
Better defining (or altogether avoiding) the term “pre-industrial” would aid interpretation of 

internationally agreed global temperature limits and estimation of the required constraints to 

avoid reaching those limits.
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T he basis for international negotiations on climate  
 change has been to “prevent dangerous anthro- 
 pogenic interference with the climate system,” 

(p. 9) using the words in Article 2 of the United 
Nations Framework Convention on Climate Change 
(UNFCCC; United Nations 1992). The 2015 Paris 
COP21 Agreement (United Nations 2015) aims to 
maintain global average temperature “well below 
2°C above pre-industrial levels and pursuing efforts 
to limit the temperature increase to 1.5°C above 

pre-industrial levels” (p. 3). However, there is no for-
mal definition of what is meant by “pre-industrial” 
in the UNFCCC or the Paris Agreement. Neither did 
the Fifth Assessment Report (AR5) of the Intergov-
ernmental Panel on Climate Change (IPCC) use the 
term when discussing when global average tempera-
ture might cross various levels because of the lack of 
a robust definition (Kirtman et al. 2013).

Ideally, a preindustrial period should represent 
the mean climate state just before human activities 
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started to demonstrably change the climate through 
combustion of fossil fuels. Here we discuss which 
time period might be most suitable, considering 
various factors such as radiative forcings, availability 
of observations, and uncertainties in our knowledge.

We will focus on global temperatures, specifi-
cally for informing discussions on future tempera-
ture limits, and make an assessment of how much 
global average temperature has already warmed since 
our defined preindustrial period using a range of 
approaches. We will also provide recommendations 
for i) how future international climate reports and 
agreements might use this assessment and ii) how 
the assessment itself may be improved in the future, 
particularly regarding the use of instrumental data, 
proxy evidence, and simulations of past climate.

RELEVANCE OF THE PREINDUSTRIAL 
PE R I O D FO R C RO S S I N G G LO BA L 
TEMPERATURE THRESHOLDS. In the absence 
of a formal definition for preindustrial, the IPCC AR5 
made a pragmatic choice to reference global tempera-
ture to the mean of 1850–1900 when assessing the 
time at which particular temperature levels would 
be crossed (Kirtman et al. 2013). In the final draft, 
1850–1900 was referred to as preindustrial, but at 
the IPCC AR5 plenary approval session, “a contact 
group developed a proposal, in which reference to 
‘pre-industrial’ is deleted, and this was adopted [by 
the governments]” (IISD 2013). However, the term 
preindustrial was used in AR5, often inconsistently, 
in other contexts—for example, when discussing 
atmospheric composition, radiative forcing (the year 
1750 is used as a zero-forcing baseline), sea level rise, 
and paleoclimate information. These discussions 
highlight the importance of defining preindustrial 
consistently and more precisely.

In AR5, the observed increase in global tem-
perature was calculated as the mean of 1986–2005 
minus the mean of 1850–1900 in the HadCRUT4 
dataset (0.61°C; Morice et al. 2012), which was the 
only combined global land and ocean temperature 
dataset available back to 1850 at the time. The 
1986–2005 modern period was chosen1 because the 
design of the CMIP5 simulations required a recent 
reference baseline for the projections of future climate 
[discussed further in Hawkins and Sutton (2016)]. 

Note that the warming between 1850–1900 and the 
most recent decade covered (2003–12) was given by 
AR5 as 0.78° ± 0.03°C (IPCC 2013).

The choice of 1850–1900 as the historical refer-
ence period benefits from relatively widespread, 
but still sparse, temperature observations, and 
quantified uncertainties in the estimates of global 
temperature. Since the AR5, two further datasets 
have been produced that allow a comparison for the 
1850–1900 period. In the Cowtan and Way (2014, 
hereafter CW14) dataset, which is based on interpo-
lating the spatial gaps in HadCRUT4, the difference 
from 1850–1900 to 1986–2005 is 0.65°C and in the 
Berkeley Earth global land and sea data (BEST-GL; 
berkeleyearth.org), it is 0.71°C, suggesting that the 
AR5 value may be slightly too low.2 Also, Cowtan 
et al. (2015) presented GCM-based evidence that 
sparse observation-based datasets may have signifi-
cantly underestimated the changes in global surface 
air temperature due to slower warming regions being 
preferentially sampled in the past. However, infilling 
the gaps in the early period is especially problematic 
owing to the sparse observations and may accentuate 
the dominant observed anomaly.

However, some anthropogenic warming is 
estimated to have already occurred by 1850 (Hegerl 
et al. 2007; Schurer et al. 2013; Abram et al. 2016) as 
greenhouse gas concentrations had started increasing 
around a century earlier (Fig. 1). On the other hand, 
the 1880s and 1890s were cooler than the preceding 
decades because of the radiative impact of aerosols 
from several volcanic eruptions (Fig. 1), which 
may have compensated for the earlier anthropo-
genic influence. It is therefore plausible that a “true” 
preindustrial temperature could be warmer or cooler 
than 1850–1900, depending on the balance of these 
two factors. A key question which we will consider 
is how representative the 1850–1900 period is for 
preindustrial global average temperature.

DEFINING A SUITABLE PREINDUSTRIAL 
PERIOD USING RADIATIVE FORCING 
ESTIMATES. Anthropogenic climate change is 
occurring on top of i) internal climate variability, 
such as ENSO, the Pacific decadal oscillation (PDO), 
Atlantic multidecadal variability (AMV), and 
possibly longer time scales [see Deser et al. (2010) 

1 The World Meteorological Organization uses 1981–2010 for “operational normals,” which is very similar to the 1986–2005 
period in terms of global mean temperature.

2 These three datasets all use the Hadley Centre estimates for the sea surface temperatures since 1850 (HadSST3; Kennedy et al. 
2011) and are based on similar land-based observations, so are not independent.
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for a review] and ii) multidecadal scale variations 
in natural radiative forcings, such as solar activity, 
changes in Earth’s orbit, and the frequency of large 
volcanic eruptions.

A preindustrial climate should therefore be 
defined as a period that is close to the present but 
before the “industrial age,” with small anthropogenic 
forcings. Ideally, levels of natural forcings would also 
be similar to present and widespread direct or indirect 
observations would be available. The better part of a 
century would appear to be required to average over 
the longer-time-scale internal variations.

Unfortunately, such a perfect time period does not 
exist so compromises have to be made. In particular, 
there are very few instrumental temperature records 
before 1850, which limits our ability to determine 
pre-1850 global temperatures. Changes in land use 
and other human activities (e.g., biomass burning, 
deforestation) may have altered the composition of the 

atmosphere several millennia ago (Ruddiman 2003; 
Ruddiman et al. 2016). There are also variations in 
greenhouse gas concentrations (of a few ppm) before 
1700 (Bauska et al. 2015). However, we assume that 
these early influences are not relevant for defining a 
preindustrial period for use by policymakers.

Bradley et al. (2016) identified the period 725–
1025 as a “medieval quiet period,” without major 
tropical eruptions or solar variations, and that might 
represent a reference climate state. However, proxy 
evidence suggests a slow decline of global tempera-
tures, surface ocean temperatures, and reductions in 
sea level over the last two millennia, which has been 
attributed to orbital forcing (Kaufman et al. 2009) 
or to increasing volcanic activity (McGregor et al. 
2015; Stoffel et al. 2015; Kopp et al. 2016). Given this 
multimillennial trend, whatever its cause, it makes 
sense to choose a reference period as close to the 
present as possible.

Mauna Loa

PMIP3

Mauna Loa

PMIP3

Fig. 1. Historical natural forcings and greenhouse gas variations. (top left) Annual sunspot number since 1612, 
with the Maunder Minimum and Dalton Minimum indicated (Lockwood et al. 2014). (top right) Estimated 
global volcanic aerosol optical depth (Crowley and Unterman 2013). (bottom) The Law Dome greenhouse gas 
data (MacFarling Meure et al. 2006; black) for (left) carbon dioxide and (right) methane, along with the annual 
means from Mauna Loa (Keeling et al. 2001; blue) and PMIP3 assumed values (Schmidt et al. 2012; red). Note 
there is a 16 ppb offset applied to the smoothed Law Dome methane concentrations to produce a global mean 
as used by PMIP3 to account for the interhemispheric gradient. The 1720–1800 period is denoted by the gray 
shaded region in all panels.
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An important moment at the start of the industrial 
age was when James Watt patented the steam engine 
condenser in 1769, dramatically improving Thomas 
Newcomen’s 1712 steam engine design. Various 
agricultural revolutions also began around the same 
time. However, there was probably only a small cli-
mate effect of these developments for several decades 
at least. For these reasons, historical anthropogenic 
radiative forcings are often considered relative to 1750 
levels (IPCC 2007; Meinshausen et al. 2011).

It is also important to ensure that the natural 
forcings in any chosen period are not unusual, com-
pared to the present (Fig. 1). The period before 1720, 
often called the Little Ice Age (Mann et al. 2009), was 
influenced by several large tropical volcanic eruptions 
in the 1600s (Briffa et al. 1998; Crowley et al. 2008; 
Gao et al. 2008; Sigl et al. 2013) and the Maunder 
Minimum in solar activity, which finished in the 
early 1700s (Steinhilber et al. 2009; Lockwood et al. 
2014; Usoskin et al. 2015). The period after 1800 is 
influenced by the Dalton Minimum in solar activ-
ity and the large eruptions of an unlocated volcano 
in 1808/09, Tambora (1815; Raible et al. 2016), and 
several others in the 1820s and 1830s. In addition, 
greenhouse gas concentrations had already increased 
slightly by this time (Fig. 1).

In contrast, between 1720 and 1800 the evidence 
suggests that natural radiative forcings are closer 
to modern levels, with only very weak anthropo-
genic forcings. It could be argued that this period has 
slightly anomalously low volcanic activity, including 
one relatively small tropical eruption (Makian, 
Indonesia, in 1761) and one long-lasting northern 
extratropical eruption (Laki, Iceland, in 1783). This 
issue is returned to later.

There is also no evidence for unusual AMV/PDO 
variability during the 1720–1800 period (e.g., Gray 
et al. 2004; MacDonald and Case 2005), suggesting 
that these modes of variability are not expected to 
significantly affect the multidecadal temperature 
average.

We, therefore, suggest that 1720–1800 is the most 
suitable period to be called preindustrial for assessing 
global temperature levels in terms of the radiative 
forcings and we concentrate on this period in the 
analysis that follows. Different choices may be made 
if considering changes in other variables (Knutti et al. 
2015), such as regional temperatures, rainfall, sea 
level, carbon storage, or glacier extents, but assessing 
those is beyond the scope of this study.

Using three different approaches, we now address 
two related questions, based on the reference periods 
used in IPCC AR5: i) what is the global temperature 

change from our preindustrial choice to a recent 
baseline (1986–2005) and ii) is 1850–1900 a reason-
able pragmatic surrogate for the preindustrial period? 
We also consider the precision to which such ques-
tions can be answered.

A PPROAC H 1:  U S I N G R A D I ATI V E 
FORCINGS. Our first approach uses radiative 
forcings to estimate changes in global temperature 
before the available observations. Phase 5 of the 
Coupled Model Intercomparison Project (CMIP5) 
provides estimated historical radiative forcings for 
1765–2005, referenced to 1750, and for a range of 
representative concentration pathways (RCPs) after 
2005 (Meinshausen et al. 2011). We use RCP4.5 for 
the period 2006–15 but this makes little difference.

We adopt a weighted least squares multiple linear 
regression approach, using the radiative forcings 
(provided in W m–2), multiplied by individual scaling 
factors, to best fit the observed global mean surface 
temperature (GMST):

  (1)

We consider four radiative forcings (Ff , with scalings 
αf): greenhouse gases, other anthropogenic effects 
(mainly aerosols, land use, and ozone), solar, and 
volcanic activity. Annual means are used everywhere. 
We also use an ENSO index (E, scaled by γ) as a 
“forcing” to remove the effects of the leading mode 
of interannual variability from the observations. 
This E index is defined as the linearly detrended 
Niño-3.4 anomaly from 1857 to 2015 (Kaplan et al. 
1998) and zero before 1857, with a lag (τ) of 4 months 
to maximize the variance explained (i.e., the annual 
mean is a September to August average). A similar 
approach to fitting global temperatures was taken by 
Lean and Rind (2009) and Suckling et al. (2016). All 
global temperature data are referenced to 1986–2005 
to match the analysis in IPCC AR5 (Kirtman et al. 
2013) and β is a constant offset to account for this 
reference period.

We perform the analysis separately for five global 
temperature datasets to represent the uncertainty 
in temperature reconstructions, although this is an 
underestimate of the true uncertainty because they 
are all based on similar observations. For HadCRUT4, 
BEST-GL, and CW14, the multiple linear regression 
is performed over the period 1850–2015. The NOAA 
GlobalTemp (Karl et al. 2015) and NASA Goddard 
Institute for Space Studies (GISS) Surface Temperature 
Analysis (GISTEMP) (Hansen et al. 2010) datasets 
are fitted over the full extent of their available data 
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(1880–2015). We use the 
HadCRUT4 uncertainties 
in the weighted regression 
(except for BEST-GL and 
NOAA GlobalTemp, which 
have their own uncertainty 
estimates), so that the older 
(and more uncertain) data 
have less weight.

Figure 2 (top) shows 
one est imate of GMST 
(HadCRU T4)  a nd t he 
scaled forcings for the full 
1765–2015 period, using the 
regression parameters de-
rived over 1850–2015. The 
correlation between the 
scaled forcings (including 
ENSO) and observed tem-
peratures is 0.94 for each of 
the global datasets.

There are two ways to es-
timate a change in tempera-
ture using this approach.3 
First, we can average the 
scaled forcings over 1765–
1800 to produce an estimate 
of the preindustrial global 
temperature for each dataset 
with associated uncertainties, accounting for the cova-
riance in derived αf ’s. Note that this is the longest period 
available using the CMIP5 forcings in the 1720–1800 
period. The Paleoclimate Modeling Intercomparison 
Project (PMIP) protocol does not currently provide 
consistent forcing estimates in this way for the 850–1850 
period (Schmidt et al. 2012). For the five temperature 
datasets, the best estimates are found to range from 
0.64° to 0.76°C with uncertainties of around ±0.05°C. 
Alternatively, the value of the regression constant (β) 
is an estimate of the temperature change from a state 
of zero forcing (in this case 1750) to 1986–2005. For the 
five temperature datasets, β ranges from 0.69° to 0.82°C 
(with uncertainties of ±0.02°C), which is around 0.06°C 
larger than using the 1765–1800 average. This difference 
is consistent with the small increase in greenhouse gas 
forcing and the relatively weak volcanic forcing after 
1765. Overall, these results suggest that preindustrial 
was slightly cooler than the 1850–1900 period.

Also, the derived estimates for the warming are all 
larger than the value used in IPCC AR5 (0.61°C), with 

the HadCRUT4-based estimates being the smallest 
and GISTEMP the largest. The differences between 
estimates from the various datasets are larger than 
the stated uncertainties and are dominated by the 
uncertainty in global change since 1850, partly related 
to the way missing data are treated. The CW14 dataset, 
which interpolates between the gaps in HadCRUT4, 
finds slightly larger warming, consistent with Cowtan 
et al. (2015) who show a similar effect when examining 
simulated data to determine the effects of incomplete 
spatial coverage. The NOAA and GISTEMP datasets 
also use slightly different interpolation techniques. 
These various infilling approaches may reduce the bias 
from poor spatial sampling, especially for fast warming 
regions such as the Arctic, but may simply accentuate 
the dominant anomaly and add uncertainty. These 
inconsistencies merit further investigation elsewhere.

This approach does not account for nonlinearities 
in the temperature response to forcings, or uncer-
tainties in the assumed CMIP5 forcing history itself, 
which are likely to be particularly large for aerosols 

3 These estimates are largely insensitive to whether a lag is introduced in the greenhouse gas forcing [as done in Lean and Rind 
(2009)], or if only the 1900–2015 period is used for fitting, or if the anthropogenic forcings are combined before fitting.

Fig. 2. (top) Estimating global preindustrial temperature using scaled radiative 
forcings (pink), using HadCRUT4 (black) as the reference. The gray shading 
represents the uncertainty in the regression. Estimated global temperature 
anomalies for 1765–1800 are given for all five global temperature datasets 
(right-hand side, as labeled). (bottom) Simulated global temperature anoma-
lies in the LMEs and estimates for the change since 1720–1800 for the range 
of ensemble members of CESM (blue), GISS (green), and MPI-ESM (orange). 
In both panels the blue horizontal bars indicate the period used for averaging. 
Temperature anomalies are presented relative to the mean of the reference 
period 1986–2005 (dashed black line).
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(e.g., Carslaw et al. 2013; Stevens 2013) and ozone 
(Marenco et al. 1994). However, this approach does 
allow for varying sensitivities (αf) to the different 
assumed forcings (or “efficacies”) (Hansen et al. 
2005; Shindell 2014). Another approach would be 
to use a simple energy balance model, tuned to 
the observational record (e.g., Osborn et al. 2006; 
Aldrin et al. 2012) and this could be examined in 
future work.

APPROACH 2: USING LAST MILLENNIUM 
SIMULATIONS. An alternative approach to con-
sidering the forcings alone is to use “last millennium” 
ensembles (LMEs), which use global climate models 
(GCMs) to simulate global climate from 850 to 
2005 using the PMIP3 estimates of greenhouse gas 
concentrations, solar variations, and volcanic erup-
tions detailed by Schmidt et al. (2012). Here we con-
sider three ensembles with different GCMs: Goddard 
Institute for Space Studies Model E2, coupled with 
the Russell ocean model (GISS-E2-R; 3 members; 
Schmidt et al. 2014), Community Earth System 
Model, version 1 (CESM1; 10 members; Otto-Bliesner 
et al. 2016), and Max Planck Institute Earth System 
Model (MPI-ESM; 3 members; Jungclaus et al. 2014). 
These are the only models to have made continuous 
simulations available for the whole time period using 
all radiative forcings4 and multiple ensemble members 
(Fig. 2, bottom).

In the GCM simulations, 1720–1800 is 0.00°–
0.06°C cooler than 1850–1900 (using ensemble 
means), which is slightly smaller than the result 
using approach 1. However, the three GCMs produce 
very different estimates for the warming from 1720 
to 1800 until 1986–2005 (0.51° ± 0.08°C for CESM1, 
1.04° ± 0.07°C for GISS E2-R, and 0.91° ± 0.04°C for 
MPI-ESM).5 These differences are not what would 
be expected as a result of climate sensitivity alone 
as CESM1 has the largest transient climate response 
(TCR; 2.2 K) and GISS E2-R the smallest (1.5 K). It is 
more likely that the differences are due to a combi-
nation of several factors, including climate sensitiv-
ity, different amplitude responses to anthropogenic 
aerosols and volcanic eruptions (Stoffel et al. 2015), 
different assumed forcings (e.g., the size of the 1761 
eruption), and different implementations of the forc-
ings. In addition, the global temperature response 

to volcanic eruptions appears to be larger in the 
GCMs than the real world (e.g., Schurer et al. 2013), 
although Stoffel et al. (2015) suggest this effect is 
much reduced with an improved representation of 
the aerosol microphysics.

Given the diversity in global temperature response, 
a robust estimate of change in global temperature 
since preindustrial using these simulations should 
consider scaling the responses to the observations 
or using detection and attribution techniques on the 
range of simulations available (Schurer et al. 2013; 
Otto-Bliesner et al. 2016). In addition, the comparison 
with observations is not necessarily like-with-like 
given sparse observations and different use of air or 
sea temperatures (Cowtan et al. 2015; Richardson 
et al. 2016).

However, an additional use for the LMEs is to 
examine uncertainty in the estimate of preindustrial 
temperatures due to internal variability alone. This 
can be done by considering the spread of estimated 
change using the 10 CESM1 ensemble members 
(σ = 0.05 K), which suggests an uncertainty of 
around ±0.1°C. Note that this range is similar to the 
uncertainty ranges from long instrumental records 
discussed below. The other ensembles are too small to 
reliably estimate this range. We also use the CESM1 
simulations to consider issues of differential seasonal 
warming in the appendix.

APPROACH 3: USING LONG INSTRU-
MENTAL RECORDS. The above two approaches 
have considered the response to estimated radiative 
forcings. An alternative approach to estimate GMST 
further back in time is to use direct observations from 
long instrumental records and calibrate them against 
each of the five global mean temperature datasets.

For example, central England temperature 
(HadCET, herein referred to as CET; Manley 1974; 
Parker et al. 1992) is available for 1659–present. CET 
covers just 0.005% of Earth’s surface but is highly 
correlated with GMST on multidecadal time scales 
(Sutton et al. 2015). Here, we utilize this correlation 
and scale GMST to CET:

 CET = δGMST + ε, (2)

using the overlapping periods (1850–2015), and 
adopt the same parameters to scale CET back to 1659 

4 Note that the GISS-E2-R simulations used a different aerosol forcing over the historical period than the CMIP5 historical 
simulations performed with the same GCM. The PMIP3 simulations warm by about 0.3 K more than the CMIP5 simulations 
(not shown).

5 We also tested approach 1 using the global temperatures from the PMIP simulations. This produced compatible values for 
the warming (0.45° ± 0.09°, 1.09° ± 0.04°, and 0.90° ± 0.06°C, respectively), building confidence in that approach.
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as an estimate of GMST 
(Fig. 3, top). When using 
HadCRU T4 a s  GMST, 
δ = 1.20 ± 0.23, although 
other global temperature 
datasets give lower values 
(e.g., for BEST-GL, δ = 1.06 
± 0.21). The major caveats 
to this approach are that 
we assume the historical 
temperature estimates are 
unbiased and that the re-
lationship between GMST 
a nd CET i s  t he  s a me 
whatever forcing is domi-
nant, neither of which may 
be true (Zanchettin et al. 
2013; Haarsma et al. 2013; 
see appendix).

We take the mean of 
the scaled CET over two 
periods: i) 1765–1800 (for 
consistency with approach 
1) and ii) 1720–1800 (the 
full period identified from 
the radiative forcing his-
tory). An additional issue 
that arises from scaling a local record to global tem-
peratures is the possible regional effect of external 
forcing. In particular, the eruption of Laki (located 
in Iceland) in 1783 likely only had a small global 
effect, but it certainly inf luenced western Europe 
(Thordarson and Self 2003). Therefore the years 1783 
and 1784 are removed from the averages owing to 
the eruption of Laki to avoid biasing the estimated 
temperature change. However, this does not change 
the results significantly.

These two periods produce consistent estimates 
for the warming to 1986–2005: 0.75° ± 0.10°C (for 
1765–1800) and 0.64° ± 0.08°C (for 1720–1800) when 
using HadCRUT4 for GMST. The other global tem-
perature datasets give larger values for the warming 
to 1986–2005, by up to 0.09°C (Fig. 3, top). The quoted 
uncertainty ranges account for the uncertainties in 
the regression parameters and assume the uncer-
tainty in each CET annual mean from 1720 to 1800 
is independent and equal to 0.2°C [based on Parker 
(2010)].

The difference between the two averaging periods 
is mainly because the 1720s and 1730s were unusually 
warm in the CET record. Internal climate variabil-
ity and a recovery from the negative forcings of the 
previous decades are possible explanations, although 

this warmth was less pronounced in some other 
European instrumental records (e.g., Berlin) (Jones 
and Briffa 2006).

Figure 3 (bottom) repeats this analysis with the 
Berkeley global land temperature (BEST-Land; Rohde 
et al. 2013), which starts in 1753. A similar approach 
was adopted by Mann (2014). Using BEST-Land pro-
duces a consistent but slightly lower warming than 
derived with CET. Using the scaled temperatures over 
the 1753–1800 period, the estimates of the warming to 
1986–2005 range from 0.62° ± 0.10°C for HadCRUT4 
to 0.71° ± 0.12°C for GISTEMP.

It may seem surprising that the error bars are not 
smaller for the BEST-Land dataset than for CET. The 
regression uncertainty is indeed much larger for the 
local example; however, the error in representing the 
whole global land area with sparse data are larger than 
in representing central England with a small number 
of stations. These two sources of uncertainty combine 
to give similar overall ranges. Note that BEST-Land 
looks very similar to the long European records and 
the variability increases further back in time (also 
for CET), highlighting that fewer and fewer (mostly 
European) stations are used in the reconstruction.

We also consider a long temperature series from the 
Netherlands, referenced to De Bilt, which starts in 1706 

Fig. 3. Estimating global preindustrial temperature using scaled annual-mean 
observations for (top) CET scaled to HadCRUT4 and (bottom) BEST-Land 
scaled to BEST-GL, relative to 1986–2005 (dashed black). The dark gray shad-
ing (hardly visible) represents the uncertainty in the regressions and the light 
gray shading the uncertainty in the observations. The sets of five error bars 
on the right-hand side use the different global temperature datasets, with 
the same ordering as in the top panel of Fig. 2, for the two different averaging 
periods as labeled. Note the vertical scale is different from Fig. 2.
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(Van Engelen and Nellestijn 1990) and a central Europe 
instrumental series from Dobrovolný et al. (2010) that 
starts in 1760, which are also both well correlated with 
GMST in the overlapping period. These results are 
summarized in Fig. 4, which shows that the central 
Europe series consistently produces slightly lower 
estimates of the warming than CET or BEST-Land.

OVERALL ASSESSMENT. We consider that 
approaches based on the radiative forcings and scaled 
instrumental observations currently produce more 
reliable estimates of the global temperature change 
since preindustrial than the last millennium GCM 
simulations. This weighting of methods could change 
in the future with additional evidence, analysis, 
and model development (see implications discussed 
below). Furthermore, the estimates using radiative 

forcings are generally larger than when using the 
observational datasets, as summarized in Fig. 4. Much 
of the uncertainty in the assessment derives from 
the range of global temperature change estimates 
available since 1850. For example, the uninterpolated 
HadCRUT4 dataset produces lower values than the 
other infilled records.

Our overall assessment is that the change in global 
average temperature from preindustrial to 1986–2005 
is “likely” between 0.55° and 0.80°C.

This range ref lects the authors’ aggregated 
assessment of the three approaches and contains 
virtually all of the best estimates using the various 
combinations of regional and global temperature 
datasets and scaled radiative forcing estimates. Note 
that there are potentially important uncertainties in 
each approach that we cannot quantify. As in IPCC 
AR5 we consider that likely refers to greater than 66% 
probability, although this is not a formal uncertainty 
quantification.

It is also helpful to assess a lower bound and we 
suggest that the warming from preindustrial until 
the 1986–2005 period is likely greater than 0.60°C, 
implying that the value used by IPCC AR5 for the 
warming since 1850–1900 (0.61°C) was probably 
smaller than the true change since preindustrial. 
Such differences matter more when considering the 
chance of crossing lower temperature levels such as 
1.5°C than when considering higher values.

Using this lower bound, 2015 was the first year to 
be more than 1°C above preindustrial levels in each 
global temperature dataset (Fig. 5). The year 2016 
was warmer than 2015, but future years could still be 
cooler than 2015 owing to internal variability, such 
as a La Niña event.

The available proxy-based evidence is consistent 
with our assessment, but currently too uncertain 
to make more precise estimates, partly because of 
different seasonal signals (see appendix). However, 
defining a preindustrial period offers a target for 
proxy reconstructions to aid future assessments.

CONCLUSIONS AND IMPLICATIONS. 
We have examined estimates of historical radiative 
forcings to determine which period might be most 
suitable to be termed preindustrial and used several 
approaches to estimate a change in global tempera-
ture since this preindustrial reference period. The 
main conclusions are as follows:

1) The 1720–1800 period is most suitable to be de-
fined as preindustrial in physical terms, although 
we have incomplete information about the 

Fig. 4. Summarizing the evidence for annual-mean 
global temperature change from preindustrial until 
1986–2005 using each dataset. The horizontal bars 
represent the 5%–95% uncertainty ranges for the dif-
ferent sources of evidence. Results for the radiative 
forcing approach are shown averaged over 1765–1800 
and for 1750. The top row in the instrumental ob-
servations section shows the observed change since 
1850–1900 (where available). For the instrumental data 
the longest time series during the preindustrial period 
are used: CET and De Bilt (1720–1800), BEST-Land 
(1753–1800), and central Europe (1760–1800). The 
light gray shading shows the assessed likely range and 
the dark gray line indicates the IPCC AR5 assessment 
(0.61°C; Kirtman et al. 2013).
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radiative forcings and very few 
direct observations during this 
time. However, this definition 
offers a target period for future 
analysis and data collection to 
inform this issue.

2) The 1850–1900 period is a rea-
sonable pragmatic surrogate 
for preindustrial global mean 
temperature. The available evi-
dence suggests it was slightly 
warmer than 1720–1800 by 
around 0.05°C, but this is not 
statistically significant.

3) We assess a l ikely range of 
0.55°–0.80°C for the change in 
global average temperature from 
preindustrial to 1986–2005.

4) We also consider a likely lower 
bound on warming from prein-
dustrial to 1986–2005 of 0.60°C, 
implying that the AR5 estimate 
of warming was probably too 
small and that 2015 was the first 
year to be more than 1°C above preindustrial 
levels.

We have assumed in the motivation for this 
discussion and choice of reference periods that the 
UNFCCC agreements on temperature limits refer 
to anthropogenic increases only, but this is not 
explicitly stated. We have not attempted to attribute 
the observed increase in global temperatures (but 
see Schurer et al. 2013; Otto et al. 2015); nonanthro-
pogenic factors (including internal variability) may 
have either offset or contributed to the warming. We 
have attempted to minimize issues of varying natural 
forcing and internal variability, but this effect cannot 
be removed entirely.

Our chosen preindustrial period likely has slightly 
weaker volcanic activity than a typical period and 
the modern reference period (1986–2005) includes 
the large Pinatubo eruption. These effects would bias 
our estimated change in temperature to be slightly 
too low, highlighting the value of assessing a lower 
bound in the warming since preindustrial. We also 
note that future climate projections do not usually 
include volcanic eruptions, so choosing a relatively 
weak volcanic baseline is perhaps appropriate. The 
recent period has a slightly positive PDO index that 
would act as a small positive bias for some of our 
estimates, but this modern reference period will likely 
be updated for the next IPCC assessment.

There are a number of ways that this assessment 
could be improved. Better understanding of historical 
radiative forcings, particularly of volcanic eruptions, 
solar activity, and anthropogenic aerosols, would help 
narrow the uncertainties in past global and regional 
temperature change. We did not include the estimates 
for preindustrial temperature from the last millen-
nium simulations in this assessment because of the 
diverse derived values, which are due to differences 
in both the forcings used and climate sensitivity 
(Fernández-Donado et al. 2013). Future work might 
consider scaling the simulations (Schurer et al. 2013) 
or use of simple energy balance models (EBMs).

However, we may not necessarily expect simulated 
and observed values to agree, even in the case of 
perfect knowledge of radiative forcings and climate 
sensitivity. This is because the global observations are 
a sparse blend of sea surface temperatures over the 
ocean and air temperatures over the land, whereas 
virtually all analyses of GCM simulations use air 
temperatures with complete global coverage. Cowtan 
et al. (2015) and Richardson et al. (2016) used GCM 
simulations to suggest that if we had complete cov-
erage of air temperature, the observed change from 
1850 to present would be 24% ± 15% larger than cur-
rently estimated in HadCRUT4. The use of infilled 
temperature datasets only partly overcomes this issue.

This creates a dilemma—are the temperature 
limits adopted by the UNFCCC designed to use 

Fig. 5. Global mean temperature relative to preindustrial in six 
datasets, using the likely lower bound (0.60°C) for warming from 
preindustrial to 1986–2005. The change in the ERA-Interim re-
analysis (Dee et al. 2011) relative to 1986–2005 is included with the 
five global temperature datasets discussed. The 1996–2015 period is 
0.16°–0.19°C warmer than 1986–2005.
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observationally based estimates of global tempera-
ture change (as generally used here) or on what those 
observations mean for a “true” global mean air 
temperature change (as used in most climate impact 
assessments)? The available evidence suggests that 
the latter is larger. If such findings are borne out by 
further research, and if the true change is what is 
desired by UNFCCC, then our assessed temperature 
change since preindustrial is too small and should 
probably be increased by 0.05°–0.10°C.

It is possible to obtain additional data for the 
historical period. Recovery of additional instru-
mental observations of temperature and sea level 
pressure from undigitized handwritten logbooks 
from ships and in currently data-sparse regions 
could significantly aid similar future assessments. 
Some such efforts are ongoing (e.g., the Atmospheric 
Circulation Reconstructions over the Earth (ACRE) 
and OldWeather.org initiatives; Allan et al. 2011) but 
these could be expanded. The available observations 
can also be combined with data assimilation tech-
niques to allow longer atmospheric reanalyses to be 
produced (Widmann et al. 2010; Compo et al. 2011; 
Matsikaris et al. 2016; Brohan et al. 2016). Additional 
seasonal proxy information would be of great value 
for informing this discussion, especially for winter 
(see appendix) and for the tropics and Southern 
Hemisphere (e.g., Jones et al. 2016), although the 
temporal resolution and continuity of proxies into the 
modern period is also a potential issue. Also note that 
a suitable preindustrial period may be different for 
other climate variables (e.g., sea level) or for carbon 
cycle considerations.

Two specific recommendations for future GCM-
based analyses and simulations are i) to use blended 
observation-like estimates of global mean tempera-
ture when comparing observations and simulations 
and ii) use 1750 forcings to perform preindustrial 
control simulations and to start historical transient 
simulations, rather than 1850. Adopting these recom-
mendations would allow an ensemble of transient 
historical simulations to better quantify the role of 
natural variability and the impacts of the total radia-
tive forcing changes since the preindustrial period, 
especially the potentially long-term impact of the 
large volcanic eruptions in the early 1800s (Raible 
et al. 2016). We recognize, however, that this increases 
the computational demand in producing historical 
simulations. In addition, increased usage of tracers 
(e.g., water stable isotopes) and proxy models within 
GCMs would allow more direct comparisons between 
simulations and proxy observations, including GCM 
simulations nudged to atmospheric reanalyses (e.g., 

Jouzel et al. 2000; LeGrande and Schmidt 2009; Evans 
et al. 2013).

Finally, these findings have a number of implica-
tions for policy-relevant issues. For example, the date 
at which future temperature thresholds are expected 
to be crossed may be shifted slightly earlier than 
estimated in IPCC AR5 (see Joshi et al. 2011; Kirtman 
et al. 2013; Hawkins and Sutton 2016). In addition, 
the cumulative emissions allowed to avoid reaching a 
particular temperature threshold (Meinshausen et al. 
2009; Allen et al. 2009) may need to be reassessed, 
although any difference would likely be well within 
the current uncertainty ranges. Moving the baseline 
may also affect how historical responsibility for emis-
sions needs to be accounted for (Knutti et al. 2015).

More specifically, given the uncertainty in the 
global mean temperature change since preindustrial, 
the UNFCCC might consider alternative equivalent 
baselines and limits to global temperature change. 
For example, “well below 2°C above pre-industrial” 
(p. 3) might be translated to “well below X°C above 
1986–2005.” Using a recent baseline is possibly 
more relevant for defining some impacts of climatic 
changes, with the value of X (and choice of baseline 
period) being decided by the UNFCCC. Given the 
uncertainty in defining the temperature change since 
preindustrial, such a framing would allow a more pre-
cise assessment of when such levels might be reached 
in the future, given our much improved recent ob-
servational coverage and availability of atmospheric 
reanalyses for the modern period (e.g., Dee et al. 2011; 
Simmons et al. 2016). It would also remove the need 
to precisely assess inherently uncertain changes since 
the preindustrial period.
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Fig. A1. Seasonal differences in warming rates. (a) Derived scaled warming 
from 1753–1800 to 1986–2005 (using approach 3) for annual means (black) 
and for the extended seasons (Apr to Sep—AMJJAS, red; and Oct to Mar—
ONDJFM, blue) for the different regional time series, all using annual-mean 
HadCRUT4 as the reference dataset. (b) Seasonal warming derived from the 
CESM1 LME simulations for the global mean (crosses, with black lines linking 
the same ensemble members in each season) and for the ensemble mean of 
simulated CET (circles).

CE01-0015 (AC-AHC2). PO was supported by the NERC 
project DYNAMOC (NE/M005127/1).

APPENDIX: COMPARISON WITH PROXY 
RECONSTRUCTIONS. There are numerous 
efforts to reconstruct past climate using different 
proxies and archives that could be used to aid an 
assessment of change since the preindustrial period. 
For temperature, these include ice cores, glaciers, tree 
rings, pollen, corals, and sediment cores.

For example, Leclercq and Oerlemans (2012) 
suggest a global land warming of 0.94° ± 0.31°C 
between 1830 and 2000 using glacier reconstructions, 
although the mid-1700s is around 0.25°C warmer 
than 1830 in their estimates. Pollack and Smerdon 
(2004) suggest that global land temperatures in the 
mid-1700s were around 0.65°–0.90°C below the year 
2000 using borehole proxies. Mann et al. (2008) 
perform a multiproxy analysis and report that global 
average temperature was around 0.3°C below 1961–90 
in the mid-1700s, with large uncertainties. This is 
equivalent to around 0.6°C below 1986–2005, consis-
tent with the recent PAGES2k global reconstruction 
(PAGES 2k Consortium 2013) and this study.

Overall, these proxy reconstruction estimates for 
preindustrial temperature are consistent with the 
approaches adopted above, but the uncertainties are 
currently too large to make more precise statements. 
Defining a preindustrial period (1720–1800) will 
hopefully provide a target for future reconstructions 
using the proxy data available. Certain long proxy 
series could also be used in approach 3. However, it is 
important that such efforts 
focus on all seasons, as we 
discuss next.

S e a s o n a l  e f f e c t s  i n 
proxies, observations, and 
simulations. There are likely 
some seasonal differences 
in the rates of tempera-
ture change that are im-
portant to consider (e.g., 
Hegerl et al. 2011; Jones 
et al. 2014). For example, 
different proxies are sen-
sitive to climate in cer-
tain seasons. In general, 
summer is more widely 
represented because many 
proxies rely on biologi-
cal activity, which tends 
to occur in the extended 

summer season. This is a potential issue for using 
proxies to reconstruct past temperatures if winter 
and summer change at different rates (Jones et al. 
2003). In that case, the different seasonal proxies 
may not agree and/or produce biased estimates of 
an annual average. Some reconstructions (e.g., Van 
Engelen et al. 2001; Luterbacher et al. 2004; Vinther 
et al. 2010) for Holland, Europe, and Greenland, 
respectively, do show seasonal warming differences. 
However, the restricted availability of winter proxies 
limits the scope of such a comparison.

To investigate how representative of annual-mean 
changes the seasonal data are, we repeated the instru-
mental analysis (approach 3) using extended seasons 
(April to September and October to March) for the 
regional data, while retaining the annual global data 
as the reference. Figure A1a shows how the derived 
warming since the 1753–1800 period depends on the 
choice of season for the instrumental series—the 
extended winter season warms much faster than the 
extended summer season.

However, if this seasonal difference in the rate of 
change over Europe was constant with time it should 
be scaled out. This suggests that there is i) a seasonal 
bias in the observed temperatures in certain periods 
(e.g., before standardized measurements) and/or ii) 
a different seasonal response to different radiative 
forcings.

For example, there is evidence that some his-
torical observations may be biased, especially in 
summer, where warm biases due to nonoptimal ob-
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servation techniques in the past have been identified 
(Parker 1994; Böhm et al. 2010; Jones 2016), which 
fits the pattern seen in Fig. A1a. Dobrovolný et al. 
(2010) note that their documentary temperature 
data agree best with their instrumental data during 
winter, adding credence to this hypothesis. In ad-
dition, the cooling due to tropospheric aerosols in 
the twentieth century may be seasonally dependent 
(Hunter et al. 1993; Krishnan and Ramanathan 
2002), there is a trend in westerly wind characteris-
tics in winter (Haarsma et al. 2013), and many of the 
observations are located in the northern extratropics 
and therefore inf luenced by Arctic amplification, 
which is observed and simulated to be larger in 
winter than in summer (Serreze et al. 2009; Pithan 
and Mauritsen 2014).

We can also examine whether this seasonal 
warming difference is present in the last millennium 
model simulations. Figure A1b highlights that the 
CESM1 LME simulations do not show a strong global 
mean warming seasonal difference since the prein-
dustrial period and only a very small seasonal effect 
when considering the central England location. The 
complex nature of these different seasonal features 
merits further analysis in a range of observations 
and simulations.
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