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Abstract

Violent crime can have a negative impact to the victims and the neighborhoods. It
can affect people’s lives physically and emotionally. It could also impose huge cost to
the taxpayers. Therefore, it seems meaningful if we could identify patterns in the crime
data, so that it could be used to reduce the violent crimes. In this paper, the violent
crime data in Los Angeles County from year 2014 to 2016 is analyzed, with the goal
of finding an ARIMA model to forecast the number of violent crimes. Nonparametric
and parametric spectral estimation are also performed to estimate the possible cycles
for the violent crime.

1 Introduction

Exposure to violent crime can have a negative impact on people’s lives and the neighbor-
hoods. The effect seems to be more obvious on children. According to the paper from
US Department of Housing and Urban Development [1], “In general, exposure to violence
puts youth at significant risk for psychological, social, academic, and physical challenges
and also makes them more likely to commit violence themselves. Exposure to gun violence
can desensitize children, increasing the likelihood that they act violently in the future.” The
consequences sound horrifying and violent crime is obviously something that could influence
the whole community.

In addition to threatening people’s lives and safety, violent crime imposes huge cost to
the community in various ways. A large number of violent crimes could lower the value of
people’s properties in the community. Having more crimes means it will cost more taxpayers’
money to maintain the police system and the prisons. According to the paper from Professor
Shapiro [2], “The costs borne by the American public for this level of criminal activity are
significant. Medical care for assault victims, for example, costs an estimated $4.3 billion
per year. We spend $74 billion per year on incarcerating 2.3 million criminals, including
some 930,000 violent criminals.” In short, analysis for the violent crime data seems to be
important as it is closely related to everyone in the neighborhood. Finding patterns in the
crime data could be useful for the law enforcement in terms of making strategies to reduce
violent crime and protect the public.
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The goal of this project is analyze the trend and periodicity of the violent crime in Los
Angeles county. In addition, we are interested in fitting an ARIMA model and make a 10-day
ahead prediction.

2 Dataset

From the definition of the FBI’s Uniform Crime Reporting (UCR) Program, “violent crime
is composed of four offenses: murder and nonnegligent manslaughter, forcible rape, robbery,
and aggravated assault.” Therefore, the violent crime data in this project is the aggregated
sum of these four offenses.

The dataset is downloaded from the Los Angeles County Sheriff’s Department. The
raw data contains all the crimes reported every day and only the crimes that falls into the
category of violent crime is counted for this project. The consolidated dataset is daily data
and each observation represents the total number of violent crimes happened in one day.
The dataset used in this project is from 01/01/2014 to 12/31/2016 with 1096 observations.
The last 10 days’ observation( 12/21/2016 - 12/31/2016) is used as the testing data and the
remaining data is used as the training data.

3 Data Exploration

Figure 1 shows the original data and data looks very choppy. The average of the data is
31.90. According to Business Insider [3], ”The average US violent-crime rate was roughly
36.6 offenses per 10,000 people in 2014.” So the Los Angeles County is doing slightly better
than the nationwide average.

To see if there is trend in the data, the violent crime data is regressed on time t. Figure 1
shows the regression line. Table 1 shows the intercept and slope of the linear regression are
both significant. The estimated regression line is xt = −4731.0014 + 2.3632t+ wt. Figure 2
shows the decomposition of the dataset into seasonal, trend and irregular components, and
the graph for the trend component also shows an upward trend. Therefore, it seems there is
an increasing trend in the dataset.

Looking at Figure 1 again, it looks like there is some cycle in the original data. If the data
is ordered by the number of violent crime in decreasing order each year, it is interesting to see
that the highest number of violent crime each year usually occurs roughly between August
and October. The seasonal component in Figure 2 also shows the number will rise to a peak
in the second half of the year and then decrease to around 0 at the end of the year. Figure 3
shows the ACF and PACF for the original data. Here each lag is the multiple of 1/365. The
ACF plot at certain lags shows relatively slow decay and the ACF is still significant after lag
45. It looks like there is some weekly cycle in the original data. Therefore, it seems there
are multiple seasonality in the dataset.

To make the data stationary, two methods are considered: detrending and taking first
difference. Figure 4 shows the residuals after detrending the data and figure 5 shows the
data after taking the first difference. The ACF and PACF for the detrended data seem to
have some seasonality. Also, the plot for the detrended data still shows cycle similar to
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the original data. For example, the number usually goes up at the second half of the year.
On the other hand, the ACF for the first differenced data seems to be cut off at lag 1 and
the PACF seems to be tail-off, so it looks like the differenced data follows the pattern for
an ARIMA model. However, if the differenced data is used to fit the model, it might be
difficult to interpret the estimated model. In general, the model without difference order
is preferred when there is no good explanation for the differenced data. Therefore, we will
consider fitting models using the first differenced data and the detrended data.

4 Modeling Fitting and Diagnostics

4.1 ARIMA Model

Table 2 shows the candidate models and the corresponding AIC. For ARIMA models that
have zero difference order, the detrended data is used to fit the model. It shows ARIMA(1,0,2)
has the lowest AIC, so ARIMA(1,0,2) is chosen to be the preferred model. The estimated
model for the detrended data is xt = −0.041 + 0.976xt−1− 0.850ŵt−1− 0.080ŵt−2 + ŵt. The
σ̂w = 6.4 with 1,082 degrees of freedom. The regression coefficients are significant except
for the constant term. The coefficient for the AR term is positive, which might suggest the
number of violent crime tomorrow is positive related to the current number of violent crime.
On the other hand, the coefficients for the MA term is negative, which might suggest the
next observation is negative related to the shock of the previous two values in the series.
If the previous shock is positive and large, then the next observation is more likely to be
smaller. Such negative relationship might account for the choppiness shown in the original
dataset. It seems interesting to see that the AR term and the MA term have opposite re-
lationship to the current observation. If the coefficients for the AR term and the MA term
are both positive, then the data might be smoother. If the goal is to reduce the number of
future crimes, then the model suggests reducing the current number of crimes help lower the
number of violent crimes tomorrow.

To see whether the ARIMA(1,0,2) is a good fit for the data, figure 6 shows the residual
diagnostic for the model. The residuals seem to have constant mean around 0 and are roughly
normally distributed. However, some ACF at certain lags are significant and it looks like
it follows some cycle. Also, the Ljung-Box statistics shows significance after lag 8. This
might suggest the residuals are not independent and they are are not white noise. Therefore,
ARIMA(1,0,2) does not seem to be a good fit for the data.

Since the ARIMA(1,0,2) model is not a very good fit for the data , it is not surprising to
see that the predictions are not very accurate. Figure 7 shows the 10-day ahead prediction
using the ARIMA(1,0,2) with the trend added back to the prediction. The predictions are
almost like a flat line, which fail to capture the variations in the data. Even though ARIMA
model is easier to interpret, if the goal is to make a prediction for the data, then ARIMA
model might not be the best model to use. Therefore, it seems more practical to try the
seasonal ARIMA model.
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4.2 Seasonal ARIMA Model

Looking back to figure 3, the characteristics of the ACF of the original data shows a strong
peaks at lag = 1s,2s.... in the autocorrelation function with s = 7. Similarly, the PACF
plot shows minor peaks at lag = 1s,2s.... Therefore, it is very likely that there is weekly
seasonality in here. Figure 8 shows the ACF and PACF for the original data after taking the
weekly difference. It seems the ACF is cutting off after lag 1s and the PACF is tailing off in
the seasonal lags with s = 7. This looks like a pattern for seasonal ARIMA. Figure 9 shows
the original data after weekly differencing, and it seems the periodicity shown in figure 1 is
removed. Even though the variance seems to be relative smaller in the first half of the year
in 2014 and 2015, the differenced data looks roughly stationary.

Table 3 shows the seasonal ARIMA models and the corresponding AIC. Here seasonal
ARIMA(1,0,1)x(1, 1, 1)7 has the lowest AIC, so it is the preferred model. Table 4 shows the

coefficients for the seasonal ARIMA(1,0,1)x(1, 1, 1)7 model and σ̂2
w = 36.88. It is interesting

to see that the coefficient for the nonseasonal AR is positive while the coefficient for the
seasonal AR is negative. Since coefficient for the nonseasonal AR is larger than the coefficient
for the seasonal AR in absolute value, this might suggest the weekly difference for tomorrow
is positive related to the weekly difference today, while the weekly difference one week ago
will have a smaller negative effect for the weekly difference tomorrow. Similar to the ARIMA
model, the coefficient for the nonseasonal AR has the opposite sign to the nonseasonal MA
term. The coefficient for the nonseasonal MA and seasonal MA are both negative. Since
the seasonal ARIMA(1,0,1)x(1, 1, 1)7 has a seasonal difference order, it seems difficult to
interpret the MA and SMA terms with this model. This could be a drawback if we are
interested in finding a model that is easy to interpret.

Figure 10 shows the residual diagnostic for the seasonal ARIMA(1,0,1)x(1, 1, 1)7 model.
The residuals seem to have constant mean around 0. There seems to be some outliers in the
normal Q-Q plot. Since the number of outliers is small, the residuals still seems to be roughly
normally distributed. There are still some autocorrelations that are close to be significant,
but the cyclical patterns are not as obvious as shown in the ARIMA model. The Ljung-Box
statistics also shows the residuals are independent. Therefore, it looks like the residuals are
white noise and the seasonal ARIMA(1,0,1)x(1, 1, 1)7 model might be a good fit for the data.

Figure 11 shows the 10-day ahead prediction. Most of the testing data falls inside the 95%
prediction interval. Another thing to notice is that the 95% prediction interval for seasonal
ARIMA(1,0,1)x (1, 1, 1)7 is wilder than the prediction interval for ARIMA (1,0,2). However,
the prediction still fails to capture the sudden drop on 12/24/16. Looking at the data right
before the prediction, there seems to be a weekly cycle from 12/12/16 to 12/18/16, which
decreases first and then increases. In the seasonal ARIMA model with weekly seasonality,
the period from 12/22/16 to 12/25/16 is supposed to be increasing in the weekly cycle. This
might explain why the prediction goes up to 37.71 on 12/24/16 while the actual data drops
to 15 on that day. Looking at figure 1 again, the week near New Year usually corresponds
to a below average number of violent crimes. However, the seasonal ARIMA model might
not be able to capture this kind of pattern. One possible reason for the inaccuracy is that
the data might not be strictly in a weekly cycle. This is also reflected in the ACF plot of
figure 10. The significance for the autocorrelation might be from the changing cycle. Since
the violent crime can be affected by many other factors, it is reasonable to have changing
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cycles in the dataset. However, since the 95% prediction interval is able to contain most
of the testing data, the seasonal ARIMA model seems to be a better model than ARIMA
model if the goal is to forecast the number of violent crimes.

5 Spectral Analysis

The periodogram in figure 12 shows the time series contains three peaks at frequencies of
about 0, 52 and 110. Here the frequency axis is labeled in multiples of ∆ = 1/365. It is also
obvious that the periodogram is choppy. Since the original data in figure 1 is very choppy,
it is not surprising to see that the raw periodogram is choppy as well. There are many small
spikes in the periodogram, which might be caused by the noise. In order to identify the
predominant period, the modified Daniell kernel is used to smooth the periodogram. As
shown in figure 13, There are three major peaks and the periods are 1/0.649 = 1.54 year,
1/52.24 = 0.019 year or 7 days and 1/12 = 0.083 year or 30 days. It is worth noting that
the smoothed periodogram still has many small spikes at the high frequencies, which might
be corresponding to the changing cycles as discuss above. It might also suggest the data is
not completely sinusoidal and the minor peaks capture the non-sinusoidal behavior of the
signal.

An approximate 95% confidence interval for the spectrum fS(1/0.649) is [0.38,0.93] and
an approximate 95% confidence interval for the spectrum fS(1/52.24) is [0.27, 0.66]. Since
the lower bound of the confidence interval is not higher than any other periodogram ordinate,
it seems difficult to establish significance of the peak.

Another way of estimating the spectral density is to fit an AR model to the data and use
the spectral density of the AR model as the approximation. Figure 14 shows the spectral
density of an AR(28) model. Here the AR(28) model is chosen by the AIC criterion. There
are two major peaks and the periods are 1/0.73 = 1.37 years and 1/52.3 = 0.019 year or
6.98 days, which looks similar to the smoothed periodogram. It is interesting to see that the
peak corresponding to the 30-day cycle in smoothed periodogram is almost smoothed out in
the parametric spectral estimation. Therefore, only the periods of 1.4 ∼1.5 years and 7 days
are included in the final conclusion.

6 Conclusions and Future Improvement

In this project, the seasonal ARIMA(1,0,1)x (1, 1, 1)7 is chosen to be the best model. The
residual analysis shows the seasonal ARIMA model seems to fit well. The seasonal ARIMA
model seems to produce a slightly better prediction than the ARIMA(1,0,2) model, with the
cost that the seasonal ARIMA model is harder to interpret. The spectral analysis suggests
there seems to be a predominant period of around 1.4∼1.5 years and 7 days in the dataset.
The weekly cycle found in the spectral analysis seems to match the seasonal period for
seasonal ARIMA(1,0,1)x (1, 1, 1)7 model that is chosen.

For the future work, some improvements can be done for the analysis. One disadvantage
of the current model is that it cannot explain what drives the number of violent crime to a
relatively higher number during summer and fall and why the data will drop to a relatively
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lower number at the end of the year. It will be interesting if we can incorporate other
information such as the demographics of the area and the employment rate. Maybe the
extra information will help explain such pattern. In addition, for this project only three
years’ data is used, and an upward trend is observed. However, it might not be the case
when more data is included. The long term effect for the violent crime might be different.
For example, the previous 20 years’ data could be used to run the analysis again and it will
be interesting to see whether the trend is increasing or decreasing.

6



7 Figures

Figure 1: Original Data with Regression Line

Estimate Std. Error t value Pr(> |t|)
(Intercept) -4731.0014 467.8698 -10.11 < 2e− 16***

Time 2.3632 0.2321 10.18 < 2e− 16 ***

Table 1: Summary of Linear Regression
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Figure 2: Decomposition of Time Series
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Figure 3: ACF and PACF for Original Data
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Figure 4: Detrended Data and the ACF and PACF Plot
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Figure 5: First Differenced Data and the ACF and PACF Plot
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Model AIC
ARIMA(1,1,2) 4.7272
ARIMA(1,1,1) 4.7259
ARIMA(1,1,3) 4.729
ARIMA(0,1,3) 4.7272
ARIMA(0,1,2) 4.7264
ARIMA(0,1,1) 4.7327
ARIMA(1,1,0) 5.043
ARIMA(1,0,1) 4.7231
ARIMA(1,0,2) 4.7189
ARIMA(1,0,3) 4.7202
ARIMA(0,0,3) 4.738
ARIMA(0,0,2) 4.7395
ARIMA(0,0,1) 4.7441
ARIMA(1,0,0) 4.7405

Table 2: AIC for Different Models

Figure 6: Residual Analysis for ARIMA(1,0,2)
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Figure 7: 10-day Ahead Prediction for ARIMA(1,0,2)
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Figure 8: ACF and PACF for Weekly Differenced Data
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Figure 9: Weekly Differenced Data

Model AIC
ARIMA(1,0,1) x (0, 1, 1)7 4.6177
ARIMA(1,0,1) x (0, 0, 1)7 4.7268
ARIMA(1,0,1) x (1, 0, 1)7 4.6286
ARIMA(1,0,2) x (0, 1, 1)7 4.6195
ARIMA(1,0,2) x (1, 1, 1)7 4.6186

ARIMA(1,0,1) x (1, 1, 1)7 4.6167
ARIMA(1,0,1) x (1, 0, 0)7 4.7264
ARIMA(0,0,0) x (1, 1, 1)7 4.6746

Table 3: AIC for Seasonal ARIMA Models

ar1 ma1 sar1 sma1 constant
0.9332 -0.8340 -0.0507 -1.0000 0.0062

s.e. 0.0358 0.0565 0.0319 0.0085 0.0014

Table 4: Coefficients for Seasonal ARIMA(1,0,1) x (1, 1, 1)7
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Figure 10: Residual Diagnostic for Seasonal ARIMA(1,0,1) x (1, 1, 1)7

Figure 11: 10-day Ahead Prediction for Seasonal ARIMA(1,0,1) x (1, 1, 1)7
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Figure 12: Periodogram

Figure 13: Smoothed Periodogram
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Figure 14: AR Model Approximation
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