
Understanding Home Remodeling Seasons Through
Time Series Modeling and Frequency Analysis of Google

Trends Data

Laura Kim

March 16, 2017

1 Introduction

In this report, we plan on outlining the process of understanding the home remodeling
trends in our country by studying the patterns of Google Search queries that include the
term General Contractor. Searches made on Google may indicate what people are curious
about. For example, the sudden spike in searches over the word ”immigration” in Figure 1,
may indicate an acceleration of interestest in immigration policies when the spikes occured.

The dataset for this project was collected from the Google Trends website and the paper
outlines the necessary time series analysis performed on the dataset. We were able to
create a time series model of the data and find an annual trend which coincided with
actual realestate market cycles.

2 Google Trends Data Set

Google Trends shows the Google search index for the searches entered into the Google
Search Bar. The Google Search index will be described later, but we can consider it as the
change in interest or search traffic over a search term.

Google Trends Data may be retrieved from the website
https://trends.google.com/trends/?cat=. We enter the search term that we would like to
study and also enter the date range and narrow the geographic origins of searches. The
website then obtains a time series data set which shows the Google search index over the
range of specified time. The dataset may be downloaded in various formats including .csv,
which is the format used for this project.

For the analysis, the search term General Contractor was used and the date range was set
to 5 years, from January 1, 2012 to January 1, 2017. We also limited the dataset to
searches in the United States.

1

2.1 Google Trends Applications 3 STATIONARITY AND DETRENDING

2.1 Google Trends Applications

The reason we chose Google Trends data to analyze remodeling cycles is because Google
Searches have been used to monitor marketing trends, general interests such as Oscar
Awards, flu outbreaks (although there are controversies on how effective it is).

The idea behind this research is that people tend to query what is on their mind. For
instance, one would search for flu remedies at the onset of flu symptoms. This lead to
creating an entirely independent platform for the sole purpose of keeping track of flu
outbreaks. Since CDC data has a 2 week lag, google search trends ended up providing a 2
week lead time in the prediction of flu. In short, google trends could be a good way to
guage the public interest in a topic. It is a window into the collective mind set of google
searchers. Given that one can isolate searches with resolution up to city level, local and
regional trends can be studied as well as seasonal trends such as fashion. It is an invaluable
tool for marketers in the modern data driven economy.

2.2 How is a Google Search Index Calculated?

Google Trends manipulates the actual search counts for many reasons. The search data is
adjusted to make comparisons between days easier. Each data observation is divided by
the total number of searches within the geographic region and date range selected and then
scaled to be between 0 to 100. This data processing is done to make it easier to compare
relative popularity of the search terms rather than assess the raw search volume. The raw
search volume would generally be highest in cities with denser populations and is not a
good indicator of relative change in interest. Also, the number of people on Google changes
yearly. For example, there are more people on Google now than there were 10 years ago.
Therefore it is important to have divide by the number of searches in time so that
comparisons between years can be properly made.

For this project, we were interested in relative search interest over time. We were not
making comparisons across location so this data manipulation did not necessarily help our
analysis. It also did not harm our analysis because we were interested in analyzing general
interest in a topic (as manifested by search requests) over time.

3 Stationarity and Detrending

The top panel in Figure 1 shows the the time series plot of the google search index for the
term general contractor. It looks almost stationary but there is a slight but noticeable
upward trend. The Augmented Dicky Fuller Test for stationarity had a p-value of 0.01, so
we rejected the null hypothesis that it had a unit root and accepted the alternative
hypothesis, that it is a stationary sequence. However, despite the result of the ADF Test,
we decided to find the trend. After all, if the trend did not really exist, the series would
not change much after detrending. The benefit of finding a cleaner model far outweighs the
small trouble of detrended. The top panel of Figure 1 shows the trend line, which has an

2

5 FREQUENCY ANALYSIS

intercept of -3181.304 and a slope of 1.616, both of which turned out to be highly
significant in the model. The residuals after removing the trend is shown in the bottom
panel of the Figure 1.

4 ACF and PACF

The sample autocorrelation and partial autocorrelation of the detrended series appears to
show some periodicity. Recall that the ACF provides a lot of information about the order
of a MA process but it does not tell a lot about the ARMA and AR process alone. This is
why we also have to consider the PACF for the AR models.

For the series we are studying, the sample PACF appears to be cutting off after 2 lags and
the ACF looks like it is tailing off. This may be an AR(2) model. However, if the ACF is
cutting off after lag 6 and the PACF is tailing, the model is a MA(6). It could also be an
ARMA(p, q) if the ACF and PACF are tailing off. Figure 9 displays the ACF and the
PACF and the reader can consider what the pattern means. All we could tell from the
ACF and PACF is that there is some seasonality in the data.

In the next section, we look at the frequency domain to determine the seasonality of the
time series. We then attempt to remove the seasonality before fitting the model.

5 Frequency Analysis

To identify any seasonality or periodicity in the series, we first created a periodogram.
According to Property 4.1 of the text, any stationary series can be represented in sines and
cosines. The book says that trends may add low frequency components into the spectrum
so we used the detrended series with a mean of 0 for the frequency analysis. The spectrum
appears to have one main peak at a frequency of 1.038462 or a period of 54 weeks. This
approximately corresponds to an annual cycle. There were also peaks at frequencies of
2.8888, 2.596154, 0.5192308, and 0.1442308 which had corresponding periods of 18 weeks,
135 weeks, 27 weeks, and 7.5 weeks. The latter two frequencies are harmonics of the
fundamental frequency of 54 weeks due to the imperfect nature of the sinuoids. However,
we could not find a reason to explain the first two frequencies (18 weeks and 135 weeks).
The confidence interval for the main peak is 9.434306 ≤ f(ω) ≤ 1374.606 which is too wide
to make a conclusion about the significance of the peak. Figure 3 shows the periodogram
with vertical lines identifying peaks that were discussed here.

Next we attempted to compute the average periodogram to smooth out some of the noise.
This is a nonparametric spectral estimation because there is no assumption about the
parametric form of the spectrum. First, we used the daneill filter with m=1 or L=3. The
image is shown in Figure 4. We can see that already, the freqeuncy of the first peak is
being averaged out. Figure 5 shows an attempt with a Daniell filter applied twice, both
with L=3. It appears to smooth out the periodogram even more. Figure 6 shows the
Daniell Filter with m=2 or L=5 applied once. The peaks have changed completely and the

3

6 TIME SERIES MODELING

first peak has been smoothed out. Also, the peaks have flattened out making it difficult to
determine the frequency at which the peaks occur.

In attempting to bring back some of the frequencies that have leaked or averaged with
nearby frequencies, we try to fit a parametric spectral estimator. We fit an AR(p) model to
the data and used the AIC to find the best fitting order. The book claims that often, this
method will give a spectral density with higher resolution for nearby peaks. The spec.ar
function in R picks the best fitting AR model. In our case, it fit an AR(3) which smooths
out all peaks. We just know that the high power spectrum are dominating the lower
frequencies as shown in Figure 7. The resolution is far worse than the nonparametric
methods in this case. To bring back some of the peaks, we try to fit some higher order AR
models. AR(33) looks closer to the original periodogram. Although not all of the peaks are
present, Figure 8 shows that the main peak for the annual cycle is present as are some of
the harmonics. The peaks are not as high or sharp as the raw periodogram but is sharper
than some of the nonparametric spectral plots. The parametric method may be a good
compromise between the noisy raw periodogram and the flattend averaged periodogram.

6 Time Series Modeling

Before fitting a time series model to the data, it is a good idea to make sure that the trend
and seasonality is removed. We are then left with a stationary series that might look like
noise. We have thus far used detrended data but have not removed the seasonality. The
next sections will discuss removing the seasonality and then model the remaining signal.

6.1 Removing the Seasonality

The frequency domain analysis revealed a clear yearly cycle for searches of the term general
contractor. To remove this yearly pattern we subtracted seasonal means from the data.
The resulting plot is shown in Figure 11. The plot is centered around 0 and the seasonality
is much decreased, even if there still appears to be a slight seasonal pattern.

The sample ACF and PACF of the detrended and deseasonalized data appears to look a lot
more stationary than just the detrended series. It appears to look like an AR(1) or a
MA(1) but it is unclear what will fit the model best. In the next sections, we disuss how
we attempted to fit various models to this data and try to forcast a few future points using
the best fitting model.

6.2 Time Series Models

We fitted the detrended and deseasonalized data to a time series model. Fitting all possible
models for ARMA(p, q) from values of p and q between 0 and 20, we found that ARMA(2,
3) had the lowest AIC of 1736.427. Other potentially well fitting models were ARMA(1, 2)
with AIC 1736.427, MA(1) with AIC 1741.238, AR(6) with AIC 1740.320 and AR(1) with

4

8 THE GOOGLE TRENDS DATA CONFUSION AND CONCLUSION

AIC 1740.238. From looking at the residuals plots, there was not a huge difference between
the models except in the QQplots. The residuals for all models appeared to look like
stationary white noise except for few potential outliers. There were not significant
correlations between the lags and the ljung-box statistics all had high p-values. Choosing
the best model came down to picking the model with the most normally distributed
residuals as shown by the QQplot and the model with easiest interpretation.

After much consideration, we decided to use the AR(1) model for simplicity and the
residual properties in the QQ plot. For some reason, the residuals from all of these models
appeared to be heavy tailed. AR(1) seemed to be the least heavy tailed so we chose to use
this model for the forecast.

7 Forecasting

For forecasting, we used the AR(1) model of the residuals xt = .4104xt−1 − 0.0311. First,
we used the forecast function in R and forecasted 2 months ahead. However, the result was
not very accurate and the standard error bars too wide. Also, the outcome was not very
interesting because the prediction started to plateau after a couple of points. This
phenomenon is due to that fact that in long range forecasts, the forecast settles quickly to
the mean. In figure 13, we show a plot of the forecast using this method.

Next, we computed the forecast by hand but used the one step point forecast technique by
plugging in observations from the previous time stamp. Because we deseasonalized and
detrended the data, we added the seasonality and trend back in to get the final forecast.
The plot is shown in the Figure 14 and appears to be quite accurate and follows the real
data closely. The forecast is shown in red and the actual data is shown in blue. The test
data was: 84, 73, 78, 84, 91, 82, 90, 77. The forecast was: 82.85246, 77.32508, 76.36506,
85.41448, 89.07431, 86.96773, 88.83891, 77.29073.

8 The Google Trends Data Confusion and Conclusion

For the presentation, 5 years worth of data was collected from the Google Trends website
and analyzed and modeled in a similar way as outlined above. However, the data for
forecasting was collected later. To be specific, 5 years and 2 months worth of data was
collected from the same website and then the last 2 months of data was subsetted to be
used for analysis.

During the forecasting portion of the analysis, it turned out to be hard to calculate very
accurate predictions. Despite formulating very good models with nearly ideal residual
properties that seemed to have the characteristics of white noise with zero lag and perfect
normal distribution, it was difficult to obtain results that resembled the real data as we did
for this report in the one step ahead prediction.

Recall that the data is normalized and scaled by date range and location. Since we added 2
months worth of extra data, the entire dataset changed. The yearly cycle remained the

5

9 CODE

same but the ARMA model changed because the data was renormalized with the extra
months. Although Google does not exactly state how normalization is done, we suppose
that if there were two weeks worth of data, with 2 searches one week and 10 the next, the
numbers would be normalized and scaled to 20 and 100. If another week of 3 searches were
added, we would get normalized and scaled values of 20, 100 and 30. However, if we have a
number that is larger than 10, lets say 20 on the third week, then the normalization and
scaling changes the original search values to 10, 50, and 100 for the three weeks.

Google Trends explains their motivation behind the normalization and scaling on this
website. https : //medium.com/google− news− lab/what− is− google− trends− data−
and− what− does− it−mean− b48f07342ee8#.8h3yx2gc1

Google explains it best so we quote here,”That normalization is really important: the
number of people searching on Google changes constantlyin 2004 search volume was much
smaller than it is today, so raw search numbers wouldnt give you any way to compare
searches then and now. By normalizing our data, we can make deeper insights: comparing
different dates, different countries or different cities. The context of our numbers also
matters. We index our data to 100, where 100 is the maximum search interest for the time
and location selected. That means that if we look at search interest in the 2016 elections
since the start of 2012, well see that March 2016 had the highest search interest, with a
value of 100. ”

In conclusion, 5 years of google trends data for the search term general contractor was
downloaded from the google trends website. The AR(1) model appeared to fit the
detrended and deseasonalized data well. Detrending removed the line
yt = −3181.304 + 1.616 ∗ t from the raw data and then we removed a yearly seasonality.

The annual cycle reveals that the number of searches for contractors are genrally low in the
winter and high during the summer. This pattern is well explained by the real estate
market where home sales are stronger in the summer months than the winter months. It
seems likely that contractors are hired to fix home either before or after homes are bought
and sold during the summer months.

After the data manipulation, the data appeared stationary and we fitted many models and
chose the AR(1) model for easy interpretation and relative low AIC (but not the lowest).
The one step ahead forecast of the AR(1) model seemed to follow the data well.

9 Code

This is with a new data set that covers 1/2012 to 1/2017 with extra data points

setwd("C:/Users/Laura/Dropbox/classes/stat221 - time series/project")

load("tsa3.rda")

data.google <- read.csv("multiTimeline_la.csv", header = TRUE, sep = ",",strip.white = TRUE)

dat <- data.google[1:262,]

dat_w <- data.google

6

9 CODE

#test of stationarity: adf

#augmented dickey-fuller test

library(tseries)

adf.test(dat[,2], k=6)

turn "training" data into a time series

library(lubridate)

dat_ts <-ts(dat$General,

freq=364/7,

start = decimal_date(ymd("2012-01-01")),

end = decimal_date(ymd("2017-01-01"))

)

time series of entire dataset

dat_all_ts <-ts(dat_w$General,

freq=52,

start = 2012.000)

augmented dickey fuller test p value 0.01

adf.test(dat_ts, k= trunc((length(dat_ts)-1)^(1/3)))

library(forecast)

only training set

t<-time(dat_ts)

fit_ts = lm(dat_ts ~ t)

whole data set

tw<-time(dat_all_ts)

fit_tsw = lm(dat_all_ts ~ tw)

a <- stl(dat_ts, s.window="periodic", t.window =10)

fitted_ts <-ts(fit_ts$fitted.values,

freq=364/7,

start = decimal_date(ymd("2012-01-01")),

end = decimal_date(ymd("2017-01-01"))

)

fitted_tsw <-ts(fit_tsw$fitted.values,

freq=364/7,

7

9 CODE

start = decimal_date(ymd("2012-01-01"))

)

detrended plot

dev.new()

par(mfrow=c(2,1))

plot.ts(dat_ts,ylab="Google Index", xlab="Time", lwd=2, col=’skyblue3’, ylim=c(40, 100))

lines(fitted_ts ,col="red3", lwd=2)

plot(t, fit_ts$residuals, ylab="Residuals",type=’l’,xlab="Time")

create time series of detrended series

detrended_ts = resid(fit_ts)

detrended = ts(detrended_ts,

freq=364/7,

start = decimal_date(ymd("2012-01-01")),

end = decimal_date(ymd("2017-01-01"))

)

detrended time series including test points

detrended_tsw = resid(fit_tsw)

detrendedw = ts(detrended_tsw,

freq=364/7,

start = decimal_date(ymd("2012-01-01")),

end = decimal_date(ymd("2017-01-01"))

)

library(data.table)

creating data table

data = data.table(detrended = as.numeric(detrended),index1 = seq(1,54,1))

data_pred = data.table()

obtaining seasonal components

seasonality1 = data[,mean(detrended),by = index1]

data_merged = merge(data,seasonality1, all.x = TRUE,by = ’index1’, sort = ’FALSE’)

data_merged = as.data.frame(data_merged)

data with seasonality removed

residual = data_merged$detrended - data_merged[,3]

creating data table (for the whole dataset)

#dataw = data.table(detrendedw = as.numeric(detrendedw),index1 = seq(1,54,1))

#data_pred = data.table()

8

9 CODE

obtaining seasonal components

#seasonality12 = dataw[,mean(detrendedw),by = index1]

#data_mergedw = merge(dataw,seasonality12, all.x = TRUE,by = ’index1’, sort = ’FALSE’)

#data_mergedw = as.data.frame(data_mergedw)

data with seasonality removed

#residual2 = data_mergedw$detrended - data_mergedw[,3]

there is a trend with an upward slope of 0.044 which is an increase in the search term by 2 each year

who knows what that really means because we don’t know the total number of searches

also we have correlated errors here

acf and pacf

acf2(dat_ts, 100)

acf2(detrended, 100)

acf2(residual)

residual = ts(residual,

freq=364/7,

start = decimal_date(ymd("2012-01-01")),

end = decimal_date(ymd("2017-01-01"))

)

adf.test(residual, k=6)

AIC minimum at 1740.507 p = 1or AR(1) or 1740.320 p = 8 AAR(8) and

#1741.238 q = 1 or MA(1) respectively

This is only for the ar model

n= length(dat[,2])

AIC.ar = rep(0,50) -> AIC.ma -> BIC.ar -> BIC.ma

for (k in 1:50){

fit.ar = arima(residual, order = c(k, 0, 0))

fit.ma = arima(residual, order = c(0, 0, k))

AIC.ar[k] = AIC(fit.ar)

BIC.ar[k] = AIC(fit.ar, k = log(length(n)))

AIC.ma[k] = AIC(fit.ma)

BIC.ma[k] = AIC(fit.ma, k = log(length(n)))

}

IC = cbind(AIC.ar, AIC.ma)

ts.plot(IC, type = "o")

AIC minimum 1736.427 ARMA(1,2)

1732.326 ARMA(2,3)

#

9

9 CODE

the detrended one gets min at AIC 1863.811 ARMA[1,2]

This is only for the ARMA model

n= length(dat[,2])

AIC = matrix(cbind(rep(0,20), 20), nrow = 20, ncol = 20) -> AICc -> BIC

for (p in 1:20){

for (q in 1:20){

fit = arima(residual, order = c(p, 0, q))

AIC[p,q] = AIC(fit)

BIC[p,q] = AIC(fit, k = log(length(n)))

}

}

sarima makes a lot of outputs regarding residuals

if pvalue is high, we fail to reject null

the null is that there is correlation?

arma_Values = sarima(residual, 2, 0, 3)

sarima(detrended, 1, 0, 2)

arma_raw = sarima(dat_ts, 6, 0, 4)

for_resid = arima(detrended, order=c(6,0,4))

for_resid_ts = ts(resid(for_resid),

freq=364/7,

start = decimal_date(ymd("2012-01-01"))

)

acf2(for_resid_ts, 50)

forecasting

long term forecast

m1=Arima(residual,order=c(1,0,0))

plot(forecast(m1,h=9),shadecols="oldstyle")

forecasting used in project

t_test <- c(2017.000,2017.019, 2017.038, 2017.058, 2017.077, 2017.096, 2017.115, 2017.135, 2017.154)

linear <- -3181.304 + 1.616 * t_test

dat.test <- dat_w[262:270,]$General

season <- seasonality1[1:9, 2]

residual_new <- dat.test-linear

fore_res <- 0.4104*residual_new -0.0311

real_forecast <- linear+season+fore_res

se <- sd(real_forecast)/sqrt(length(real_forecast))

real_forecast_ts <- ts(real_forecast,

10

9 CODE

freq = 52,

start = decimal_date(ymd("2017-01-08")))

test.dat_ts <- ts(dat.test[-1],

freq = 52,

start = decimal_date(ymd("2017-01-08")))

ts.plot(dat_ts,real_forecast_ts, col = 1:2) # plot of prediction

lines(test.dat_ts, type="p", col = 4)

periodogram

dat.per = spec.pgram(detrended, taper=0, log="no")

dat.per = spec.pgram(dat_ts, taper=0, log="no")

abline(v=(f1, f3, f3))

confidence interval is too wide

U = qchisq(.025, 2)

L = qchisq(.975, 2)

2*dat.per$spec[5]/L

2*dat.per$spec[5]/U

2*dat.per$spec[10]/L

2*dat.per$spec[10]/U

2*dat.per$spec[36]/L

2*dat.per$spec[36]/U

everything else is a harmonic of the 54 week cycle

dat.per$spec[5]

f1 <-dat.per$freq[5] # period of 54 weeks

dat.per$spec[10]

f2 <- dat.per$freq[10] #period of 27 weeks

dat.per$spec[36]

f3 <- dat.per$freq[36] # period of 7.5 weeks

abline(v=c(f1, f2, f3), lty=2)

spaic=spec.ar(detrended, log="no")

nonparametric

averaged periodogram: can’t seem to get a much smoother spectral density

k = kernel("daniell", 8) # sort of a monthly average L=5, m=2

gt.ave = spec.pgram(detrended, k, taper=0, log="no")

abline(v=c(f1, f2, f3), lty=2)

11

9 CODE

nonparametric

averaged periodogram with modified daniell kernel

dev.new()

k=kernel("modified.daniell", c(1, 1))

gt.smo=spec.pgram(detrended, k, taper=0, log="no")

abline(v=c(f1, f2, f3), lty=2)

parametric spectral estimation

gtaic = spec.ar(detrended, log = "no")

spec.ar(detrended, order = 33, log = "no")

abline(v=c(f1), lty=2)

n= length(dat[,2])

AIC.ar = rep(0,50) -> AIC.ma -> BIC.ar -> BIC.ma

for (k in 1:50){

#fit.ar = arima(dat_ts, order = c(k, 0, 0))

#fit.ma = arima(dat_ts, order = c(0, 0, k))

fit.ar = arima(detrended, order = c(k, 0, 0))

#fit.ma = arima(detrended, order = c(0, 0, k))

sigma2 = var(fit$resid, na.rm=TRUE)

AIC.ar[k] = AIC(fit.ar)

#BIC.ar[k] = AIC(fit.ar, k = log(length(n)))

#AIC.ma[k] = AIC(fit.ma)

#BIC.ma[k] = AIC(fit.ma, k = log(length(n)))

}

dat.per = spec.pgram(detrended, taper=0, log="no")

dat.per = spec.pgram(dat_ts, taper=0, log="no")

dat.per = spec.pgram(residual, taper=0, log="no")

dat.per$spec[5]

f1 <-dat.per$freq[5] # period of 54 weeks

dat.per$spec[10]

f2 <- dat.per$freq[10] #period of 27 weeks

dat.per$spec[36]

f3 <- dat.per$freq[36] # period of 7.5 weeks

f4 <- dat.per$freq[2] #135 weeks

f5 <- dat.per$freq[15] #18 weeks

abline(v=c(f1, f2, f3, f4, f5), lty=2)

12

10 PLOTS

U = qchisq(.025, 2)

L = qchisq(.975, 2)

2*dat.per$spec[5]/L

2*dat.per$spec[5]/U

2*dat.per$spec[10]/L

2*dat.per$spec[10]/U

2*dat.per$spec[36]/L

2*dat.per$spec[36]/U

spaic=spec.ar(detrended, log="no")

abline(v=(f1, f3, f3))

to see the cycles better

dev.new()

par(mfrow=c(2,1))

plot(detrended)

plot(residual)

ker=kernel("modified.daniell", 6) # modified danielle kernel applied twice

L=round(1/sum(ker$coef^2)) # the value of L or sppans

plot(soif <- kernapply(detrended, ker), main = "Low Pass Filtered")

spec.ts <-spectrum(soif, spans=13, taper = 0)

abline(v=f1, lty=2)

ker=kernel("modified.daniell", c(3,3)) # modified danielle kernel applied twice

L=round(1/sum(ker$coef^2)) # the value of L or sppans

plot(f <- kernapply(detrended, ker), main = "Low Pass Filtered")

spec.ts <-spectrum(f, spans=c(7,7), taper = 0)

abline(v=f1, lty=2)

componets

components <- decompose(dat_ts)

plot(components)

10 Plots

13

10 PLOTS

Figure 1: Time Series Plot of Google Index for General Contractor

14

10 PLOTS

Figure 2: ACF and PACF

15

10 PLOTS

Figure 3: Periodogram with peak at annual cycle

16

10 PLOTS

Figure 4: Average Periodogram with Daniell filter m=1 or L=3

17

10 PLOTS

Figure 5: Average Periodogram with Daniell filter m=1 or L=3 applied twice

18

10 PLOTS

Figure 6: Average Periodogram with Daniell filter m=2 or L=5 applied once

19

10 PLOTS

Figure 7: Parametic Spectral Estimation

20

10 PLOTS

Figure 8: Order 33 Parametic Spectral Estimation

21

10 PLOTS

Figure 9: ACF and PACF of the detrended series

22

10 PLOTS

Figure 10: Plot of time series with seasonality removed

23

10 PLOTS

Figure 11: Sample ACF and PACF of time series with seasonality removed

24

10 PLOTS

Figure 12: Sample ACF and PACF of time series with seasonality removed

25

10 PLOTS

Figure 13: Forecast residuals 2 months using the Long Range Forecast

26

10 PLOTS

Figure 14: Forecast residuals 2 months using the One Step Ahead Forecast

27

