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• A comprehensive comparison of models for forecasting Global Temperature (GT).
• Introductory application of SSA and Multivariate SSA (MSSA) for forecasting GT.
• MSSA outperforms competing models with statistically significant results.
• Conclusive evidence that CO2 can predict GT.
• The MSSA models report the best direction of change predictions when forecasting GT.
• It is important to model nonlinearity into the relationship between GT and CO2.
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a b s t r a c t

In this paper we analyse whether (anthropometric) CO2 can forecast global temperature
anomaly (GT) over an annual out-of-sample period of 1907–2012, which corresponds to an
initial in-sample of 1880–1906. For our purpose, we use 12 parametric and nonparametric
univariate (of GT only) and multivariate (including both GT and CO2) models. Our results
show that theHorizontalMultivariate Singular Spectral Analysis (HMSSA) techniques (both
Recurrent (-R) and Vector (-V)) consistently outperform the other competingmodels. More
importantly, from the performance of the HMSSA-V model we find conclusive evidence
that CO2 can forecast GT, and also predict its direction of change. Our results highlight
the superiority of the nonparametric approach of SSA, which in turn, allows us to handle
any statistical process: linear or nonlinear, stationary or non-stationary, Gaussian or non-
Gaussian.
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1. Introduction

The climate change debate consists of playerswho, in the absence of accessible evidence-based and objective information,
may resort to decisions based on perceptions and even possibly political agendas [1]. The debate gets even more aggressive
when global warming is discussed in relation to anthropometric carbon dioxide (CO2) emissions [2–5].

Global warming has been accepted as a reality. For example, see [6] and more recently, Dergiades et al. [7] for a detailed
discussion based on the time-series relationship between global temperatures and emissions. The purpose of this paper
is to undertake a rigorous investigation of well-established datasets for global temperature (GT) and CO2 using a suite of
forecasting models in an attempt to identify, possibly, a single model that can be prescribed for forecasting GT. Specifically,
we consider 12 time-series models for forecasting GT from both parametric and nonparametric paradigms. These 12models
include 7 univariate models and 5 multivariate models namely: Random Walk (RW), Autoregressive (AR), Autoregressive
Integrated Moving Average (ARIMA), Exponential Smoothing (ETS), Neural Networks (NN), Fractionalized ARIMA (ARFIMA),
Box–Cox transformation, ARMA errors, Trend and Seasonal components (BATS), Bayesian Autoregression (BAR), Vector
Autoregression (VAR), Bayesian Vector Autoregression (BVAR), Singular Spectrum Analysis (SSA) and Multivariate Singular
Spectrum Analysis (MSSA). Note that, our primary focus in this paper is forecasting GT using the information contained in
CO2 using the SSA approach, due to its modelling flexibility advantages discussed in the next segment. However, given that
a forecasting exercise requires competing models, we choose a wide array of linear and nonlinear versions of univariate and
multivariate models most commonly used in the forecasting literature.

Our sample covers the entire period of 1880–2012, with an out-of-sample period of 1907–2012 (based on an initial
in-sample period of 1880 to 1906 — note that this initial in-sample period is incremented by one year and models are
re-estimated except in the case of RW and SSA models). The start and end points of the analysis are purely driven by data
availability at the time of writing this paper, but the choice of the out-of-sample period is determined by the earliest possible
break date detected (based on the Bai and Perron [8] tests of multiple structural breaks) in the relationship between GT and
CO2, which happened to be 1906. Since, we estimate our linearmodels recursively over the out-of-sample period,we are able
to accommodate the change in the parameter estimates of the model while producing our forecasts. This approach makes
the linear and nonlinear approaches comparable, with both types of model being now able to correct misspecification due
to breaks either by structural design or through recursive estimation.

This paper makes several important contributions: (i) this paper makes the first attempt to provide a comprehensive
comparison of models for forecasting GT available in the literature; (ii) it marks the introductory application of models
such as BATS, SSA and MSSA for forecasting GT; and, (iii) finally, we use a new and automated MSSA forecasting algorithm
for generating out-of-sample forecasts for GT. The SSA and MSSA models contribute to the literature on forecasting GT by
decomposing GT for denoising and signal extraction prior to forecasting, in addition to the multivariate analysis of both GT
and CO2 in the case of MSSA. Moreover, this automatedMSSA forecasting algorithm is optimized based onminimizing a loss
function. As such, it ensures the overall MSSA process is less labour intensive as it does away with the need for having to
analyse eigenvectors individually in order to differentiate between signal and noise. Also, it can show the best MSSA model
for forecasting any given data set in-sample and can therefore be used in future forecasting studies as well. To the best of
our knowledge, barring the two studies of Fildes and Kourentzes [3], and McMillan and Wohar [4], all other papers in this
area involving time series analysis have analysed these two variables separately in univariate settings.1

Our results show that the nonparametric approach of SSA consistently outperform the other competing models. More
importantly, from the performance of the SSAmodels, we find conclusive evidence that CO2 can forecast GT, and also predict
its direction of change. The remainder of the paper is organized as follows: in Section 2, we discuss the literature review,
while Section 3 presents a detailed description of the 12 forecasting models investigated with extra emphasis on the SSA
and MSSA techniques. In Section 4, we outline the datasets used and the metrics used for the evaluation of the models, with
estimations conducted in either R or RATS. In Section 5, we present an in-depth analyses of the results in our quest to identify
the best model for our purpose, while in Section 6, we present a discussion. Finally, we present some concluding remarks on
the investigation undertaken in Section 7.

2. Literature review

Note, the relationship between CO2 and GT is primarily analysed using Coupled Atmospheric-Ocean General Circulation
Models (AOGCMs) of theUnitedNations Intergovernmental Panel on Climate Change (IPCC).While theAOGCM is the primary
framework, smaller models focusing on certain aspects of the world’s climate are also used. Besides the small- and large-
scale AOGCMs, there is also a statistical approach, whereby models are estimated directly from observations. But the latter
as indicated above, is limited.

The AOGCMs comprise of systems of partial differential equations based on the basic laws of physics, fluid motion and
chemistry, aimed at capturing the dynamics of the atmosphere and oceans. Given a set of initial and boundary conditions
(which include emissions of atmospheric gases such as CO2 and volcanic eruptions), these models use a three-dimensional

1 The reader is referred to McMillan and Wohar [4] for a detailed literature review in this regard, which primarily involves analysis of unit root and
persistence properties of these two variables.
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grid to simulate the dynamics and to produce time-varying outputs such as global temperature (and precipitation) [3].2 The
advantage of these types of models is that, if the model represents the physical laws accurately, it should be possible to
simulate scenarios which have not been seen in the past [9]. However, there are serious limitations to this approach: (a)
Attempting to describe the planet using a 200 km grid implies a limited ability to simulate the subgrid-scale dynamics of
clouds, aerosols and turbulence adequately; (b) Climate modellers use parameterization techniques in an attempt to make
up for the problems of resolution, but the varying approaches yield different results [10]; (c) Uncertainties also arise from an
incomplete understanding of the interchange of CO2 between the oceans, atmosphere and biosphere [9], and; (d) Uncertainty
results from the judgemental approaches employed in constructing these models [11].

Given the above-mentioned issues, papers like that of Fildes and Kourentzes [3], and McMillan and Wohar [4], have
pursued a statistical approach using historical observations, and provide a means of representing patterns in the data based
on linear, nonlinear and nonparametric methods. The forecasting performances of statistical models obviously depend on
the extent to which the future looks like the past. So, whereas AOGCMs are governed by laws of physics, fluid motion and
chemistry, the statistical models are dependent on the quality of the data. Hence, there is an argument that statistical models
have little value in forecasting global temperatures, because the rising CO2 emissions mean that the future is unlikely to be
similar to the past [9].

Instead of completely dismissing statistical approaches, [3], based on established encompassing tests, show that there
are advantages of combining a specific AOGCM (namely United Kingdom Meteorological Office decadal climate prediction
system, known as DePreSys, as developed by Smith et al. [12]) with linear and nonlinear time series models (namely, the
combined forecast obtained from random walk; single, Holt and dampened trend exponential smoothings; autoregressive;
univariate and multivariate (including CO2 emissions) neural networks). While DePreSys provides superior short-term
forecasting (one- to four-years-ahead), gains in forecast accuracy were achieved for up to 10-year forecasts using an
univariate Holt exponential smoothing model and a multivariate neural network model which included CO2 as a predictor
variable.3 McMillan and Wohar [4], based on VAR and Generalized Method of Moments (GMM) approaches conclude that
CO2 has a weak relationship with GT, both in terms of in-sample causality tests and an out-of-sample exercise of predicting
the last observation in their sample. This could, however, be a result of uncaptured nonlinearity in the relationship between
these two variables, which [3] emphasized upon, and which we show to exist in the discussion that follows in the results
segment of the paper.4

Against this backdrop, in this paper we basically aim to understand better the underlying form of nonlinearity in the
relationship between GT and CO2 emissions by conducting an out-of-sample forecasting exercise, using univariate and
multivariate versions of linear and nonlinear models. In the process, we look at a nonparametric approach using the SSA
technique, over and above the neural network model. We also follow the recommendations of McSharry [9], who suggests
that while the neural network approach is a flexible one, it is possible to improve the underlying nonlinearity by using
alternative model specifications. Note that our approach is purely based on a time series analysis, and excludes climate
models. Hence, as part of future research, as in [3], it would be interesting to pursue forecast combinations of the SSAmodels
that we develop and AOGCMs, if and when forecast data from the latter set of models could be accessed. Note that the
decision to rely on an out-of-sample rather than an in-sample predictability exercise to gauge the relationship between CO2
and global temperature is motivated out of the belief that: ‘‘The ultimate test of any predictive model is its out-of-sample
performance’’ [14]. Since we only use a part of the data to fit various models, and produce predictions for the remaining part
of the sample period. Using full-sample information allows even linear models to pick up nonlinearity in the data. However,
this is not the case, when we split the data into in- and out-of-sample periods, since good in-sample predictions does not
guarantee the same for forecasting over an out-of-sample period. This is because, a particular model might be misspecified
over the out-of-sample period due to limited in-sample information.

At this stage, it is important to emphasize the reasons to use the SSA technique in forecasting GT. SSA has recently
evolved as a powerful technique in the field of time series analysis [15], besides the other standard forecasting approaches
indicated above. SSA is a nonparametric technique that works with arbitrary statistical processes, whether linear or non-
linear, stationary or non-stationary, Gaussian or non-Gaussian. Given that the dynamics of real time series, in our case
GT, has usually gone through structural changes during the time period under consideration, one needs to make certain
that the method of prediction is sensitive to the dynamical variations. Moreover, even though some might argue that

2 It must be pointed out that, AOGCMs actually use CO2 concentration as a forcing variable, which in turn, depends on the pattern of emissions, with
the representative concentration pathways (RCPs) used for forecasts being based on different emission scenarios.
3 Fildes and Kourentzes [3], also compared local temperature forecasts at six locations to show that the ten-year-ahead forecasts of the AOGCMs were

worse than forecasts from a randomwalk benchmark, with the exponential smoothing providing the best results. In addition, at a very long-run horizon of
twenty years ahead, the multivariate neural network with CO2 emissions as an explanatory variable produced superior forecasts compared to other time
series models. Finally, using the CO2 concentration in the atmosphere, which is believed to be physically relevant for determining global temperatures,
rather than CO2 emissions, did not improve the forecasts.
4 In a somewhat connected line of research, Kaufmann and Stern [13], and Beenstock et al. [5] tested the historic tracking capabilities of climate models.

Climate modellers use in-sample correlations to confirm the ability of climate models to track the global temperature historically. But, a high correlation
though necessary, is not a sufficient condition for such confirmation, given that global temperature tends to be nonstationary. In addition, the tracking
errors must also be stationary. Using cointegration tests applied to hindcast data for global temperatures generated by multiple climate change models,
both Kaufmann and Stern [13], and Beenstock et al. [5] found that global temperature and their hindcasts, generally fail to be cointegrated. This result
meant that the climate models fail to track global temperature historically in the longer run, because their tracking errors are nonstationary.
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the nonparametric nature of SSA/MSSA suggests little about the dynamic nature of the model, the exploitation of Takens’
theorem [16] in the embedding approach helps overcome this issue. In particular, MSSA succeeds in providing insights into
the dynamics of the underlying system via the decomposition of delay-coordinate phase space of given multivariate time
series into a set of data-adaptive orthonormal components such as trend, oscillatory patterns and noise [17–19].

In addition, contrary to the standard methods of time series forecasting that assume normality and stationarity of the
series (though the latter is not an issue for BVARmodels), as a nonparametricmethod, SSAmakes no prior assumptions about
the data, with forecasts being obtained through bootstrapping. Furthermore, SSA decomposes a series into its component
parts, and reconstructs the series by leaving out the random (noise) component. Clearly then, SSA is a much more general
approach that allows us to handle issues of non-stationarity, non-normality, non-linearity, and even seasonality, though
the latter is not an issue in our annual data set. In what follows, the predictive accuracy of all forecasts are evaluated via
the Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) loss functions, the direction of change criterion, and
the Hassani–Silva (HS) test for predictive accuracy [20] and the modified Diebold–Mariano test [21], thus enabling a sound
analysis and derivation of reliable conclusions.

3. Forecasting models

3.1. Random walk (RW)

The random walk model is used as a benchmark. This is because it is widely accepted that when introducing forecasting
techniques for a particular purpose, it is vital that the introduced techniques are able to outperform the RW.5 In brief, the
RWmodel states that today’s GT is the best forecast for tomorrow’s GT.

3.2. Autoregressive integrated moving average (ARIMA)

In this paper we use an optimized version of ARIMA (auto-ARIMA), and provided through the forecast package6 in R.
A more detailed description of the algorithm underlying auto-ARIMA can be found in [22] whilst a summarized version is
available in [23]. Theprocess for obtainingpoint forecasts using theR software is concisely presented in [24]. The initialmodel
structure and parameters for forecasting GT with ARIMA before re-estimation was ARIMA(0, 0, 1) with non-zero mean.

3.3. Exponential smoothing (ETS)

The ETS technique in the forecast package overcomes the limitations of the Makridakis et al. [25] algorithm pertaining
to the calculation of prediction intervals. Whilst a detailed description of the ETS technique can be found in [24], in brief
this algorithm considers the error, trend and seasonal components along with over 30 possible options for choosing the
best exponential smoothing model via optimization of initial values and parameters using Maximum Likelihood Estimator
and selecting the best model based on the Akaike information criterion (AIC). In the case of GT, the model structure and
parameters for forecasting GT with ETS before re-estimation was an additive ETS(A,N,N) model which is equivalent to an
ARIMA(0, 1, 1) model as linear ETS models are special cases of ARIMA model [24].7

3.4. Neural networks (NN)

The NN model used in this paper is popularly referred to as nnetar and is provided through the forecast package in R.
For a detailed explanation on how the nnetar model operates, see [24]. It may be noted that in all cases the selected neural
network model has only k = 1 hidden node, p = 2 lags, with the specifications being based on annual differences of the
data. The neural network takes the form

ŷt = β̂0 +

k∑
j=1

β̂jψ(x′

t .γ̂j), (1)

where xt consist of p lags of yt and the function ψ has the logistic form

ψ(x′

t .γ̂j) = [1 + exp(−γ̂j0 +

p∑
i=1

γ̂ji.yt−1)]−1j = 1, . . . , k (2)

In the neural network literature, this form is often referred to as a one hidden layer feed forward neural network model.
As can be seen, the nonlinearity arises through the lagged yt entering in a flexible way through the logistic functions of

5 http://robjhyndman.com/hyndsight/benchmarks/.
6 It should be noted that the automated algorithms in the forecast package generates a new and improved re-estimated model each time a new

observation is added to the data. As such the models reported for the forecast package are the initial ones.
7 Note that, the initial ETS (along with the RW) model is I(1), while the ARIMA model is I(0).

http://robjhyndman.com/hyndsight/benchmarks/
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Eq. (1). The number of logistic functions included, namely k, is known as the number of hidden nodes. When analysing the
NN forecasting results, it is important to bear in mind that the NN results reported here are not standard as there exists no
standard formulation of a NN model.

3.5. Fractionalized ARIMA model (ARFIMA)

The ARFIMA algorithm used is also from the forecast package in R, and it automatically estimates and selects the p and
q for an ARFIMA(p, d, q) model based on the Hyndman and Khandakar [22] algorithm whilst d and parameters are selected
based on the Haslett and Raftery [26] algorithm. The ARFIMA model may be written as

(1 −

p∑
i=1

φiBi)(1 − B)dyt = (1 +

q∑
i=1

φiBi)et , (3)

where B the backshift operator, p is the order of the autoregressive part, q is the number of lagged forecast errors, and d
is allowed to take the form of non-integer values. The ARFIMA model structure and parameters for forecasting GT (before
re-estimation) were p = 2, d = 0, and q = 0.

3.6. Box–Cox transformation, ARMA errors, Trend and Seasonal components (BATS)

Initially, an Exponential smoothing state space model with Box–Cox transformation, ARMA errors, Trend and Seasonal
components (TBATS) model which aims to provide accurate forecasts for time series with complex seasonality was pursued
via the forecast package in R. However, during the modelling process we noticed that a BATS model was found to have a
better fit for this data, which is non-seasonal. A detailed description of the model and the underlying formula can be found
in [27] and is therefore not reproduced here. The model structure and parameters used by the BATS model for forecasting
GT before re-estimation was BATS(1, {0, 1}), where 1 is the Box–Cox parameter and {0, 1} is the damping parameter. Note
that we are permitting (additive) trend and no seasonal component.

See Appendix A.1 for a discussion on the Classical Autoregressive (AR), Bayesian Autoregressive (BAR), Vector Autore-
gressive (VAR), and Bayesian Vector Autoregressive (BVAR) Models.

3.7. Singular Spectrum Analysis (SSA)

The SSA technique is a filtering and forecasting technique which is exploited in a variety of fields (see for example,
[28–32]). In brief, SSA seeks to filter the noise in a time series and reconstruct a less noisy signal which is then used for
forecasting future data points [31] using only the SSA choices ofwindow-length (L) and the number of eigenvalues r [33]. SSA
also has its multivariate formwhich is referred to as Multivariate SSA (MSSA) and can be used for modelling and forecasting
using multiple series. In comparison to SSA, MSSA is relatively new with few applications (see for example, [34–37] and
[38,39]).

There are several benefits of using SSA and MSSA models. As these models are nonparametric they are not bound by
the parametric assumptions of normality, stationarity and linearity [38]. As such, one is able to model the data without any
transformations which in turn ensures there is no loss of information [39]. In addition, as SSA is a filtering technique, it
enables users to decompose a time series in order to obtain a richer understanding of the underlying dynamics. Moreover,
once the associated signal is extracted, SSA enables users to forecast the signal alone. For example, if we are interested in
the trend component alone we have the option of extracting the trend from the data and then forecasting the trend.

Those interested in a detailed account of the theory underlying SSA are referred to Sanei and Hassani [15]. Given that
many readers are likely to be unfamiliar with the SSA, via Fig. 1 we show the basic SSA process in a visual form.

In brief, the SSA technique is made up of two stages known as Decomposition and Reconstruction. Below we present the
decomposition (or filtering) and reconstruction stages of SSA, and in doing so we mainly follow [15].

Stage 1: Decomposition
Consider the real-valued nonzero time series YN = (y1, . . . , yN ) of sufficient length N . The only choice at this stage is of

the Window Length L, an integer such that 2 ≤ L ≤ N .

Step 1: Embedding
Embedding is a mapping that transforms a one-dimensional time series YN = (y1, . . . , yN ) into the multi-dimensional

series X1, . . . , XK with vectors Xi = (yi, . . . , yi+L−1)′ ∈ RL, where K = N − L +1. The embedding step results in the trajectory
matrix X = [X1, . . . , XK ] =

(
xij
)L,K
i,j=1, which is a Hankel matrix. Accordingly, all the elements along the diagonal i+ j = const

are constant (i.e., a matrix in which the (i, j)th entry depends only on i + j, that is, each skew-diagonal is constant).
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Fig. 1. The basic SSA process.

Step 2: Singular Value Decomposition (SVD)
In this step we obtain the singular value decomposition of the trajectory matrix X . Denote by λ1, . . . , λL the eigenvalues

of XX′ in decreasing order of magnitude (λ1 ≥ · · · λL ≥ 0) and by U1, . . . ,UL the orthonormal system (that is, (Ui,Uj) = 0
for i ̸= j (the orthogonality property) and ∥Ui∥ = 1 (the unit norm property)) of the eigenvectors of the matrix XX′

corresponding to these eigenvalues. If we denote Vi = X′Ui/
√
λi, then the SVD of the trajectory matrix can be written

as:

X = X1 + · · · + Xd, (4)

where Xi =
√
λiUiVi

′ (i = 1, . . . , d).

Stage 2: Reconstruction
The second and final choice in SSA, i.e. the number of eigenvalues, r is required at this stage.

Step 1: Grouping
In the grouping step, we split the elementary matrices Xi into several groups and sum the matrices within each group.

Let I = {i1, . . . , ip} be a group of indices i1, . . . , ip. Then the matrix XI corresponding to the group I is defined as XI =

Xi1 +· · ·+Xip . The split of the set of indices J = 1, . . . , d into the disjoint subsets I1, . . . , Im corresponds to the representation

X = XI1 + · · · + XIm . (5)

The procedure of choosing the sets I1, . . . , Im is called the eigentriple grouping.

Step 2: Diagonal Averaging
Diagonal averaging transfers each matrix I into a time series, which is an additive component of the initial series YN . This

procedure is called diagonal averaging, or Hankelization of the matrix Z. The result of the Hankelization of a matrix Z is the
Hankel matrixHZ, which is the trajectory matrix corresponding to the series obtained as a result of the diagonal averaging.
By applying the Hankelization procedure to all matrix components of (5), we obtain another expansion:

X = X̃I1 + · · · + X̃Im (6)

where X̃I1 = HXI1 . This is equivalent to the decomposition of the initial series YN = (y1, . . . , yN ) into a sum of m series:

yn =

m∑
k=1

ỹ(k)n (7)

where Ỹ (k)
N = (̃y(k)1 , . . . , ỹ

(k)
N ) corresponds to the matrix XIk .

3.8. Multivariate Singular Spectrum Analysis (MSSA)

Those interested in an in-depth explanation of the theory underlying MSSA are directed to Hassani and Mahmoudvand
[33]. We begin by presenting the Horizontal MSSA Recurrent (HMSSA-R) optimal forecasting algorithmwhich is followed by
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the Horizontal MSSA Vector (HMSSA-V) optimal forecasting algorithm. In presenting these two algorithmswemainly follow
and rely on the notations in [33].

3.8.1. HMSSA-R optimal forecasting algorithm
1. ConsiderM time series with identical series lengths of Ni, such that Y (i)

Ni
= (y(i)1 , . . . , y

(i)
Ni
) (i = 1, . . . ,M).

2. In this case we use 25 observations of GT and CO2 data to train and test the HMSSA models.
3. Beginning with a fixed value of L = 2 (2 ≤ L ≤

N
2 ) and in the process, evaluating all possible values of L for YNi , using the

training data construct the trajectorymatrixX(i)
= [X (i)

1 , . . . , X
(i)
K ] = (xmn)

L,Ki
m,n=1 for each single series Y (i)

Ni
(i = 1, . . . ,M)

separately.
4. Then, construct the block trajectory matrix XH as follows:

XH =
[
X(1)

: X(2)
: · · · : X(M)

]
.

5. Let vector UHj = (u1j, . . . , uLj)T , with length L, be the jth eigenvector of XHXT
H which represents the SVD.

6. Evaluate all possible combinations of r (1 ≤ r ≤ L−1) step by step for the selected L and construct X̂H =
∑r

i=1 UHiU
T
Hi
XH

as the reconstructed matrix obtained using r eigentriples:

XH =
[̂
X(1)

: X̂(2)
: · · · : X̂(M)

]
.

7. Consider matrix X̃(i)
= HX̂(i) (i = 1, . . . ,M) as the result of the Hankelization procedure of the matrix X̂(i) obtained

from the previous step for each possible combination of SSA choices.
8. Let U▽

Hj
denote the vector of the first L − 1 coordinates of the eigenvectors UHj , and πHj indicate the last coordinate of

the eigenvectors UHj (j = 1, . . . , r).
9. Define υ2

=
∑r

j=1 π
2
Hj
.

10. Denote the linear coefficients vector R as follows:

R =
1

1 − υ2

r∑
j=1

πHjU▽
Hj. (8)

11. If υ2 < 1, then the h-step ahead HMSSA forecasts exist and is calculated by the following formula:

[
ŷ(1)j1
, . . . , ŷ(M)

jM

]T
=

⎧⎪⎨⎪⎩
[
ỹ(1)j1
, . . . , ỹ(M)

jM

]
, ji = 1, . . . ,Ni,

RTZh, ji = Ni + 1, . . . ,Ni + h,

(9)

where, Zh =

[
Z (1)
h , . . . , Z (M)

h

]T
and Z (i)

h =

[
ŷ(i)Ni−L+h+1, . . . , ŷ

(i)
Ni+h−1

]
(i = 1, . . . ,M).

12. Seek the combination of L and r which minimizes a loss function, L and thus represents the optimal HMSSA-R choices
for decomposing and reconstructing in a multivariate framework.

13. Finally use the selected optimal L to decompose the series comprising of the validation set, and then select r singular
values for reconstructing the less noisy time series, and use this newly reconstructed series for forecasting the
remaining 1

3
rd

observations.

3.8.2. HMSSA-V optimal forecasting algorithm
1. Begin by following the steps in 1–9 of the HMSSA-R optimal forecasting algorithm above.
2. Consider the following matrix

Π = U▽U▽T
+ (1 − v2)RRT , (10)

where U▽
= [U▽

1 , . . . ,U
▽
r ]. Now consider the linear operator

P (v)
: Lr ↦→ RL, (11)

where

P (v)Y =

(
Π Y△

RTY△

)
, Y ∈ Lr , (12)

and Y△ is vector of last L − 1 elements of Y .
3. Define vector Z (i)

j (i = 1, . . . ,M) as follows:

Z (i)
j =

{
X̃ (i)
j for j = 1, . . . , ki

P (v)Z (i)
j−1 for j = ki + 1, . . . , ki + h + L − 1

(13)
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Table 1
MSSA models for forecasting Global Temperature.
h HMSSA-R HMSSA-V

1 MSSA(3, 1) MSSA(4, 1)
2 MSSA(3, 1) MSSA(3, 1)
3 MSSA(3, 1) MSSA(5, 1)
4 MSSA(4, 1) MSSA(4, 1)
5 MSSA(3, 1) MSSA(4, 1)
6 MSSA(3, 1) MSSA(3, 1)
7 MSSA(3, 1) MSSA(2, 1)
8 MSSA(3, 1) MSSA(3, 1)
9 MSSA(2, 1) MSSA(2, 1)
10 MSSA(2, 1) MSSA(5, 3)

Note: Shown here in brackets are the combinations of L and r as MSSA(L, r).

where, X̃ (i)
j ’s are the reconstructed columns of trajectory matrix of the ith series after grouping and leaving noise

components.
4. Now, by constructing matrix Z(i)

= [Z (i)
1 , . . . , Z

(i)
ki+h+L−1] and performing diagonal averaging we obtain a new series

ŷ(i)1 , . . . , ŷ
(i)
Ni+h+L−1, where ŷ(i)Ni+1, . . . , ŷ

(i)
Ni+h provides the h step ahead HMSSA-V forecast for the selected combination of

L and r .
5. Finally, follow steps 12–13 in the HMSSA-R optimal forecasting algorithm to find the optimal L and r for obtaining

HMSSA-V forecasts.

Finally, in Table 1 we present the MSSA models for obtaining the forecasts for GT at each horizon.

4. Data and metrics

4.1. Data

The data we investigate here consists of two variables, namely the global temperature anomaly (GT) and global carbon
dioxide (CO2) emissions, and spans the annual period of 1880–2012, with the start and end of the period being purely driven
by the availability of data. GT measures the difference between a reference long-term average value (which happens to be
1951–1980) and the actual value. The calculation of GT is in itself a complex process adjusting for aspects such as, though not
limited to, unequal distance between measuring stations, difference due to the richly observed northern hemisphere versus
the poorly observed southern hemisphere, ocean versus terrestrial measurements, polar regions, into one representative
number for thewhole earth [40]. Similarly global CO2 is estimated fromenergy statistics published by theUnitedNations [41]
involving a complex system comprising of, again not limited to, questionnaires, official statistics and other supplementary
information [42]. The GT were obtained from the National Aeronautics and Space Administration’s (NASA) and the Goddard
Institute for Studies (GISS).8 The data on CO2 was obtained from the Carbon Dioxide Information Analysis Centre9 and is
measured in thousandmetric tons of carbon. While GT remains untransformed in our analysis, we use the natural logarithm
of CO2 emissions. The log transformation allows us tomake the highly skewed distribution of CO2 less skewed, which in turn,
is valuable both for making patterns in the data more interpretable and for helping to meet the assumptions of inferential
statistics.

4.2. Forecasting exercise

We separate the entire data period into an initial in-sample period spanning 1880–1906, and an out-of-sample period
of 1907–2012. Note that, since we use a recursive estimation for the models (barring RW and SSA), we have an expanding
in-sample period, while producing the out-of-sample forecasts for the various horizons. This separation of the period was
determined by the Bai and Perron [8] tests of multiple structural breaks applied to the global temperatures equation of the
VARmodel, which, in turn, detected the following break dates: 1907, 1945, 1974, 1992, and 2004. Since our linearmodels are
estimated recursively over the out-of-sample period in which all the break dates fall, this separation of the period is ideal as
it helps us to accommodate changes in the parameter estimates of the model in the out-of-sample period. In other words, if
wewould have a split in the initial in-sample and out-of-sample periods different from the one based on the structural break
tests, with some of the breaks in the initial in-sample period, the linear models would be misspecified. This is because, the
linear models would not be capturing the change in the response of GT to CO2 emissions that took place due to breaks in the

8 The data is available for download from: http://data.giss.nasa.gov/gistemp/.
9 The data is available for download from: http://cdiac.ornl.gov/trends/emis/tre_glob_2013.html.

http://data.giss.nasa.gov/gistemp/
http://cdiac.ornl.gov/trends/emis/tre_glob_2013.html
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Table 2
Descriptive statistics for GT.

Min Max Mean Med. SD IQR SW(p)

Overall (1880–2012) −47 66 −1.47 −7 28.96 35 <0.01
In-Sample (1880–1906) −44 −10 −25.44 −25 8.09 12.5 0.95*
Out-of-Sample (1907–2012) −47 66 4.63 2.50 29.20 36.75 <0.01

*Indicates data is normally distributed based on the Shapiro–Wilk (SW) test at p = 0.01.

initial in-sample. This way, we aim to make the comparison between linear and nonlinear models fair, by ensuring that the
superior predictability of the nonlinearmodels, if andwhen it exists, is not because ofmisspecification due to regime changes
but due to the inherent nonlinear relationship of GT with CO2.10 Finally, we produce one- to ten-year-ahead forecasts based
on this recursive estimation scheme to forecast in the short- and long-term horizon. Except for the MSSA models where the
initial model remains constant and the data is updated, all other models update the data and re-estimate model parameters
each time a new observation is introduced. Accordingly, we generate forecasts at each horizon such that we have n − h + 1
observations where n = 106 and h refers to the horizon of interest.

4.3. Descriptive statistics

Table 2 summarizes the descriptive statistics for the entire GT data set, and the in-sample and out-of-sample periods
separately. This analysis uncovers some interesting insights relating to the series. Firstly, the structure of the series overall
and out-of-sample appears to be closely associated as expected (given the large out-of-sample forecasting period). Both
these series are skewed and report an almost identical interquartile range (IQR), and the out-of-sample data captures the
overall minimum andmaximumGT values. In comparison, the initial in-sample series captures a periodwhere the GT values
are negative and normally distributed.

4.4. Metrics

To evaluate the 12 competingmodels, we use the popular RootMean Squared Error (RMSE) loss function and the direction
of change (DC) criteria for comparing their forecasting performances. All outcomes relating to forecast accuracy are tested
for statistical significance using the Kolmogorov–Smirnov Predictive Accuracy (KSPA) test [20], whilst the DC results are
tested for statistical significance using a Student’s t-test.

Root Mean Squared Error (RMSE)
The RMSE is now a standard quantitative technique for evaluating forecasting accuracy of alternate models. It is also

popular as one of the most frequently cited measures in forecasting literature (see, for example, [43] and [23]). In this paper
we consider both the RMSE and Ratio of the RMSE (RRMSE). Here, in order to save space we present only the RRMSE.

RRMSE =

(∑N
i=1(ŶT+h,i − YT+h,i)2∑N
i=1(ỸT+h,i − YT+h,i)2

)1/2

,

where ŶT+h represents the h-step ahead forecast obtained by the benchmark model, ỸT+h represents the h-step ahead
forecast obtained by a competing model, and N is the number of forecasts. If RRMSE < 1 then the benchmark model
outperforms the competing model by 1-RRMSE percent.

Direction of Change (DC)
The DC metric is an equally important measure as the RMSE because it is able to show whether the forecast is correctly

predicting the actual direction of change. A model is said to have a better DC prediction than a random walk if it records a
DC greater than 50% [44]. The DC calculation is presented below and in doing so we mainly follow [38].

Consider a univariate time series YT . Let ZYi take the value 1 if the forecast correctly predicts the direction of change and
0 otherwise. Then Z̄X =

∑N
i=1 ZYi/N shows the proportion of forecasts that correctly predict the direction of the series.

5. Empirical results

Forecasting results covering all horizons from 1–10 can be found in Tables 7 and 8. The presentation of the results which
considers both short and long term forecasts of GT enables stakeholders to select the best model at each forecast horizon

10 Given that, the structural break test is performed on the full-sample of the data, which in turn, is not available to a forecaster while making a forecast,
we reconducted our analysis using an initial in-sample period of 1880–1946 i.e., essentially a 50 percent split of the data. Our revised analyses, which are
available upon request, produced qualitatively similar results.
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of interest. Here in Tables 3 and 4, we present a summarized version of the out-of-sample forecasting results for GT which
considers horizons 1, 5, and 10, and thereby represents the short, medium and long term forecasts. We initially discuss the
overall results. The first observation is that the HMSSA-Vmodel can provide the best forecast for GT across all horizons. Also,
it is important to note that the two MSSA techniques with their various fitted models succeed in reporting the lowest RMSE
and MAE in comparison to all models evaluated here, across all horizons. As such, in relation to all models considered in
this study, we are able to identify clearly that MSSA has the potential to provide the most accurate forecasts for GT when
CO2 is used as auxiliary information. Secondly, given that these superior MSSA results have been attained by using CO2 as an
indicator variable, we are able to conclude that CO2 can indeed help in predicting GT. If one is interested in a singlemodel for
obtaining the best possible forecasts for GT, then based on the average lowest RMSE andMAEwe can propose that specifically
the HMSSA-V technique, as used in this study, is best for this purpose.

The results also enable amore detailed analysis and differentiation between univariate andmultivariatemodels. In terms
of the univariate models we see that across all horizons, ETS forecasts are best for GT (Table 7). Interestingly as well, on
most occasions the RW forecasts are seen outperforming the univariate models (except ETS), and also outperforming the
multivariate BVAR5 and VAR forecasts with the exception of h = 1 step ahead results from VAR and BVAR5models. Another
point to note is that forecasts for GT from the univariate BAR1 model is almost as bad as the worst performing NN model
according to the average RMSE and MAE criteria. Furthermore, as both univariate and multivariate models are considered
in this study, practitioners also have the option of selecting the best univariate or multivariate model for forecasting GT at a
particular horizon of interest.

The RMSE and MAE results reported in Table 7 clearly indicates how the forecasting accuracy of all models deteriorates
as the forecasting horizon expands from 1-step ahead to 10-steps ahead. A closer look at these results show that ETS and
HMSSA models incur a deterioration in accuracy levels at a comparatively slower rate than rest of the models. This in turn
indicates that the univariate ETS model is performing considerably well in relation to other univariate models considered
here, and also that the MSSA models are performing better than all other models in terms of the RMSE criteria.

In Table 4 we consider HMSSA-V as a benchmark model and present the RRMSE results for GT forecasts for horizons
1, 5, and 10 steps-ahead with Table 8 reporting all results. The choice of HMSSA-V as a benchmark model was influenced
by the fact that the HMSSA-V model reports the lowest RMSE and lowest average MAE across all ten forecasting horizons.
Here we exploit the two-sided HS test [20] and themodified Diebold–Mariano test to find statistically significant differences
between forecasts across all 10 forecasting horizons. Evidence from the two-sided KSPA test (results indicated on the ‘Avg.’
row in Table 4) suggests that on average, across all 10 horizons, the only instance in which HMSSA-V fails to produce a
forecast that is not significantly better than anothermodel’s forecast is in comparison to HMSSA-R and ETS forecasts at a 90%
confidence level. This provides added justification for selecting the HMSSA-V model proposed in this study as a benchmark
for forecasting GT. At the same time, it also shows the power of the ETS model for those wishing to rely on a univariate
forecasting approach when modelling GT.

The RRMSE results in Table 4 are further tested for statistical significance via the two-sided KSPA test which seeks to
ascertain the existence of a statistically significant difference between the distributions of two forecast errors. Leaving
aside the HMMSA-R and HMSSA-V models which do not report any statistically significant differences between forecast
errors at the 90% confidence level, we can conclude that beyond h = 1, the HMSSA-V forecasts are indeed significantly
better than all other competing forecasts on most instances (with the exception of ETS). Interestingly, HMSSA-V forecasts
only outperformed ETS at h = 2 and h = 10 steps ahead. Also, we failed to find evidence of statistically significant
differences between forecasts of HMSSA-V and RW models at h = 1, 4, and 8 steps ahead. The beauty of the RRMSE
criterion is that it enables us to further quantify the performance of a given forecasting model and show by what percentage
it outperforms forecasts from another model. Accordingly, based on the RRMSE we are able to conclude that on average,
across all ten horizons, the HMSSA-V forecasts are better in the range of 1% (relative to the HMSSA-R) and 29% (relative to
the NN).

Presented in Table 5 (summarized output) and Table 9 (all output) are the DC prediction results from the GT forecasts. It
is important to evaluate the accuracy of a model in its ability to correctly predict the actual direction of change in the time
series.11 The DC results indicate that on average the univariate BAR1 model is worst in predicting the actual direction of
change in GT. If we consider only the univariatemodels, then the ARmodel has theworst DC predictionwhilst the ETSmodel
reports the best. In terms of multivariate models, theMSSAmodels report the best DC predictions on average and are almost
identical. However, if one was to suggest a single model with the best average DC prediction then it would be the HMSSA-V
model with an average accuracy of 66%. The inclusion of the DC results at each horizon enables practitioners to select the
best model for a particular forecasting horizon not only based on the RMSE criterion but also based on its ability at providing
a good DC prediction for GT. In line with good statistical practice we test all DC predictions for statistical significance using
the Student’s t-test as in [45]. Accordingly, we see that the DC predictions reported for AR, ARIMA, ARFIMA, NN, BATS, BAR1,
VAR, and BVAR5 models at all horizons are likely to be a result of chance occurrences. However, the DC prediction for ETS at
h = 5 steps ahead is found to be statistically significant whilst half of the DC predictions from the HMSSA-V model report
statistically significant outcomes. As such, we are able to conclude with 90% confidence that the HMSSA-V DC predictions
are significantly greater than 50% across forecasting horizons 2–6.

11 Note that it is not possible to calculate the DC metric for RW forecasts as it results in the DC statistic going to infinity.
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Table 6
RMSE results from out-of-sample forecasts for Global Temperature using Radiative Forcing.
h RW AR BAR1 VAR BVAR5 HMSSA-R HMSSA-V RF:HMSSA-R RF:HMSSA-V

1 10.66 10.68 10.7 10.65 10.34 10.25 9.99 11.53 10.58
2 12.61 13.1 13.2 12.61 12.32 10.99 10.98 12.12 11.04
3 13.22 14.51 14.75 13.75 13.43 11.71 11.68 12.77 11.18
4 12.89 15.64 16.03 14.57 13.97 12.22 12.08 13.48 11.95
5 14.61 17.55 18.14 16.12 15.54 12.80 12.68 13.73 12.83
6 14.82 18.77 19.54 17.07 16.37 13.11 13.06 14.6 13.40
7 14.89 19.69 20.59 17.86 17.23 13.62 13.61 15.58 14.09
8 15.44 21.11 22.22 18.82 18.03 14.68 14.56 16.65 15.35
9 17.05 22.72 24.08 19.69 18.83 15.51 15.50 16.51 17.22
10 16.92 23.89 25.45 20.26 19.31 16.22 15.39 17.04 18.13
Avg. 14.31 17.77 18.47 16.14 15.54 13.11 12.95 14.40 13.577

5.1. Robustness analysis

Though we followed the works of Fildes and Kourentzes [3], and McMillan and Wohar [4] in using CO2 emissions as
a predictor variable for GT, based on the suggestion of the Editor, we also evaluated the performance of our SSA models
using radiative forcing instead of CO2. Note, radiative forcing is defined as the difference of insolation (sunlight) absorbed by
the Earth and energy radiated back to space. We observed that just like the MSSA models with CO2, the same models with
radiative forcing outperformed the univariate and multivariate linear models and the neural network model. However, the
HMSSA-Vmodel based on total radiative forcing, could only outperform the HMSSA-R andHMSSA-V based on CO2 emissions
at horizons of three- and four-year-ahead. Also, on average, the HMSSA-R and HMSSA-V using CO2 emissions continued to
perform the best. A selection of these results are reported via Table 6 for the benefit of the reader.

6. Discussion

The discussion begins with a graphical illustration of the best out-of-sample forecasts for GT in the very short run (h = 1)
and the very long run (h = 10) as shown via Fig. 2. All forecasts shown are from the HMSSA-V model. Interestingly, the
forecasts from the other models showed clear signs of difficulties in modelling and providing an accurate forecast for GT
amidst the variation visible in the series, and in most cases the competing models were seen picking up the variations too
late in time and reflecting on the comparatively poor DC predictions reported in Table 5. The use of MSSA models enabled
to overcome the issues pertaining to modelling the volatility in GT and provide forecasts which are comparatively more
accurate and reliable for decision making.

However, as evident via Fig. 2, even the best forecasts appear to have difficulty in capturing the levelling which occurs
post 2000 until recently. As such, it is pertinent to briefly comment on this. For this purpose, shown via Fig. 3 are the best
performing one, five, and ten-steps ahead forecasts from 2000 onwards based on the lowest RMSE criteria. All forecasts
appearing here are from the HMSSA-V model. Notice how some of the forecasts appear to fluctuate whilst the others are
represented as comparatively smoother lines. There are two possible explanations for this. Firstly, MSSA is sensitive to the
choice of window length L and the number of eigenvalues r , and the automated MSSA algorithm introduced in this paper is
programmed to find the best possible forecast by minimizing a loss function. Therefore, instead of seeking out components
whichwill capturemost of the fluctuations,moreweighting is given to the forecast linewhich can reduce the error. Secondly,
the MSSA algorithm does not update and fit a newmodel to the data each time a new observation is introduced. Whilst this
approach does provide more stability to the forecasting model, it does however make it difficult for the model to ensure
the levelling which occurs towards the end of the out-of-sample period is accurately captured. Yet, it is noteworthy that in
comparison to the other models which are all recursive, these MSSA forecasts with a fixed model fitted at the training stage
is able to outperform the rest. Given the non-recursive nature of the MSSA forecasts, as the horizon increases beyond 1-step
ahead, we notice a deterioration in the forecast accuracy (it still deteriorates at a lower rate than the recursive models). It
would be interesting to see whether programming recursive MSSA models can enable MSSA to capture the levelling post
2000 more accurately.

Given that GT data is now available till 2017, below, we also show the ex ante forecasts from the best MSSAmodels using
CO2 and total radiative forcing (TRF) as auxiliary information. As expected, based on the forecasting exercise carried out in
this study, we see that the HMSSA-V model using CO2 as auxiliary information performs the best in tracking more closely
the trend of GT. (See Fig. 4.)

At this stage, it is important to compare our results with the existing evidence of predictability of GT emanating from
CO2 emissions. As discussed in the introduction, available studies based on time series analysis that do aim to forecast GT
based on CO2 emissions are limited to two, with bulk of the papers using climate models. Just as in [4], we find no evidence
of the ability of CO2 emissions in predicting GT based on linear models. This weak evidence is not surprising given that the
Brock et al. [46] test indicated strong evidence of nonlinearity in the relationship between the two variables.12 However,

12 Complete details of these results are available upon request from the authors.
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Fig. 2. Out-of-sample MSSA forecasts for GT.

Fig. 3. The best out-of-sample forecasts (HMSSA-V model) post 2000 at selected horizons.

unlike in [3] to certain extent, we found that, even though nonlinearity exists, a NN model cannot seem to capture this
underlying nonlinearity well enough, as is indicated in its poor forecasting performance. The superiority of the SSA models
in forecasting however, tend to suggest that these models are able to better capture this unknown nonlinear relationship
via a nonparametric formulation.13

13 This line of thinking is vindicated by the superior fit of the SSA approach relative to the NNmethod. Complete details of the goodness-of-fit results are
available upon request from the authors.



H. Hassani et al. / Physica A 509 (2018) 121–139 135

Fig. 4. The best MSSA forecasts for GT 2013–2017.

7. Conclusions

The two popular and passionate debates about climate change are (i) Is it possible to predict global temperature anomaly
(GT) reliably?; and (ii) Is there definitive causal evidence of (anthropometric) CO2 being the driver of GT? This paper is an
exercise to contribute to this debate by providing objective analyses of relevant data using an ensemble comprising of 12
parametric and nonparametric out-of-sample forecasting techniques using onlyGT data (univariate), aswell as using bothGT
and CO2 data (multivariate). The significance of this paper lies in that, using the well established datasets we have identified
the ‘best’ model, from 12 candidate models, for forecasting GT both in the short- and long-term horizons. Specifically, our
results have identified that the Horizontal Multivariate Singular Spectral Analysis (HMSSA) models (both Recurrent (-R)
and Vector (-V)) consistently outperform the other competing models in a statistically significant fashion. Further, from
the performance of the HMSSA-R model, we have conclusive evidence that CO2 can predict GT. We also evaluated the
models in their ability to predict the direction of change (DC) for the GT forecasts. Although in the univariate setup the
exponential smoothing (ETS) model performs best in forecasting DC followed by the HMSSA models, in the multivariate
setup, the HMSSA models once again score best when evaluated using the metrics considered. Thus, from our investigation
and from the analyses of the findings, if we have to recommend a model for forecasting GT, HMSSA-R is a clear winner.
Our results also highlight the superiority of the nonparametric approach of the SSA, which in turn, allows us to handle any
statistical process: linear or nonlinear, stationary or non-stationary, Gaussian or non-Gaussian. Hence, from the perspective
of a climate modeller relying on AOGCMs, it would make sense to compare the ex ante forecasts (i.e., future path) of GT
generated from the SSA model with that from the AOGCMs. In this regard, as part of future analysis, it would be interesting
to go back and compare the future paths generated in historical reports of IPCC on GT, with that generated from our SSA
model. Using historical comparison will allow us to determine how far or close the paths generated by the climate models
and that by time series models match up with what actually materialized in terms of global temperature levels. Also note,
using the SSA model, given that it is based on bootstrapping, we will be able to generate interval and density forecasts for
global temperatures, thus allowing us to determine the uncertainty associated with such forecasts.

Though the objective of this paper was to pursue a forecasting exercise to determine whether CO2 emissions can predict
the future movements in GT, using a large number of linear and nonlinear models, our results can be utilized to draw
important policy conclusions as well. We show that it is important to model nonlinearity into the relationship between
GT and CO2, otherwise, the latter does not seem to contain any predictive information about the future paths of GT. Once
this is done, we find strong evidence of the role of CO2 in increasing GT, i.e., we show that continued CO2 emissions will
cause further warming.14

14 Based on the suggestion of an anonymous referee, we estimated a time-varyingmodel of cointegration as outlined in [47]. Based on this framework, we
observed that the response of GT to CO2 has steadily decreased post World War II, with the average impact suggesting that one unit increase in CO2 would
increase GT by 0.0486 unit. Complete details of these results are available upon request from the authors. As discussed in the Fifth Climate Change Synthesis
Report of the IPCC [48], continuous global warming will have long-lasting changes in all components of the climate system, increasing the likelihood of
severe, pervasive and irreversible impacts for both people and ecosystems. In addition, climate change will amplify existing risks and create new risks
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Our findings also open up several avenues for future research. It would be interesting to analyse the emissions from
various countries including the top emitters, to determine which countries can predict global temperatures the best, and
also to find out whether the top emitters can predict global temperatures better than world emissions. The findings from
such analysis can help design better policies. Also, it is important to point out that, while we only concentrate on CO2
emissions in this paper, there is also a large literature that has related global temperatures to sunspots, but primarily
based on in-sample analysis (see [49] for a detailed review). Given this, in the future it would be interesting to extend this
literature to out-of-sample forecasting, and also include sunspot along with CO2 emissions to check the robustness of our
results.

Appendix

A.1. Classical Autoregressive (AR), Bayesian Autoregressive (BAR), Vector Autoregressive (VAR), and Bayesian Vector Autoregres-
sive (BVAR) models

The Vector Autoregressive (VAR) model, though ‘‘atheoretical’’ is particularly useful for forecasting purposes. Note an
unrestricted VAR model, as suggested by Sims [50], can be written as follows:

yt = C + A(L)yt−1 + ϵt (14)

where: y: a vector of variables (global temperatures and global CO2 emissions) being forecasted; A(L): a polynomial matrix
in the backshift operator Lwith lag length p, i.e., A(L) = A1L+ A2L2 + · · · + ApLp; C: a vector of constant terms, and ε: vector
of white-noise error terms. In our case p = 2 based on the Akaike Information Criterion (AIC).

The VARmodel uses equal lag length for all the variables of the model, and leads to the problem of overparameterization.
This, in turn, results inmulticollinearity and loss of degrees of freedom leads to inefficient estimates and large out-of-sample
forecasting errors.

An approach to overcome this overparameterization, as described in [51,52], is to use a Bayesian VAR (BVAR)
model. Instead of eliminating longer lags, the Bayesian method imposes restrictions on these coefficients by assuming
that these are more likely to be near zero than the coefficient on shorter lags. However, if there are strong effects
from less important variables, the data can override this assumption. The restrictions are imposed by specifying nor-
mal prior distributions with zero means and small standard deviations for all coefficients with the standard deviation
decreasing as the lags increases. The exception to this is, however, the coefficient on the first own lag of a variable,
which has a mean of unity. Note Litterman [51] used a diffuse prior for the constant. This is popularly referred to as the
‘‘Minnesota prior" due to its development at the University of Minnesota and the Federal Reserve Bank at Minneapo-
lis.

The standard deviation of the distribution of the prior for lag m of variable j in equation i for all i, j and m, defined as
S(i, j,m), can be specified as follows:

S(i, j,m) = [w × g(m) × f (i, j)]
σi

σj
(15)

with f (i, j) = 1, if i = j and kij otherwise, with (0 ≤ kij ≤ 1), g(m) = m−d, d > 0. Note σi is the standard error of the univariate
autoregression for variable i. The ratio σi

σj
scales the variables so as to account for differences in the units of measurement

and, hence, causes specification of the prior without consideration of the magnitudes of the variables. The termw indicates
the overall tightness and is also the standard deviation on the first own lag, with the prior getting tighter as we reduce the
value. The parameter g(m) measures the tightness on lag m with respect to lag 1, and is assumed to have a harmonic shape
with a decay factor of d, increasing which tightens the prior on increasing lags. The parameter f (i, j) represents the tightness
of variable j in equation i relative to variable i, and by increasing the interaction, i.e., the value of kij, we can loosen the prior.
Following the literature on BVAR models, we look at the following combinations of w and d: (0.3, 0.5), (0.2, 1.0), (0.1, 1.0),
(0.2, 2.0) and (0.1, 2.0), with kij set at 0.5. Univariate versions of the BVAR models, which we call Bayesian autoregressive
(BAR) models, are estimated for the same values ofw and d as above, but with kij set at 0.001, since a small interaction value
basically reduces the multivariate model to its corresponding univariate version. In the results section however, we only
report the BAR and BVAR models which produces the most accurate forecasts on average, which in our case, happened to
be the BAR1 (w = 0.3, d = 0.5, kij = 0.001) and BVAR5 (w = 0.1, d = 2.0, kij = 0.5).15 In this regard, we follow Gupta and

for natural and human systems; with risks being higher for vulnerable communities around the world, resulting in an unequal society, and hamper socio-
economic development. Understandably, limiting climate changewould require not only substantial and sustained reductions in CO2 emissions (mitigation),
but also adaptation, to limit negative climate change impacts.
15 Complete details of the results from the other BAR and BVAR models are available upon request from the authors.
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Table 7
RMSE for out-of-sample forecasts for Global Temperature.
h RW AR ARIMA ETS NN ARFIMA BATS BAR1 VAR BVAR5 HMSSA-R HMSSA-V

1 RMSE 10.66 10.68 10.21 10.00 12.25 10.76 10.28 10.70 10.65 10.34 10.25 9.99
MAE 8.62 8.33 8.31 8.31 10.00 8.96 8.60 8.38 7.62 7.91 8.46 8.22

2 RMSE 12.61 13.10 12.14 11.44 13.78 12.98 12.86 13.20 12.61 12.32 10.99 10.98
MAE 10.21 10.57 10.07 9.45 11.04 10.86 10.35 10.65 9.97 9.50 8.95 8.94

3 RMSE 13.22 14.51 13.10 12.01 16.25 14.51 13.92 14.75 13.75 13.43 11.71 11.68
MAE 10.73 11.55 10.64 9.95 12.56 12.06 11.59 11.74 11.15 10.77 9.46 9.60

4 RMSE 12.89 15.64 13.62 12.27 17.20 15.51 13.77 16.03 14.57 13.97 12.22 12.08
MAE 10.49 12.45 11.10 10.03 13.12 12.76 11.72 12.71 11.57 10.99 9.89 9.77

5 RMSE 14.61 17.55 14.88 13.28 17.51 17.14 15.34 18.14 16.12 15.54 12.80 12.68
MAE 11.68 13.60 12.28 10.93 13.52 13.62 12.69 14.06 12.62 12.01 10.39 10.38

6 RMSE 14.82 18.77 15.53 13.64 19.13 18.17 15.73 19.54 17.07 16.37 13.11 13.06
MAE 11.86 14.93 12.68 11.10 13.93 14.56 13.00 15.66 13.62 12.96 10.81 10.73

7 RMSE 14.89 19.69 16.31 14.29 21.76 19.11 15.80 20.59 17.86 17.23 13.62 13.61
MAE 12.52 16.22 13.78 12.33 15.71 15.63 13.48 17.04 14.47 13.78 11.53 11.54

8 RMSE 15.44 21.11 17.06 15.20 21.08 20.52 16.50 22.22 18.82 18.03 14.68 14.56
MAE 12.90 17.33 14.41 12.69 15.67 16.55 14.05 18.34 15.49 14.77 12.06 11.98

9 RMSE 17.05 22.72 18.72 16.29 20.53 22.27 18.40 24.08 19.69 18.83 15.51 15.50
MAE 13.77 18.68 15.28 13.42 15.32 17.98 15.38 19.88 15.95 15.15 12.53 12.52

10 RMSE 16.92 23.89 19.43 16.87 27.29 23.21 18.76 25.45 20.26 19.31 16.22 15.39
MAE 14.21 19.90 16.04 14.31 18.64 18.99 16.13 21.27 16.40 15.57 13.38 12.61

Avg. RMSE 14.31 17.77 15.10 13.53 18.68 17.42 15.14 18.47 16.14 15.54 13.11 12.95
Avg. MAE 11.70 14.36 12.46 11.25 13.95 14.20 12.70 14.97 12.89 12.34 10.75 10.63

Note: Shown in bold font is the model reporting the lowest RMSE. The model reporting the lowest MAE is italicized. The multivariate models use CO2 at
lag 2.

Table 8
RRMSE for out-of-sample forecasts for Global Temperature.
h HMSSA−V

RW
HMSSA−V

AR
HMSSA−V
ARIMA

HMSSA−V
ETS

HMSSA−V
NN

HMSSA−V
ARFIMA

HMSSA−V
BATS

HMSSA−V
BAR1

HMSSA−V
VAR

HMSSA−V
BVAR5

HMSSA−V
HMSSA−R

1 0.94 0.94 0.98 0.99 0.82*,† 0.93 0.97 0.93 0.94 0.97 0.97
2 0.87*,† 0.84*,† 0.90*,† 0.96† 0.80*,† 0.85*,† 0.85*,† 0.83*,† 0.87*,† 0.89*,† 0.99
3 0.88* 0.80*,† 0.89*,† 0.97 0.72*,† 0.80*,† 0.84*,† 0.79*,† 0.85* 0.87* 0.99
4 0.94 0.77*,† 0.89* 0.98 0.70*,† 0.78*,† 0.88*,† 0.75*,† 0.83*,† 0.86* 0.99
5 0.87*,† 0.72*,† 0.85*,† 0.95 0.72*,† 0.74*,† 0.83*,† 0.70*,† 0.79*,† 0.82*,† 0.99
6 0.88*,† 0.70*,† 0.84*,† 0.96 0.68*,† 0.72*,† 0.83*,† 0.67*,† 0.77*,† 0.80*,† 0.99
7 0.91*,† 0.69*,† 0.83*,† 0.95 0.63*,† 0.71*,† 0.86* 0.66*,† 0.76*,† 0.79*,† 0.99
8 0.94 0.69*,† 0.85* 0.96 0.69*,† 0.71*,† 0.88* 0.66*,† 0.77*,† 0.81*,† 0.99
9 0.91* 0.68*,† 0.83* 0.95 0.75*,† 0.70*,† 0.84* 0.64*,† 0.79*,† 0.82* 0.99
10 0.91* 0.64*,† 0.79*,† 0.91* 0.56*,† 0.66*,† 0.82*,† 0.60*,† 0.76*,† 0.80 0.95
Avg. 0.91* 0.75* 0.87* 0.96 0.71* 0.76* 0.86* 0.72* 0.81* 0.84* 0.99

*Indicates a statistically significant difference between the distribution of forecasts based on the two-sided KSPA test in [20] at p = 0.10.
†Indicates the existence of a statistically significant difference between the forecasts based on the modified Diebold–Mariano test in [21].

Kabundi [53,54], and Gupta et al. [55], as it allows us to provide an objective way of choosing the hyperparameters of the
(subjective) prior.

The BVAR model is estimated using Theil’s [56] mixed estimation technique, which involves supplementing the data
with prior information on the distribution of the coefficients. In an artificial way, the number of observations and degrees
of freedom are increased by one, for each restriction imposed on the parameter estimates. The loss of degrees of freedom
due to over parameterization associated with a VAR model is, therefore, not a concern in the BVAR model. Further note
that, one major advantage of the BVAR and BAR models is that we can use non-stationary data for its estimation. Sims et al.
[57] indicate that with the Bayesian approach entirely based on the likelihood function, the associated inferences do not
require special treatment for non-stationarity, since the likelihood function exhibits the same Gaussian shape regardless of
the presence of non-stationarity. Given this, we mimic AR and VAR models by setting w = 2.0, d = 2.0, kij = 0.001, and
w = 2.0, d = 0, kij = 1.0, respectively. In other words, we are able to estimate classical versions of AR and VAR models
without worrying about ensuring stationarity of the variables under consideration.

A.2. All results

See Tables 7–9.
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Table 9
DC predictions from out-of-sample forecasts for Global Temperature.
h AR ARIMA ETS NN ARFIMA BATS BAR1 VAR BVAR5 HMSSA-R HMSSA-V

1 0.42 0.54 0.60 0.57 0.56 0.58 0.42 0.38 0.41 0.60 0.61
2 0.43 0.50 0.65 0.61 0.58 0.53 0.42 0.42 0.40 0.70* 0.70*
3 0.52 0.52 0.61 0.58 0.57 0.45 0.50 0.54 0.54 0.66* 0.69*
4 0.49 0.49 0.62 0.61 0.52 0.46 0.47 0.55 0.55 0.64 0.67*
5 0.49 0.51 0.66* 0.55 0.53 0.50 0.47 0.56 0.55 0.70* 0.67*
6 0.50 0.51 0.61 0.58 0.54 0.51 0.48 0.56 0.53 0.67* 0.67*
7 0.41 0.47 0.56 0.56 0.45 0.43 0.38 0.54 0.50 0.62 0.62
8 0.43 0.42 0.57 0.57 0.47 0.45 0.42 0.53 0.47 0.63 0.63
9 0.46 0.50 0.60 0.64 0.50 0.45 0.43 0.56 0.53 0.65 0.65
10 0.38 0.42 0.55 0.49 0.39 0.41 0.35 0.54 0.51 0.60 0.64
Avg. 0.45 0.49 0.60 0.58 0.51 0.48 0.43 0.52 0.50 0.65 0.66

*Indicates the DC prediction is statistically significant based on a Student’s t test at p = 0.10.
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