the data.  The fit that the Auto.Arima() function recommended 

is ARIMA (0,1,2) fit with θ1=-.53 and θ2=-.388. The residuals analysis is presented in Figure 9.  

The fit was not satisfactory because the Q-statistic showed significant values although the 

autocorrelation between values of the residuals seemed to be very low.   

To correct for the Q-Statistic failure, the auto-regression(AR) term was also included in 

the ARIMA fit. I found that the ARIMA (1,1,2) model fit better than the suggested model from 

Auto.Arima().  The coefficients were found to be ф1=.5012, θ1=-1.012 and θ2=0.019. This 

corrected the Q-test values and also showed that the AR term is significant.  The residual 

analysis produced by the sarima () function in R is shown in figure 10. In this model, the 

autocorrelation between the residuals remained low, although the Q-Q plot shows a high 

number of departures from normality. The ARIMA (1,1,2) is a good fit to the data but there is 



still room for improvement.  The ARIMA (1,1,1) with coefficients ф1=.49 and θ1=-1.00, is a 

slightly better fit.  This model showed a better fit by the goodness-of-fit score through the 

Akaike’s Information Criterion(AIC), Bayesian Information Criterion(BIC), and the bias corrected 

AIC, AICc.  The fit criteria values are summarized in Figure 12 below.   

The models had very similar AIC, AICc and BIC values, and the best fitting model is the 

ARIMA, (1,1,1) model, which had the lowest values for the parameters all around.  The residual 

analysis of the ARIMA (1,1,1) model is shown in figure 11.  There is a low amount of significant 

auto-correlation between the residuals.  The Q-Q plot shows much deviation from the 

normality and a high number of outliers appear off of the normal line. The Q-Statistic shows 

that all the values are insignificant and therefore it is a good fit. 

 

EVALUATING THE PERIODOGRAM: 

A periodogram was first produced with the original data (Figure 13), which is the 

data before the removal of the yearly cyclical trend. This periodogram shows the strong 

yearly and half-yearly cycles that dwarf any other periodic trend in the data. The raw 

periodogram shows a very high spectral density for the yearly cycle.  The smoothed 

periodogram shows a better variance for the approximation of spectral density, but still 

dwarfs the cycles below the main yearly and half-yearly peaks.  The spectral density 

estimates are displayed in Figure 14 below.  It should be noted that the value of spectral 

density for the raw periodogram is very high and shows itself in the plot through very large 
and consistent yearly peaks and troughs. 

When the dominant cycles are removed from the data, the more subtle cycles can be 

observed.  The cycle-normalized periodogram is presented in Figure 15.  Here, we can see 

many steep peaks at the regions of lower frequency, and the peaks seem to lessen in 

intensity as the frequency increases.  The most interesting peaks occur around the range of 

10-13 years. These peaks, I suspect, are due to sun-spot cycles which typically last 11-12 

years.  The frequency with the highest peak is .0065 which corresponds to a period of 12.8 

years. The second highest peak corresponds to a period of 2 years.  There are many peaks 

very close together in the raw periodogram and therefore estimating the spectral density is 

difficult. Figure 16 shows the values of the estimation of spectral density.  It should be 

noted that the spectral density of the cycle-normalized data set is smaller by about an order 

of magnitude.  Figure 16 also shows that the smoother periodogram produced a reduced 

variance in the estimation of spectral density.  

Since the cycle-normalized periodogram has many steep peaks in very proximity, 

when smoothed by a Danielle kernel smoother, the peak position changes frequencies 

corresponding to the combination of the peaks.  I therefore changed the frequency at which 

I took the spectral density estimate so that my calculations corresponded to the two 

maximum peaks produced by the smoothing. The variance of the spectral estimation was 

also reduced due to Danielle kernel smoothing. 



The raw time series corresponds sharply to the yearly cycle and its half-yearly 

harmonic cycle.  If the yearly trend is not removed, it dominates the trend of the time series 

and therefore the smoothness of the data.  Once the yearly cycle is removed, the 

periodogram of the normalized data unveils the intricacies of the more subdued cycles. The 

normalized periodogram shows that the lower frequencies contain a large amount of 

variance in the periodogram.  These lower frequencies play a large role in the smoothness 
of the data although it is complementary to the dominant yearly cycle. 

 

CONCLUSIONS: 

If I were to continue the analysis on this dataset, I would investigate the cycles in the 

periodogram which were observable once the yearly cycle was removed.  The lower 

frequencies of the periodogram are full of sharp peaks which could have interesting drivers 

behind them.  I would be interested in parsing these patterns and removing them. The 

remainder could be studied to create a very precise tool for forecasting or at least 

quantifying expected patterns in streamflow. Even without the delving into the precision of 

the cycles, I think it would be a useful to create forecasting models for this data set to 
predict streamflow in the future. 

I further would like to understand the harmonics in the data, especially in these 

hidden more subdued cycles and understand what is causing the harmonics.  Along those 

same lines, the ARIMA model can also be improved my implementing seasonal parameters 

to the fit.  Environmental data is certainly subject to seasonal variation and I think it would 

be useful to understand how seasonality is represented in the data. 

 

 

 

 

 

 

 

 

 

 

 

 

 



FIGURES: 

 

 

 

Figure 1 Time Series Plot of Monthly Streamflow 

Figure 2 Time Series Plot of Monthly Streamflow with Trendline 



 

Figure 3 ACF and PAF of Raw Data 

 

Figure 4 ACF and PACF of Detrended Data 



 

Figure 5 ACF and PACF of the First Difference 

 

 

Figure 6 Plot of Data with the Yearly Cycle Removed 

 



 

Figure 7 ACF and PACF of Detrended Data with Yearly Cycle Removed 

 

Figure 8 ACF and PACF of First Difference of Data with Yearly Cycle Removed 



 

Figure 9 Residual Analysis for ARIMA (0,1,2) 

 

Figure 10 Residual Analysis of ARIMA (1,1,2) 

 



 

Figure 11 Residual Analysis of ARIMA (1,1,1) 

 

 

 

 

 

 

 

 

 

 

 

ARMA AIC AICc BIC aic

(0,1,2) 12.872 12.875 11.886 8989.910

(1,1,2) 12.719 12.723 11.749 8902.120

(1,1,1) 12.716 12.720 11.738 8900.150

Figure 12 Goodness of Fit Measurements for ARIMA models 



 

Figure 13 Periodogram of the Raw Data 

 

 

 

 

 

 

Figure 14 Spectral Density Estimation for Raw Periodogram 

 

 

Type Frequency Period Power Lower Upper

(1/12) 1 year 187121954 50725961 7390922404

(1/6) 6 months 14256467 3864715 563100351

(1/12) 1 year 27246286 14099694 73187193

(1/6) 6 moths 2240606 1159492 6018568

Raw Periodogram

Smoothed Periodogram



 

Figure 15 Periodogram of Data with Yearly Cycle Removed 

 

 

 

 

 

Figure 16 Spectral Density Estimation of Data with Yearly Cycle Removed 

 

 

 

 

 

 

 

Type Frequency Period Power Lower Upper

0.00650 12.8years 1670158 452755 65967737

0.03040 2 years 1389831 376762.5 54895411

0.01240 6.72 years 597436.4 330283.9 1393240

0.03700 2.25 years 646914.4 1393240 1508625
Smoothed Periodogram

Raw Periodogram



APPENDIX: Contains sample code for creating each of the graphs in the report. Details of the graphs may 

change for each graph but the general methodology is presented here. 

Plotting and Fitting a Regression: 

 

Generate ACF and PACF Trend Removed with cycle: 

 

 

 

 

 



Code for first difference ACF and PACF: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Code for ACF and PACF: detrended, with cycle removed 

 

 

 

 

 

Code used for fitting an ARMA model: 

 

 

 

 

 



Sample Code for producing a Periodogram and Spectral Density Estimation 

 

 

 

 

 




