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1 Introductory Comments

The last US recession ended in the second-quarter of 2009, and the unemployment rate has since fallen

considerably (see Figure 1). Indeed, unemployment is close to the lowest level it's been in the last

40 years, suggesting at �rst sight the predominance of very healthy labor-market conditions in the

country. One could reasonably conjecture, however, that such precipitous drop may potentially be

attributed to the simple fact that, more and more, individuals are dropping out of the labor-force. In

truth, the unemployment rate - according to the Bureau of Labor Statistics (BLS)1 - is measured as the

estimated number of unemployed individuals (people who are simultaneously jobless, looking for a job,

and available for work) divided by the estimated labor force (which is comprised of unemployed plus

employed individuals2). A decrease in the number of individuals looking for a job leads to a decrease

in both the number of unemployed individuals (the numerator of the unemployment rate), and to a

similar decrease in the labor force (the denominator of such rate), ultimately producing a decline in

the rate itself3.

Arguably, therefore, a more indicative measure of the overall health of the labor market is the

employment-to-population ratio (illustrated in Figure 2). Here, we see that US workers have been,

relatively speaking, having a hard time �nding jobs - employment is at a much lower level than it

was in the late 1990's. The 4% decline seen over the last recession was massive vis-a-vis declines

registered in previous recessions, and recovery has been somewhat sluggish - i.e., if compared to the

growth in employment seen in the 1980's. Figure 3 highlights in di�erent colors what arguably could

be considered di�erent regimes in the employment-to-population series. This �gure suggests that such

1See https://www.bls.gov/cps/cps_htgm.htm.
2In the section entitle �Brief Description of Data�, below, we provide a more comprehensive summary of which

individuals are considered to be employed by the BLS, and on how employment-related data is collected.
3Note that this follows from a basic property of fractions. If a, b and x are non-zero positive integers, with a < b,

then a−x
b−x

< a
b
.
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series grew at a fast pace from about April 1975 to November 2000. In Figure 4, we show linear trends

�t to the time periods corresponding to these potential regimes. It should be clear by assessing the

slopes of these lines that employment did indeed grow at a stronger pace in the period that goes from

1975 to 2000.

In this study, we model and interpret the time series of employment-to-population from April 1975

to November 2000 (we leave the period that goes from December 2000 to November 2001 as a test

set, which we later use to evaluate our forecasts). As we have argued above, this is a period when

employment exhibited strong gains. Hopefully, by understanding it better, one could possibly develop

recipes/policies for improving the current labor environment in the US. In our view, modeling it is a

�rst step towards gaining such understanding4.

2 Brief Description of Data

Our data comes from the Federal Reserve Bank of Saint Louis (FRED)5. FRED provides, free-of-

charge, about 469,000 US and International time series, from numerous sources, in its website. We

have actually downloaded our time series from FRED directly into R using the function �getSymbols�

from the �quantmod� library. The data we use is monthly, and the observations originally come from

the Current Population Survey (CPS) conducted early each month by the BLS. This survey, which

measures employment and unemployment in the country, has been conducted in the US every month

since 1940 (though the data that is available on FRED starts in 1948). The BLS reports that there

are roughly 60,0000 eligible households in the sample for this survey. The sample is selected so as

to be representative of the US population. Every month, government employees contact these 60,000

households and ask individuals living in them (aged 16 and above) questions about their labor activities.

Individuals are considered employed if they: (i) �did any work for pay or pro�t during the week when

the survey is conducted�; or (ii) have a job but couldn't work because of speci�c circumstances6. Note

that part-time workers, according to this de�nition, are considered to be employed. And also note that

4Side note: in Figure 5, we show the estimated total number of employees in the Manufacturing sector. This is
included more as a curiosity here. Manufacturing jobs took a hard hit in the last recession, falling by about 30% then.
Interestingly, the Trump campaign was apparently successful in identifying this movement - in the sense that they won
the electoral vote in a number of states in which the discussion Manufacturing jobs seemed to have been critical.

5https://fred.stlouisfed.org/.
6In particular, if they have a job but were on vacation; ill; experiencing child care problems; on maternity or paternity

leave; prevented from working due to bad weather; involved in a labor dispute; or taking care of personal of family
obligation.
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if a person has more than one job, he or she will simply show up in the survey as being employed - i.e.,

s/he won't be �counted twice�. The employment-to-population ratio is then de�ned as the number of

employed individuals, as a percentage of the total population (in the surveyed households).

3 Analysis

To model our data, the following steps will be taken: (i) we will detrend the data; (ii) we'll use spectral

analysis to identify cycles/seasonal patterns in the detrended data, and then remove these cycles from it;

(iii) the residuals (original data− trend− seasonal components) will then be analyzed and modeled

as an ARMA process; (iv) �nally, we'll evaluate how well we have modeled our time series by evaluating

the residuals engendered by our approach, and by assessing the quality of our forecasts.

Before implementing these steps, we �rst assess the autocorrelation (ACF) and partial-autocorrelation

functions (PACF) of the original data. On the top portion of Figure 6, we show the ACF and PACF of

the original data when all possible lags are used; on the bottom of Figure 6, the ACF and PACF are

depicted for a total of 50 lags. We see that the PACF hints towards the existence of cycles in the data;

and so does the ACF plot which includes all possible lags. As we'll show below, the cyclical nature of

our data will become more apparent once the series has been detrended.

3.1 Detrending the Data

Firstly, we tried �tting a linear regression model to the data. The �tted model takes on the following

form: Ŷt = −520 + 0.29t, where Ŷt denotes the �tted employment-to-population ratio at time t. The

t − statistic for our slope coe�cient is 35.03, indicating that the trend in this period is statistically

signi�cant (even at the 1% level of signi�cance). This �tted linear trend suggests that employment-to-

population tended to increase by 0.29% per year from April 1975 to November 2000 - a rate which we

have argued is higher than those evidenced in neighboring time-periods.

Figure 7 shows the detrended data, when such linear trend is used. Interestingly, this �gure suggests

that the resulting detrended series is not stationary: the variance on the left-hand site of our plot

seems markedly higher than that on the right-hand side. To con�rm our visual intuition, we conduct

an augmented Dickey-Fuller (ADF) test on the detrended series7. The p-value from our test is 0.36 -

therefore, we fail to reject the null hypotheses that there exists a unit root in this data. This in turn

7The adf.test function in R selected a lag order of 6 for this test.
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suggests that the detrended series is indeed non-stationary.

One could attempt to get around this by taking �rst-di�erences of the original data; but our main

interest here is in the employment-to-population ratio itself, not in �rst-di�erences of this quantity.

Thus, we will refrain from taking �rst-di�erences of our time-series. Instead, we opt to �t a non-linear

trend to the data, using a smoothing-spline regression (i.e., a spline regression where the knots are tied

to the observations themselves).

We have written a function in R that �ts a non-linear trend to our data through smoothing-splines.

Note that we could also have utilized the lowess or loess functions in R to �t a non-linear trend here,

as well as other methods. One of the advantages of using our own code to �t a non-linear trend is that,

by doing so, we know exactly how the trend is being �t - and this allows us to more easily forecast the

trend component of our series.

The �tted trend is of the form f(x) = α0 +
∑p

j=1 αjmax(0, x− kj) , where x here is equivalent tot

(time), and the k′js are the times associated with the observations in the employment-to-population

series8. The �tted α′s are found by minimizing
∑n

t=1 ||yt−α0−
∑p

j=1 αjmax(0, xt−kj)||2+λ
∑p

j=1 α
2
j ,

with yt denoting the employment-to-population ratio at time t, xt is again simply the time t associated

with observation yt; λ is a tuning parameter that penalizes the complexity of our model9. In the

appendix, we provide a brief derivation of the spline solution.

Figure 8 shows our time series and the non-linear trend. The tuning parameter λ was selected so as

to yield a detrended time series that looked stationary, while producing a trend component that was

reasonably smooth10. The detrended data is shown in Figure 9. We can see that after removing the

non-linear trend, we obtain a series that seems stationary. An ADF test was conducted on this time

series, producing a very low p − value (p < 0.01) 11- the null hypothesis that there exists a unit root

in this series can now be rejected. This is the detrended series that we use in our analysis.

Some comments are in order. Firstly, one could speculate that the overall positive trend seen in

this period is associated with an increased integration between the US economy and other economies

(globalization), which may have led to increasing exports and the creation of local job openings. It

is also possible that an increasing participation of women in the labor-force contributed to the steep

increase in employment we saw from 1975 to 2000. Lastly, automation and product innovations may

8Note that p = 308, the total number of observations.
9Also, n = 308 and p = 308; and kj denotes, as we mentioned, the time associated with observation j.

10We tried di�erent values for λ, ultimately choosing λ = 100.
11Again a lag order of 6 was used in the test.
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destroy jobs in some industries, but can also create jobs in others (and note that these can also

make companies more e�cient, potentially leading to greater shareholder wealth, which can also spur

consumption and jobs) - thus, automation by itself (which one could proxy through labor productivity)

may also have helped create jobs in this period. We believe these should be subject to scrutiny in further

studies.

3.2 Identifying and Removing Cycles (Spectral Analysis)

Figure 10 depicts the ACF and PACF of the detrended data - we can clearly see, from this �gure,

that the detrended series is in�uenced by cycles. Figure 11 illustrates the raw periodogram of the

detrended data. A large portion of the total variation in the data is explained by the 1.013 frequency

(which corresponds to a period of roughly one year). There are also peaks at ω = 1.988 ≈ 2 and

ω = 3, harmonics of ω = 1. This indicates that the one-year cycle present in the series is not a perfect

sinusoid. Also note that there is considerable power at lower frequencies. In particular, we see a small

peak at the frequency of 0.118 (which corresponds to a period of 5.33 years, or 64 months). One could

associate this peak with long-term business-cycle �uctuations not captured by our non-linear trend.

In Figure 12, we show in detail the yearly seasonal component, which, as we have argued, is respon-

sible for a good portion of the total variation in the detrended series.The graph suggests that there is

a strong employment season from March to May, and a weak one from October to January. Generally

speaking, April seems to be the best month to �nd a job, while October is apparently the worst. The

yearly seasonal component declines, in general terms, after April, and starts to increase after Octo-

ber. July seems to actually be a stronger month for employment-population than June, August and

September. Also note that the annual seasonal component is negative from September to February,

staying positive in other months. Summer vacations of hiring managers may be a possible reason for

the slowdown in Summer months; a desire by some CFO's to boost calendar-year-end bottom lines12,

coupled with the holiday season, might help to explain the low year-end �gures.

We have also computed approximate approximate con�dence intervals for the spectral densities

associated with the one-year cycle, the cycles corresponding to ω = 2 and ω = 3 (harmonics), and the

5.33 year cycle. The lower values of these intervals are all higher than most of the other periodogram

ordinates, indicating that these cycles are all signi�cant.

12Note that the calendar year is used as the �scal year by most publicly-traded US �rms.
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Figure 13 contains the smoothed periodogram of our detrended series - obtained using a modi�ed

Daniell (2,2) kernel. This periodogram is smoother than the raw one, as expected. The peaks occur at

exactly the same frequencies we identi�ed previously (ω = 0.118, 1.013, 1.988 and 3). The smoothed

periodogram is specially helpful to con�rm the low-frequency peak at ω = 0.118 - given in the raw

periodogram we saw reasonable power around this frequency.

Moreover, we have utilized an AR spectral estimator to further substantiate our �ndings. Figure

14 demonstrates that the optimal number of lags to use with such estimator, when using AIC as a

criteria, is 39 13. Figure 15 shows that this procedure produces peaks at nearly the same frequencies

we had identi�ed previously. There are clear peaks at ω ≈ 1, 2 and 3, as before. The low frequency

peak is now located at ω = 0.192, indicating a cycle with period of roughly 5.2 years - which is very

close to the 5.33 years period that was uncovered with the raw and smoothed periodograms.

The ACF of the detrended data, after removal of the one-year cycle, is provided in Figure 16. We

can see from this �gure that the series still exhibits a cyclical pattern, as expected, when only the

one-year cycle is removed from it. Figure 16 also illustrates the ACF of the detrended data after the

removal of both the one-year and the 5.33 years (64 months) cycles. Even when in�uences from these

two cycles are removed, we still see that the resulting series possesses a cyclical behavior. Thus, in the

analysis that follows, we have opted to remove the in�uences of all of the four cycles that are evident

in our periodograms, and which have found to be signi�cant: the one-year cycle, the 5.33 years one,

and the cycles associated with the second and third harmonics of ω = 1 (i.e., ω = 2 and ω = 3; note

that removing these helps us to account for the non-sinusoidal behavior of the yearly component).

3.3 Modeling Residuals with ARMA models, Diagnostics and Forecasting

Next, we turn our attention to our residual data (the series obtained after the trend and all seasonal

components have been removed). Figure 17 shows the ACF and PACF of the residual data. On

the top portion of this �gure, we see that the ACF seems to tail o� (albeit it alternates between

positive and negative territory), while the PACF apparently cuts o� after a certain number of lags.

Closer inspection (see bottom portion of Figure 17) of the PACF suggests that the estimated partial-

autocorrelation function cuts o� at about lag 14 or 15. When combined, these �ndings suggest �tting

an AR(14) or AR(15) model to the data. We con�rm our visual intuition by assessing what would be

13Note that the optimal number of lags, when AIC is used, is not that clear here. There are many lags with AIC values
very close to the one obtained with p = 39. We have used other values for p in our analysis, obtaining similar results.
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the best AR model, from an AIC standpoint, to �t to the residual data. Figure 18 demonstrates that

the lowest AIC (-2.29) is obtained when 14 lags are used, con�rming the intuition we developed from

evaluating the ACF and PACF of our series.

In Figure 19, model diagnostics are presented for the AR(14) model. For the most part, an AR(14)

model does a good job in describing our residual data. An inspection of the normal Q-Q plot and the

histogram of residuals produced by this model indicates that model residuals are normally distributed.

A Shapiro-Wilk normality test conducted on these yields a p-value of 0.58, further supporting this

assertion. The Ljung-Box test, however, suggests there may be serial correlation in the residuals from

lags 12 to 16.

As a result, we have tried to include MA terms in our model, �tting di�erent ARMA models to the

data. Good results were obtained when an ARMA(14,9) is used (see Figure 20). Residuals from the

ARMA(14,9) model look normal14; they resemble a white-noise process (see ACF in Figure 20); and

Ljung-Box tests provide no evidence of serial correlation in them. Furthermore, the AIC associated

with this model was -2.64 - a value that is lower than the one we obtained with the AR(14) model.

Lastly, Figures 21 to 23 show forecasts obtained when an AR(14) model and an ARMA(14,9) are

used to model the residual series. Forecasts were computed as the sum of the trend and seasonal

components, plus predictions from either the AR(14) or ARMA(14,9) model. For the AR(14) model,

we also show one-step-ahead forecasts (Figure 23). Both models seem to perform well in the testing

period (December 2000 to November 2001), with most realizations falling withing two-standard errors

from our predictions.

4 Concluding Remarks

We speculate that di�erent variables may have contributed to the robust gains in employment evidenced

in the period we studied. Firstly, the US economy became more integrated with other economies

during this period (globalization). Growing exports may have helped spur job growth over these years.

Secondly, it is possible that an increase in the participation of women (and other groups) in the labor

force may have also helped boost jobs then. We have also speculated that automation itself (which could

be measured through labor productivity, i.e., output per hours worked) may also have contributed to an

14The Shapiro-Wilk normality test here yielded a p-value 0f 0.105 - so we fail to reject the null that the data comes
from a normal distribution, at a 5% level of signi�cance.

7



increase in the level of employment-to-population in this period: while automation may destroy jobs,

it also has the potential to make companies more e�cient, contributing to an increase in shareholder

wealth, possibly thus having an impact in household consumption (via a wealth e�ect - households may

�feel richer� and consume more), leading then to more employment. Lastly, this was also a period in

which a good number of skilled foreign workers came to the US. These may have helped the economy

grow further, imparting their knowledge on local workers, and going on to start-up new companies by

themselves. In future studies, it would be interesting to investigate how these forces may have driven

employment in this period. This could be done, at �rst, by for example looking at the cross-spectrum

and coherence of employment and other variables, such as exports, labor productivity, and women

labor-force participation. Potentially, having an immigration policy that incentivizes skilled workers to

join the work force in the US might be a good idea? Maybe creating incentives for women to become

entrepreneurs and/or business leaders should be a priority of our government? These questions warrant

further scrutiny. Indeed, one of the limitations of our study is that we did not use other time series

to explain employment-to-population rates. As a �nal remark, it is also interesting to see that the

detrended series can be largely explained by a one-year seasonal component/cycle. Having more time,

we would like to investigate the reasons underscoring the predominance of a weak employment season

during the last months of the year (we have speculated as to why this may be the case)15, and study

why hiring in March, April and May is apparently stronger than in other months of the year.

15Note that the BLS argues that, in their view, extreme weather conditions do not a�ect employment by much - though
they likely a�ect the statistic �number of hours worked�. In our view, a more likely reason for these low numbers in the
last months of the year is �nancial: CFO's may be looking to improve their end-of-year numbers, thus curtailing hiring
in this period.
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5 APPENDIX

5.1 Figures

Figure 1: Unemployment Rate in the US - Recessions in Blue. The unemployment rate suggests the
economy has almost never been better.

Figure 2: Employment-to-Population Ratio - Recessions in Blue. Employment is at a much lower level
than it was in 2001.
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Figure 3: Di�erent Regimes in Employment/Population. We essentially model the data in Green -
April 1975 to November 2000 - leaving December 2000 to November 2001 as a test set.

Figure 4: Comparing Trends. There is a steep increase in employment from 1975 to 2000.
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Figure 5: Total Number of Employees in Manufacturing (in thousands)- Recessions in Blue.

Figure 6: ACF/PACF - Original Data.
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Figure 7: Detrended Data - Linear Trend. This �gure suggests that the detrended data (when a linear
trend is used) is non-stationary - its variance is not constant. Trend: Y = −520 + 0.29t; Augmented
Dickey-Fuller Test - p-value = 0.36.

Figure 8: Data + Non-Linear Trend. We estimate a non-linear trend using smoothing splines: f(x) =
α0+

∑p
j=1 αjmax(0, x−kj). The solution is found by minimizing:

∑n
i=1 ||yi−α0−

∑p
j=1 αjmax(0, xi−

kj)||2 + λ
∑p

j=1 α
2
j . Observations themselves are the k′js.
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Figure 9: Detrended Data - Non-Linear Trend. The data now looks stationary. Also: Augmented
Dickey-Fuller Test - p-value < 0.01.

Figure 10: ACF/PACF - Detrended Data.
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Figure 11: Raw Periodogram. We see a one Year Cycle + 5.3 Year Cycle, and Harmonics of ω = 1.
Red dotted line indicates lower bound of the con�dence interval for the spectrum corresponding to
ω = 1. Peaks are located at ω = 0.188, 1.013, 1.988, 3. These correspond to the following periods (in
years), respectively: 5.33, 0.99, 0.50, 0.33.

Figure 12: Yearly Seasonal Component.
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Figure 13: Smoothed Periodogram - Modi�ed Daniell(2,2). Low frequency peak at ω = 0.188 - same
as in the raw periodogram.

Figure 14: Autoregressive Spectral Estimator (1). Lowest AIC: p = 39.

15



Figure 15: Autoregressive Spectral Estimator (2). Low frequency peak at ω = 0.192; Corresponds to
period of 5.2 years.

Figure 16: ACF and PACF of Detrended Data, After Removal of Select Seasonal Components. ACF
still indicates there are seasonal patters left in the data, if we don't remove all cycles from it.
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Figure 17: ACF and PACF of Residual Data (Trend and All Seasonal Components Have been Re-
moved). ACF seems to tail o� and PACF seems to cut o� at lag 14 or 15, suggesting �tting either an
AR(14) or AR(15) model to the residual data.

Figure 18: AIC and BIC of possible AR models. Minimum AIC at p = 14 (AIC = -2.29).
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Figure 19: Diagnostics - AR(14) Model. Looks like we are mostly good, except for a bit of serial
correlation in the residuals.

Figure 20: Diagnostics - ARMA(14,9) Model. Residuals resemble normally-distributed white noise.
AIC = -2.64.
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Figure 21: Forecasts using AR(14):red line indicates forecasts; blue lines indicate 2 standard-error
bounds.

Figure 22: Forecasts using ARMA(14,9):red line indicates forecasts; blue lines indicate 2 standard-error
bounds.
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Figure 23: One-Step-Ahead Forecasts using AR(14):red line indicates forecasts.
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5.2 Math Appendix - Derivation of Solution to Penalized Spline Regression

Suppose we have training examples of the type (yi, xi), i = 1, ..., n. Let x be one-dimensional (for

example, x can be represent t = time). Also assume we have knots kj , j = 1, ..., p. Suppose we

try to �t a linear spline of the form f(x) = α0 +
∑p

j=1 αjmax(0, x − kj) to the data, by minimizing∑n
i=1 ||yi − α0 −

∑p
j=1 αjmax(0, xi − kj)||2 + λ

∑p
j=1 α

2
j .

We look for:

α̂ = argminα0,{αj}j=1...p

n∑
i=1

||yi − α0 −
p∑
j=1

αjmax(0, xi − kj)||2 + λ

p∑
j=1

α2
j

Let α̂ now denote the (p+ 1)× 1 vector containing our parameter estimates.

Notice that we can write this problem as:

α̂ = argminα||Y − Zα||2 + λαTDα,

Where D is a (p + 1) × (p + 1) matrix, with 1 in all its diagonal elements aside from the �rst one,

which is 0, and with remaining elements equal to 0. In other words, Drc = 1 if both r = c and r, c 6= 1;

and 0 otherwise (for r,c∈{1...p+1}):

D =

0 0

0 Ip


And Z is a n× (p+ 1) matrix, whose entries are:

Z =



1 max(0, x1 − k1) max(0, x1 − k2) ... max(0, x1 − kj)

1 max(0, x2 − k1) max(0, x2 − k2) ... max(0, x2 − kj)

... ... ... ... ...

1 max(0, xn−1 − k1) max(0, xn−1 − k2) ... max(0, xn−1 − kj)

1 max(0, xn − k1) max(0, xn − k2) ... max(0, xn − kj)


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Taking the derivative with respect to α and setting it to zero, we get the FOC:

−2ZT (Y − Zα) + 2λDα = 0

−ZTY + ZTZα+ λDα = 0

(ZTZ + λD)α = ZTY

Which implies:

α̂ = (ZTZ + λD)−1ZTY

5.3 Appendix: R Code

1

2

3 library(ggplot2) # nice -looking plots

4 library(quantmod) # reads in data from Fred

5 library(scales) # customize x axis in ggplots

6 library(reshape2) # plot multiple ts with ggplot

7 library(gridExtra) # plot multiple graphs with ggplot (like par(mfrow) command)

8 library(tseries)

9 library(forecast) # Acf plots that ommit lag 0

10 library(data.table)

11

12

13 employment = getSymbols('LNU02300000 ',src='FRED', auto.assign=F)

14 employment.df = data.frame(date=time(employment), coredata(employment) )

15 employment.df[,1] = as.Date(employment.df[,1])

16 colnames(employment.df)[2] = "Employment"

17

18 unemployment = getSymbols('UNRATENSA ',src='FRED', auto.assign=F)

19 unemployment.df = data.frame(date=time(unemployment), coredata(unemployment) )

20 colnames(unemployment.df)[2] = "Unemployment"

21

22 manufacturing = getSymbols('CEU3000000001 ',src='FRED', auto.assign=F)

23 manufacturing.df = data.frame(date=time(manufacturing), coredata(manufacturing) )

24 colnames(manufacturing.df)[2] = "Manufacturing"

25 manufacturing.df = subset(manufacturing.df, date >= "1948 -01 -01" )

26

27

28 # reading -in recession dates - We will just copy -paste the dates

29 # here from Fred 's website , for simplicity pourposes

30 recessions.df = read.table(textConnection(

31 "Peak , Trough

32 1857-06-01, 1858 -12 -01

33 1860-10-01, 1861 -06 -01

34 1865-04-01, 1867 -12 -01

35 1869-06-01, 1870 -12 -01

36 1873-10-01, 1879 -03 -01

37 1882-03-01, 1885 -05 -01

38 1887-03-01, 1888 -04 -01

39 1890-07-01, 1891 -05 -01
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40 1893-01-01, 1894 -06 -01

41 1895-12-01, 1897 -06 -01

42 1899-06-01, 1900 -12 -01

43 1902-09-01, 1904 -08 -01

44 1907-05-01, 1908 -06 -01

45 1910-01-01, 1912 -01 -01

46 1913-01-01, 1914 -12 -01

47 1918-08-01, 1919 -03 -01

48 1920-01-01, 1921 -07 -01

49 1923-05-01, 1924 -07 -01

50 1926-10-01, 1927 -11 -01

51 1929-08-01, 1933 -03 -01

52 1937-05-01, 1938 -06 -01

53 1945-02-01, 1945 -10 -01

54 1948-11-01, 1949 -10 -01

55 1953-07-01, 1954 -05 -01

56 1957-08-01, 1958 -04 -01

57 1960-04-01, 1961 -02 -01

58 1969-12-01, 1970 -11 -01

59 1973-11-01, 1975 -03 -01

60 1980-01-01, 1980 -07 -01

61 1981-07-01, 1982 -11 -01

62 1990-07-01, 1991 -03 -01

63 2001-03-01, 2001 -11 -01

64 2007-12-01, 2009 -06 -01"), sep=',',

65 colClasses=c('Date', 'Date'), header=TRUE)

66

67 recessions.trim = subset(recessions.df, Peak >= "1948 -01 -01" )

68

69

70 # Creating initial plots

71 # Employment -Population

72 emp = ggplot(employment.df) + geom_line(aes(x=date , y=Employment)) +

73 theme(axis.text.x = element_text(angle = 45, hjust = 1)) +

74 geom_rect(data=recessions.trim , aes(xmin=Peak , xmax=Trough , ymin=-Inf , ymax=+Inf),

75 fill='blue', alpha =0.1) +ylab("Employment -Population Ratio")

76

77 emp +scale_x_date(date_breaks = '5 years', date_labels = "%Y %b")

78

79 # Unemployment

80 unemp = ggplot(unemployment.df) + geom_line(aes(x=date , y=Unemployment)) +

81 theme(axis.text.x = element_text(angle = 45, hjust = 1)) +

82 geom_rect(data=recessions.trim , aes(xmin=Peak , xmax=Trough , ymin=-Inf , ymax=+Inf),

83 fill='blue', alpha =0.1) +ylab("Unemployment Rate")

84

85 unemp + scale_x_date(date_breaks = '5 years', date_labels = "%Y %b")

86

87 # Manufacturing

88 manuf = ggplot(manufacturing.df) + geom_line(aes(x=date , y=Manufacturing)) +

89 theme(axis.text.x = element_text(angle = 45, hjust = 1)) +

90 geom_rect(data=recessions.trim , aes(xmin=Peak , xmax=Trough , ymin=-Inf , ymax=+Inf),

91 fill='blue', alpha =0.1) +ylab("Number of Employees in Manufacturing")

92

93 manuf +scale_x_date(date_breaks = '5 years', date_labels = "%Y %b")

94

95

96

97 # Dividing -up data into regimes
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98 window1 = data.frame(Beggining = as.Date("1948 -01 -01"), End = as.Date("1975 -03 -01"))

99 window2 = data.frame(Beggining = as.Date("1975 -04 -01"), End = as.Date("2001 -11 -01"))

100 window3 = data.frame(Beggining = as.Date("2001 -12 -01"), End = as.Date("2008 -09 -01"))

101 window4 = data.frame(Beggining = as.Date("2009-7-01"), End = as.Date("2016 -06 -01"))

102

103

104 emp_piecewise = ggplot(employment.df) + geom_line(aes(x=date , y=Employment)) +

105 theme(axis.text.x = element_text(angle = 45, hjust = 1)) +

106 geom_rect(data=window1 , aes(xmin=Beggining , xmax=End , ymin=-Inf , ymax=+Inf),

107 fill='blue', alpha =0.1) +

108 geom_rect(data=window2 , aes(xmin=Beggining , xmax=End , ymin=-Inf , ymax=+Inf),

109 fill='green', alpha =0.1) +

110 geom_rect(data=window3 , aes(xmin=Beggining , xmax=End , ymin=-Inf , ymax=+Inf),

111 fill='yellow ', alpha =0.1) +

112 geom_rect(data=window4 , aes(xmin=Beggining , xmax=End , ymin=-Inf , ymax=+Inf),

113 fill='red', alpha =0.1) +

114 ylab("Employment -Population Ratio")

115

116 emp_piecewise +scale_x_date(date_breaks = '5 years', date_labels = "%Y %b")

117

118

119 # fitting trend lines

120 window1.index = employment.df$date >= window1$Beggining &

121 employment.df$date <= window1$End

122

123 window2.index = employment.df$date >= window2$Beggining &

124 employment.df$date <= window2$End

125

126 window3.index = employment.df$date >= window3$Beggining &

127 employment.df$date <= window3$End

128

129 window4.index = employment.df$date >= window4$Beggining &

130 employment.df$date <= window4$End

131

132

133 emp_ts1 = ts(employment.df[window1.index ,2], start = c(1948 ,1),end = c(1975 ,3),frequency = 12)

134

135 emp_ts2 = ts(employment.df[window2.index ,2], start = c(1975 ,4),end = c(2000 ,11),frequency = 12)

136

137 emp_ts3 = ts(employment.df[window3.index ,2], start = c(2001 ,12),end = c(2008 ,09),frequency = 12)

138

139 emp_ts4 = ts(employment.df[window4.index ,2], start = c(2009 ,7),end = c(2016 ,6),frequency = 12)

140

141

142 summary(fit1 <- lm(emp_ts1~time(emp_ts1))) #

143 summary(fit2 <- lm(emp_ts2~time(emp_ts2))) #

144 summary(fit3 <- lm(emp_ts3~time(emp_ts3))) #

145 summary(fit4 <- lm(emp_ts4~time(emp_ts4))) #

146

147

148 # Plotting linear trends

149 data.plot <- data.frame(date = time(emp_ts1), Employment_Population = as.numeric(emp_ts1),Trend = fit1$fitted.values)

150

151 data_long <- melt(data.plot , id="date")

152 plot1 = ggplot(data=data_long ,

153 aes(x=date , y=value , colour=variable)) +

154 theme(legend.position="none",axis.text.x = element_text(angle = 45, hjust = 1)) +

155 geom_line() +
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156 labs(title="Blue Area") +ylab("Ratio")

157

158 data.plot <- data.frame(date = time(emp_ts2), Employment_Population = as.numeric(emp_ts2),Trend = fit2$fitted.values)

159

160 data_long <- melt(data.plot , id="date")

161 plot2 = ggplot(data=data_long ,

162 aes(x=date , y=value , colour=variable)) +

163 theme(legend.position="none",axis.text.x = element_text(angle = 45, hjust = 1))+

164 geom_line() +

165 labs(title="Green Area (Until Nov. 2000)") +ylab("Ratio")

166

167 data.plot <- data.frame(date = time(emp_ts3), Employment_Population = as.numeric(emp_ts3),Trend = fit3$fitted.values)

168

169 data_long <- melt(data.plot , id="date")

170 plot3 = ggplot(data=data_long ,

171 aes(x=date , y=value , colour=variable)) +

172 theme(legend.position="none",axis.text.x = element_text(angle = 45, hjust = 1))+

173 geom_line() +

174 labs(title="Yellow Area")+ylab("Ratio")

175

176 data.plot <- data.frame(date = time(emp_ts4), Employment_Population = as.numeric(emp_ts4),Trend = fit4$fitted.values)

177

178 data_long <- melt(data.plot , id="date")

179 plot4 = ggplot(data=data_long ,

180 aes(x=date , y=value , colour=variable)) +

181 theme(legend.position="none",axis.text.x = element_text(angle = 45, hjust = 1))+

182 geom_line() +

183 labs(title="Red Area")+ylab("Ratio")

184

185

186 grid.arrange(plot1 , plot2 ,plot3 ,plot4 ,nrow = 2, ncol =2)

187

188

189 # From now on we focus on the 4-1975 to 11 -2000 period

190 # redefining our variables

191 window = data.frame(Beggining = as.Date("1975 -04 -01"), End = as.Date("2000 -11 -01"))

192 emp_ts = emp_ts2

193

194 # ACF and PACF

195 par(mfrow = c(2,2))

196

197 # Maximum number of lags

198 Acf(emp_ts,length(emp_ts),main = "Original Data - All Lags")

199 Pacf(emp_ts,length(emp_ts),main = "Original Data - All Lags")

200

201 # ACF and PACF

202 # Maximum number of lags

203 Acf(emp_ts ,50,main = "Original Data - 50 lags")

204 Pacf(emp_ts ,50,main = "Original Data - 50 Lags")

205

206 ## The detrended data

207 detrended = resid(fit2)

208

209 # Plotting detrended data

210 data.plot <- data.frame(date = time(emp_ts), detrended = detrended)

211 ggplot(data.plot) + geom_line(aes(x=date , y=detrended)) +

212 theme(axis.text.x = element_text(angle = 45, hjust = 1)) +

213 labs(title="Detrended data - linear trend")
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214

215

216 adf.test(detrended)

217

218 # using smoothing splines to extract trend

219 # we will use a function that we have created

220

221 # Creating the knots , note that we will use the xi's

222 # themselves as the knots

223 x = as.numeric(time(emp_ts))

224 knots = x

225 n = length(x)

226 Y = as.numeric(emp_ts)

227

228 filloutZ = function(x,knots){

229

230 p = length(knots)

231

232 Z = matrix(nrow = n,ncol = p+1)

233 ZMax = matrix(nrow = n,ncol = p)

234

235 for (i in 1:n){

236

237 for (j in 1:p){

238

239 ZMax[i,j] = max(0,x[i]-knots[j])

240 }

241

242 }

243

244 Z = as.matrix(cbind(1,ZMax))

245

246 return(Z)

247 }

248

249

250 # Next , we declare a function that solves for alpha.hat

251 solveforalpha.hat = function(Z,Y,lambda){

252

253 ncolZ = dim(Z)[2]

254

255 D = diag(ncolZ)

256 D[1,1] = 0

257

258 return(solve(t(Z)%*%Z + lambda*D,t(Z)%*%Y))

259

260 }

261

262

263 # Let 's fit the model for a fixed level of lambda

264 # We'll manually tweak lambda , until we get a

265 # trend that is smooth enough , and a detrended

266 # series that looks stationary

267 lambda = 100

268

269 Z = filloutZ(x,knots)

270 alpha.hat = solveforalpha.hat(Z,Y,lambda)

271 Y.hat = Z%*%alpha.hat
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272

273 detrended = as.numeric(emp_ts) - as.numeric(Y.hat)

274

275 # Plotting non -linear trend

276 data.plot <- data.frame(date = x, Employment_Population = Y,Trend = Y.hat)

277

278 data_long <- melt(data.plot , id="date")

279 ggplot(data=data_long ,

280 aes(x=date , y=value , colour=variable)) +

281 theme(legend.position="none",axis.text.x = element_text(angle = 90, hjust = 1)) +

282 geom_line() +

283 labs(title="Data + Non -Linear Trend") +ylab("Ratio")

284

285

286 # Plotting detrended data

287 data.plot <- data.frame(date = x, detrended = detrended)

288 ggplot(data.plot) + geom_line(aes(x=date , y=detrended)) +

289 theme(axis.text.x = element_text(angle = 45, hjust = 1)) +

290 labs(title="Detrended data - non -linear trend")

291

292

293 #adf test

294 adf.test(detrended)

295

296 detrended = ts(detrended ,start = c(1975 ,4),end = c(2000 ,11),frequency = 12)

297

298 par(mfrow = c(2,2))

299 # ACF and PACF

300 # Maximum number of lags

301 Acf(detrended ,length(detrended),main = "Detrended Data - All Lags")

302 Pacf(detrended ,length(detrended),main = "Detrended Data - All Lags")

303

304 # ACF and PACF

305 # Maximum number of lags

306 Acf(emp_ts ,50,main = "Detrended Data - 50 lags")

307 Pacf(emp_ts ,50,main = "Detrended Data - 50 Lags")

308

309

310 # Creating Periodograms

311 par(mfrow = c(1,1))

312

313 # RAW #################################################################################

314 detrended.per = spec.pgram(detrended , taper=0, log="no",detrend = FALSE ,main = "")

315

316 frequencies = detrended.per$freq

317 spectrum = detrended.per$spec

318 rank(-spectrum)

319

320 # The frequencies corresponding to the

321 # largest spectral densities values

322

323 f = NULL

324

325 f[1] = frequencies[rank(-spectrum) == 1]

326 f[2] = frequencies[rank(-spectrum) == 2]

327 f[3] = frequencies[rank(-spectrum) == 3]

328 f[4] = frequencies[rank(-spectrum) == 4]

329 f[5] = frequencies[rank(-spectrum) == 5]
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330 f[6] = frequencies[rank(-spectrum) == 6]

331

332 # these correspond to the following periods:

333 1/f

334

335 # conf intervals - returned value:

336 U = qchisq (.025 ,2) # 0.05063

337 L = qchisq (.975 ,2) # 7.37775

338 l1 = 2*detrended.per$spec[frequencies == f[1]]/L

339 u1 = 2*detrended.per$spec[frequencies == f[1]]/U

340 l2 = 2*detrended.per$spec[frequencies == f[3]]/L

341 u2 = 2*detrended.per$spec[frequencies == f[3]]/U

342 l3 = 2*detrended.per$spec[frequencies == f[4]]/L

343 u4 = 2*detrended.per$spec[frequencies == f[4]]/U

344 l4 = 2*detrended.per$spec[frequencies == f[5]]/L

345 u4 = 2*detrended.per$spec[frequencies == f[5]]/U

346

347

348 abline(v=f[1], lty="dotted")

349 abline(v=f[3], lty="dotted")

350 abline(v=f[4], lty="dotted")

351 abline(v=f[5], lty="dotted")

352

353 abline(h = l1,lty="dotted", col = 'red')

354 #abline(h = l2,lty=" dotted", col = 'red ')

355 #abline(h = l3,lty=" dotted", col = 'red ')

356 #abline(h = l4,lty=" dotted", col = 'red ')

357

358 # The spectrums of relevance:

359 spectrum_rel = NULL

360 spectrum_rel [1] = detrended.per$spec[frequencies == f[1]]

361 spectrum_rel [2] = detrended.per$spec[frequencies == f[3]]

362 spectrum_rel [3] = detrended.per$spec[frequencies == f[4]]

363 spectrum_rel [4] = detrended.per$spec[frequencies == f[5]]

364

365 freq = c(f[1],f[3],f[4],f[5])

366 period = 1/freq

367 summary = as.matrix(cbind(freq ,period))

368

369

370 # Smoothed Periodogram #########################################################

371

372 k = kernel("modified.daniell", c(2,2))

373

374 smooth = spec.pgram(detrended , k, taper=0, log="no", main = "Smoothed Periodogram - Modified Daniell (2,2)")

375 frequencies = smooth$freq

376 spectrum = smooth$spec

377 rank(-spectrum)

378

379 # The frequencies corresponding to the

380 # largest spectral densities values

381

382 f = NULL

383

384 f[1] = frequencies[rank(-spectrum) == 1]

385 f[2] = frequencies[rank(-spectrum) == 2]

386 f[3] = frequencies[rank(-spectrum) == 3]

387 f[4] = frequencies[rank(-spectrum) == 4]
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388 f[5] = frequencies[rank(-spectrum) == 5]

389 f[6] = frequencies[rank(-spectrum) == 6]

390 f[7] = frequencies[rank(-spectrum) == 7]

391 f[8] = frequencies[rank(-spectrum) == 8]

392 f[9] = frequencies[rank(-spectrum) == 9]

393 f[10] = frequencies[rank(-spectrum) == 10]

394 f[11] = frequencies[rank(-spectrum) == 11]

395 f[12] = frequencies[rank(-spectrum) == 12]

396

397 # these correspond to the following periods:

398 1/f

399

400 #Autoregressive Spectral Estimator ####################################

401

402 #### AIC BIC #################################################

403

404 ###ACF PACF ##############################################################

405 par(mfrow = c(2,2))

406

407 AIC = rep(0, 60) -> BIC

408 for (k in 1:60){

409 fit = ar(detrended , order=k, aic=FALSE)

410 sigma2 = var(fit$resid , na.rm=TRUE)

411 BIC[k] = log(sigma2) + (k*log(n)/n)

412 AIC[k] = log(sigma2) + ((n+2*k)/n) }

413 IC = cbind(AIC ,BIC)

414

415 # Plotting AIC/BIC

416 data.plot <- data.frame(p = seq(1,60,1), AIC = AIC ,BIC = BIC)

417

418 data_long <- melt(data.plot , id="p")

419 ggplot(data=data_long ,

420 aes(x=p, y=value , colour=variable)) +

421 theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

422 geom_line() +

423 labs(title="") +ylab("AIC/BIC")

424

425 lag = which.min(AIC)

426

427 par(mfrow=c(1,1))

428

429 sp.ar = spec.ar(detrended , log="no",order=lag , main = "Autoregressive Spectral Estimator")

430

431 frequencies = sp.ar$freq

432 spectrum = sp.ar$spec

433 rank(-spectrum)

434

435 # The frequencies corresponding to the

436 # largest spectral densities

437

438 f = NULL

439

440 f[1] = frequencies[rank(-spectrum) == 1]

441 f[2] = frequencies[rank(-spectrum) == 2]

442 f[3] = frequencies[rank(-spectrum) == 3]

443 f[4] = frequencies[rank(-spectrum) == 4]

444 f[5] = frequencies[rank(-spectrum) == 5]

445 f[6] = frequencies[rank(-spectrum) == 6]
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446 f[7] = frequencies[rank(-spectrum) == 7]

447 f[8] = frequencies[rank(-spectrum) == 8]

448 f[9] = frequencies[rank(-spectrum) == 9]

449

450 # these correspond to the following periods:

451 1/f

452

453 #Removing Seasonal Components

454 data = data.table(detrended = as.numeric(detrended),index1 = seq(1,12,1),index2 = seq(1,4,1),index3 = seq(1,64,1),index4 = seq

(1,6,1))

455 seasonality1 = data[,mean(detrended),by = index1]

456 seasonality2 = data[,mean(detrended),by = index2]

457 seasonality3 = data[,mean(detrended),by = index3]

458 seasonality4 = data[,mean(detrended),by = index4]

459

460

461 data_merged = merge(data ,seasonality1 , all.x = TRUE ,by = 'index1 ', sort = 'FALSE')

462 data_merged = merge(data_merged ,seasonality2 , all.x = TRUE ,by = 'index2 ', sort = 'FALSE')

463 data_merged = merge(data_merged ,seasonality3 , all.x = TRUE ,by = 'index3 ', sort = 'FALSE')

464 data_merged = merge(data_merged ,seasonality4 , all.x = TRUE ,by = 'index4 ', sort = 'FALSE')

465

466 data_merged = as.data.frame(data_merged)

467 residual1 = data_merged$detrended - data_merged[,c(6)] # remove 1 year

468 residual2 = data_merged$detrended - rowSums(data_merged[,c(6,8)]) # remove 1 year and 64 months

469 residual3 = data_merged$detrended - rowSums(data_merged[,c(6,7,9)]) # remove 1 year , 4 months , 6 months

470

471 par(mfrow = c(2,1))

472 Acf(residual1 ,100, main = 'Cycle removed: 1 year')

473 Acf(residual2 ,100, main = 'Cycle removed: 1 year and 5.33 years (64 months)')

474

475 residual = data_merged$detrended - rowSums(data_merged[,c(6,7,8,9)])

476

477 adf.test(residual)

478

479 # plotting one -year cycle

480 data.plot <- data.frame(date = c("Jan","Feb","Mar","Apr","May","Jun",

481 "Jul","Aug","Sep","Oct","Nov","Dec"), value = seasonality1$V1)

482 ggplot(data.plot) + geom_point(aes(x=factor(date , levels=unique(date)),y=value)) +

483 theme(axis.text.x = element_text(angle = 45, hjust = 1)) +

484 ylab("Seasonal Component (%)") +xlab("Month")

485

486

487 #ACF - PACF of residuals

488 par(mfrow=c(2,2))

489 acf.data = Acf(residual ,length(residual),main = "Residual - All Lags")

490 pacf.data = Pacf(residual ,length(residual),main = "Residual - All Lags")

491 acf.data = Acf(residual ,50, main = "Residual - 50 Lags")

492 pacf.data = Pacf(residual ,50,main = "Residual - 50 Lags")

493

494 # PACF seems to cut off after 14, 15 lags ,

495 # ACF tails off

496 # suggests AR(14) or AR(14)

497

498

499 ###ACF PACF ##############################################################

500 #figuring out best AIC for AR model

501

502 AIC = rep(0, 40) -> BIC
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503 for (k in 1:40){

504

505 fit = ar(residual , order=k, aic=FALSE)

506 sigma2 = var(fit$resid , na.rm=TRUE)

507 BIC[k] = log(sigma2) + (k*log(n)/n)

508 AIC[k] = log(sigma2) + ((n+2*k)/n) }

509

510

511 IC = cbind(AIC ,BIC)

512

513 lag = which.min(AIC)

514

515 # Plotting AIC/BIC

516 data.plot <- data.frame(p = seq(1,40,1), AIC = AIC ,BIC = BIC)

517

518 data_long <- melt(data.plot , id="p")

519 ggplot(data=data_long ,

520 aes(x=p, y=value , colour=variable)) +

521 theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

522 geom_line() +

523 labs(title="") +ylab("AIC/BIC")

524

525

526 #Fitting AR model

527 model_ar = arima(residual , order = c(14, 0, 0),include.mean = FALSE ,method="ML")

528

529 ts = model_ar$residuals

530

531 par(mfrow = c(2,2))

532 qqnorm(ts)

533 qqline(ts , col =2)

534 hist(ts, br=12, main = 'Histogram of Residuals ')

535 shapiro.test(ts)

536 Acf(ts,lag = 50, main = 'ACF of model residuals ')

537

538 ljung.box = NULL

539 for (i in 1:50){

540 ljung.box[i] = Box.test(ts ,lag = i, type = c("Ljung -Box"))$p.value

541 }

542

543 # we have serial correlation from lags 12 to 16

544 plot(ljung.box)

545 abline(h = 0.05,lty="dotted", col = 'red')

546

547 # fitting an arma model to data

548 k = 9

549 model_arima = arima(residual , order = c(14, 0, k),include.mean = FALSE ,method = 'ML',optim.control = list(maxit = 1000))

550 sigma2 = var(model_arima$residuals , na.rm=TRUE)

551 AIC = log(sigma2) + ((n+2*k)/n)

552

553 ts = model_arima$residuals

554

555

556 par(mfrow = c(2,2))

557 qqnorm(ts)

558 qqline(ts , col =2)

559 hist(ts, br=12, main = 'Histogram of Residuals ')

560 shapiro.test(ts)
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561 Acf(ts,lag = 50, main = 'ACF of model residuals ')

562

563 ljung.box = NULL

564 for (i in 1:50){

565 ljung.box[i] = Box.test(ts ,lag = i, type = c("Ljung -Box"))$p.value

566 }

567

568 plot(ljung.box ,ylim = c(0,1))

569 abline(h = 0.05,lty="dotted", col = 'red')

570

571

572 # forecasting employment ##########################################################

573 # AR(14) forecasts

574 regr = ar.ols(residual , order =14, demean=FALSE , intercept=FALSE)

575 fore = predict(regr , n.ahead =12)

576

577 # Seaonality forecast

578

579 s4 = c(3,4,5,6,1,2,3,4,5,6,1,2)

580 s3 = seq (53 ,64)

581 s2 = rep(c(1,2,3,4) ,3)

582 s1 = c(9,10,11,12,seq(1,8,1))

583

584 data = data.table(index1 = s1 ,index2 = s2 ,index3 = s3,index4 = s4)

585

586 data_merged = merge(data ,seasonality1 , all.x = TRUE ,by = 'index1 ', sort = 'FALSE')

587 data_merged = merge(data_merged ,seasonality2 , all.x = TRUE ,by = 'index2 ', sort = 'FALSE')

588 data_merged = merge(data_merged ,seasonality3 , all.x = TRUE ,by = 'index3 ', sort = 'FALSE')

589 data_merged = merge(data_merged ,seasonality4 , all.x = TRUE ,by = 'index4 ', sort = 'FALSE')

590

591 data_merged = as.data.frame(data_merged)

592 seasonal_forecast = rowSums(data_merged [ ,5:8])

593

594 # Trend forecast

595

596 filloutZ_test = function(x,knots){

597

598 p = length(knots)

599 n = length(x)

600 Z = matrix(nrow = n,ncol = p+1)

601 ZMax = matrix(nrow = n,ncol = p)

602

603 for (i in 1:n){

604

605 for (j in 1:p){

606

607 ZMax[i,j] = max(0,x[i]-knots[j])

608 }

609

610 }

611

612 Z = as.matrix(cbind(1,ZMax))

613

614 return(Z)

615 }

616

617

618
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619

620 time_test = x[length(x)]+seq(1,12,1)/12

621 Z_test = filloutZ_test(time_test ,knots)

622 Y.hat = Z_test%*%alpha.hat

623

624 # Adding up all components

625 forecast = as.numeric(Y.hat) + as.numeric(seasonal_forecast)+as.numeric(fore$pred)

626 fore$pred = ts(forecast , start = c(2000 ,12), end = c(2001 ,11), frequency = 12)

627 fore$se = ts(as.numeric(fore$se), start = c(2000 ,12), end = c(2001 ,11), frequency = 12)

628

629

630 window.plot = data.frame(Beggining = as.Date("1999 -01 -01"), End = as.Date("2001 -11 -01"))

631 window.index = employment.df$date >= window.plot$Beggining &

632 employment.df$date <= window.plot$End

633 emp.plot = ts(employment.df[window.index ,2], start = c(1995 ,1),end = c(2001 ,11),frequency = 12)

634

635 par(mfrow = c(1,1))

636 dataplot = window(emp.plot , c(1995 ,1), c(2001 , 11))

637 ts.plot(dataplot , fore$pred , col=1:2,

638 ylab="Employment/Population",ylim = c(62 ,66))

639 lines(fore$pred , type="p", col=2)

640 lines(fore$pred+2*fore$se, lty="dashed", col=4)

641 lines(fore$pred -2*fore$se, lty="dashed", col=4)

642

643

644 ##forecasts using ARIMA (14,9) ###########################################################

645

646 fore = predict(model_arima ,n.ahead = 12)

647

648 # Adding up all components

649 forecast = as.numeric(Y.hat) + as.numeric(seasonal_forecast)+as.numeric(fore$pred)

650 fore$pred = ts(forecast , start = c(2000 ,12), end = c(2001 ,11), frequency = 12)

651 fore$se = ts(as.numeric(fore$se), start = c(2000 ,12), end = c(2001 ,11), frequency = 12)

652

653

654 window.plot = data.frame(Beggining = as.Date("1999 -01 -01"), End = as.Date("2001 -11 -01"))

655 window.index = employment.df$date >= window.plot$Beggining &

656 employment.df$date <= window.plot$End

657 emp.plot = ts(employment.df[window.index ,2], start = c(1995 ,1),end = c(2001 ,11),frequency = 12)

658

659 par(mfrow = c(1,1))

660 dataplot = window(emp.plot , c(1995 ,1), c(2001 , 11))

661 ts.plot(dataplot , fore$pred , col=1:2,

662 ylab="Employment/Population",ylim = c(62 ,66))

663 lines(fore$pred , type="p", col=2)

664 lines(fore$pred+2*fore$se, lty="dashed", col=4)

665 lines(fore$pred -2*fore$se, lty="dashed", col=4)

666

667

668

669 ## One -step ahead forecast using an AR(14) model ############################

670

671 # Test Data #################################################################

672 trend.season.forecast = as.numeric(Y.hat) + as.numeric(seasonal_forecast)

673

674 window.plot = data.frame(Beggining = as.Date("2000 -12 -01"), End = as.Date("2001 -11 -01"))

675 window.index = employment.df$date >= window.plot$Beggining &

676 employment.df$date <= window.plot$End
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677

678 test = ts(employment.df[window.index ,2]-trend.season.forecast ,

679 start = c(2000 ,12),end = c(2001 ,11),frequency = 12)

680

681 # One -step -forecasts

682 fit <- Arima(residual ,order = c(14,0,0),include.mean = FALSE)

683 fit_test <- Arima(c(residual ,test), model=fit)

684 onestep <- fitted(fit_test)[309:320] + trend.season.forecast

685 onestep = ts(onestep , start = c(2000 ,12), end = c(2001 ,11), frequency = 12)

686

687 # plot

688 ts.plot(dataplot , onestep , col=1:2,

689 ylab="Employment/Population",ylim = c(62 ,66))
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