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The energy industry has been going through a significant modernization process over the
last decade. Its infrastructure is being upgraded rapidly. The supply, demand and prices
are becoming more volatile and less predictable than ever before. Even its business model
is being challenged fundamentally. In this competitive and dynamic environment, many
decision-making processes rely on probabilistic forecasts to quantify the uncertain future.
Although most of the papers in the energy forecasting literature focus on point or single-
valued forecasts, the research interest in probabilistic energy forecasting research has taken
off rapidly in recent years. In this paper, we summarize the recent research progress on
probabilistic energy forecasting. A major portion of the paper is devoted to introducing
the Global Energy Forecasting Competition 2014 (GEFCom2014), a probabilistic energy
forecasting competition with four tracks on load, price, wind and solar forecasting, which
attracted 581 participants from 61 countries. We conclude the paper with 12 predictions
for the next decade of energy forecasting.

© 2016 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

In today’s competitive and dynamic environment,
the energy supply, demand and prices are becoming
increasingly volatile and unpredictable. More and more
decision-making processes in the energy industry require
a comprehensive outlook of the uncertain future. Many
decision makers are relying on probabilistic forecasts to
quantify these uncertainties, rather than point forecasts.

Here, we use the term “energy forecasting” to refer to
“forecasting in the energy industry”, which includes but
is not limited to the forecasting of the supply, demand
and price of electricity, gas, water, and renewable energy
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resources. Probabilistic forecasts can take various forms,
e.g., from quantile to full density forecasts, and probabilis-
tic forecasts for multi-categorical variables or functional
data. The business needs for probabilistic energy forecasts
spread across the planning and operations of the entire en-
ergy value chain.

Thousands of papers on energy forecasting have
been published over the past half-century. Hong (2014)
provided an overview of energy forecasting, tracing
the forecasting practices back to the inception of the
electric power industry. A few recent literature review
articles have offered more comprehensive views for
various subdomains of energy forecasting, such as wind
power forecasting (Pinson, 2013; Zhang, Wang, & Wang,
2014), electric load forecasting (Hong & Fan, 2016), and
electricity price forecasting (Weron, 2014). While there
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are differences among the subdomains, there are some
common challenges:

(1) Data cleansing. The real-world data for energy fore-
casting are not always clean. Data cleansing was rec-
ognized as one of the challenges of the Global Energy
Forecasting Competition 2012 (GEFCom2012), which
focused on point forecasting (Hong, Pinson, & Fan,
2014). Data cleansing remains a challenge for proba-
bilistic energy forecasting.

(2) Probabilistic forecasting methodologies. Different sub-
domains in energy forecasting have different levels
of maturity in their probabilistic forecasting. Which
probabilistic forecasting methods, such as the ones re-
viewed by Gneiting and Katzfuss (2014), are applica-
ble to energy forecasting? What specific methodolo-
gies are most suitable for a given subdomain? What is
the best way to generate input scenarios? Which tech-
niques are most effective at generating probabilistic
forecasts? How to simulate residuals?

(3) Forecast combination. Combining a set of point fore-
casts usually results in more accurate and robust point
forecasts. Can we adopt a similar concept for proba-
bilistic energy forecasting? Should we combine point
forecasts to give one new point forecast first, then gen-
erate a probabilistic forecast, or should we combine
point forecasts to give a probabilistic forecast directly?
How should probabilistic forecasts be combined to
generate a better probabilistic forecast?

(4) Integration. A probabilistic forecasting process can be
dissected into several components, such as scenario
generation, modeling, and post-processing. An optimal
outcome from one component may not be the
optimal one for the entire process. The challenge is
to integrate the various steps in order to obtain a
high quality probabilistic forecast. A similar challenge
of integration was also recognized in GEFCom2012
(Hong, Pinson, & Fan, 2014).

In order to maintain the momentum initiated by GEF-
Com2012, stimulate research activity, and tackle chal-
lenges in probabilistic energy forecasting, we decided to
start two initiatives simultaneously: (1) organizing a spe-
cial section for the International Journal of Forecasting on
probabilistic energy forecasting; and (2) organizing GEF-
Com2014 with the plan to include the winning method-
ologies in the same special section.

A call for papers on probabilistic energy forecasting was
released on October, 2013. We received 34 submissions,
of which seven were accepted for publication in this
special section. In addition, we also collected 13 papers
from the top entries of GEFCom2014 and one paper
from the winning entry of an in-class probabilistic load
forecasting competition following a setup similar to that
of the probabilistic load forecasting track of GEFCom2014.
In total, this special section has collected 21 papers in
addition to this hybrid editorial and review paper.

This paper serves four purposes: (1) to discuss the
seven non-GEFCom2014 papers collected for this special
issue; (2) to introduce the GEFCom2014 and the winning
methodologies; (3) to provide an outlook for the field of
probabilistic energy forecasting; and (4) to publish the

data related to GEFCom2014 and the in-class competition.
Section 2 summarizes the non-GEFCom2014 papers.
Section 3 discusses the organization of GEFCom2014.
Sections 4-7 introduce the four tracks of GEFCom2014,
including the problem, the data, and the methods followed
by the winning teams. The paper concludes in Section 8
with an outlook for the next decade of probabilistic energy
forecasting.

2. Non-GEFCom2014 papers

The seven non-GEFCom2014 papers include three on
demand forecasting, two on price forecasting and two
on renewable generation forecasting. The subjects being
forecasted include electricity and gas demand, electricity
prices, wind speed and wave energy. Table 1 lists the
authors and titles of the papers.

2.1. Electricity and gas demand forecasting

The majority of the load forecasting literature has
focused on point forecasting. Probabilistic load forecasting
(PLF) has become attractive to the load forecasting
community only over the last decade. In this issue, Hong
and Fan offer a tutorial review on PLF. Because most of
the studies in the PLF literature have been developed from
point load forecasting techniques and methodologies, this
tutorial review begins by covering a selection of papers
on point load forecasting. The authors then review the
research progress on PLF made by two groups, the business
consumers of load forecasts and the load forecasters. After
reviewing the point and probabilistic load forecasting
literature, the authors dissect the PLF problem into three
elements, namely the input, model and output. They then
introduce ways of producing probabilistic load forecasts
from each element and evaluating the probabilistic load
forecasts. Finally, the authors conclude the review with an
in-depth discussion of future research needs. In addition to
their review of the probabilistic load forecasting literature
and tutorial about the production and evaluation of
probabilistic load forecasts, the authors also offer their
opinions about the myth of best techniques, the novelty
and significance of load forecasting research, and the
importance of integration in load forecasting.

Antoniadis et al. propose a flexible nonparametric
function-valued forecasting model. The predictor can be
viewed as a weighted average of the futures of past
situations, where the weights increase with the similarity
between the past situations and the actual one. This
strategy can provide simultaneous point predictions at
multiple horizons. In addition, these weights also induce
a probability distribution that can be used to produce
bootstrap pseudo-predictions. Prediction intervals can
then be constructed after obtaining the corresponding
bootstrap pseudo-prediction residuals. In their paper,
Antoniadis et al. propose to obtain prediction intervals
that are valid simultaneously for the multiple prediction
horizons that correspond to the relevant path forecasts.
The methodology is demonstrated using a dataset from the
French grid.

Anomaly detection is an important step in data analysis,
and has been regarded as one of the challenges of both
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Table 1

Authors and titles of the seven non-GEFCom2014 papers collected in this special section.

Authors Paper title

T.Hong and S. Fan

A. Antoniadis, X. Brossat, ]. Cugliari, ]. Poggi
H. Akouemo, R. Povinelli

K. Maciejowska, ]. Nowotarski, R. Weron

A. Bello, J. Reneses, A. Mufioz, A. Delgadillo

Probabilistic electric load forecasting: a tutorial review

A prediction interval for a function-valued forecast model: application to load forecasting
Probabilistic anomaly detection in natural gas time series data

Probabilistic forecasting of electricity spot prices using factor quantile regression averaging
Probabilistic forecasting of hourly electricity prices in the medium-term using spatial

interpolation techniques

E. Iversen, J. Morales, J. Mgller, H. Madsen
J.Jeon, J. Taylor

Short-term probabilistic forecasting of wind speed using stochastic differential equations
Short-term density forecasting of wave energy using ARMA-GARCH models and kernel
density estimation

GEFCom2012 (Hong, Pinson et al., 2014) and GEFCom2014.
There are many types of anomalies in the gas load
forecasting field, and not all of them can be detected
using common practices such as summary statistics.
Akouemo and Povinelli examine and categorize a wide
range of factors that can induce anomalies. They then
propose an anomaly detection method based on linear
regression models and a Bayesian maximum likelihood
classifier for natural gas time series. The gas load data first
flows through a regression model that helps to identify
anomaly candidates. The candidates are then tested for
false positives and classified using a Bayesian classifier.
The case study is performed on a daily gas consumption
series. Note that a winning team in GEFCom2014, Jingrui
Xie, followed a similar regression-based strategy for data
cleansing.

2.2. Electricity price forecasting

Although the forecasting community is well aware
that taking the simple average of different forecasts
often results in forecasts that are more accurate and
robust, forecast combination is not seen often in the
electricity price forecasting literature. Maciejowska et al.
take forecast combination to another level by averaging
day-ahead point forecasts in order to derive probabilistic
price forecasts. The core methodology involves using
quantile regression to average large numbers of point
forecasts, using principal component analysis (PCA) to
extract the major factors driving the individual forecasts
and hence automate the process of selecting forecasts
to be included in the combination. The case study is
performed on data from the British power market. Based
on a comprehensive evaluation using the unconditional
coverage, the conditional coverage and the Winkler score,
the proposed method outperforms both the benchmark
autoregressive exogenous (ARX) model and the quantile
regression averaging (QRA) without PCA.

Most electricity price forecasting studies in the lit-
erature have focused on short horizons. Very little re-
search has been conducted into medium-term price
forecasting. Research on medium-term probabilistic price
forecasting is even more rare. Bello et al. propose a
methodology that combines a market equilibrium model
with a Monte Carlo simulation, integrated with spatial in-
terpolation techniques and a new definition of load levels,
for medium-term hourly probabilistic price forecasting.
The authors demonstrate the effectiveness of the proposed
methodology using public data from the Spanish market.
As is mentioned in the paper, the proposed methodology
is currently used by a major Spanish electricity company.

2.3. Renewable generation forecasting

Most of the papers on probabilistic wind power
forecasting literature over the last five years or so
have focused on different variants of statistical and
machine learning approaches, generalized to generate
probabilistic forecasts. Very little attention has been
paid to the potential of employing stochastic differential
equations for that purpose, even though there may be
obvious advantages of placing ourselves in a continuous
formulation framework. This is because, for the same
process, the forecasting models based on stochastic
differential equations are necessarily simpler and more
compact than the counterpart. Similarly, the same model
can be used for generating forecasts at various resolutions,
through numerical integration methods. Finally, the same
modeling approach may be used for issuing forecasts in
various forms, from traditional single-valued predictions
to trajectories that describe both the characteristics of
marginals at each lead time and the temporal dependence
structure in the power generation dynamics. In the present
case, Iversen et al. propose the use of stochastic differential
equations for describing the conversion of the information
given by weather forecasts into the power production
observed at a wind farm. An interesting method proposed
by the authors consists of considering the dynamics
(e.g., the gradient) in the input information, hence
capturing the wind power dynamics better. Disregarding
such dynamics would yield forecasts that would describe
the variability in wind power generation fluctuations only
poorly.

The paper by Jeon and Taylor concentrates on an
original wave energy forecasting problem. This type of
problem has seldom been dealt with in the scientific
literature, probably because wave energy has not been
developed as fast or as strongly as wind or solar power. In
a way, wave energy forecasting could be seen as relatively
easier, since one expects more regularity in waves (and
therefore smoothness and predictability in the wave and
wave energy time series). However, waves are the result of
both large scale (e.g., swell) and local (e.g., surface winds)
effects, which may actually result in complex features
in wave time series. In addition, the conversion of wave
characteristics into wave energy is sophisticated, since it
involves wave heights and periods, and water densities.
Disregarding this last variable, which should be easier to
handle, in order to deduce the wave energy flux one should
still be predicting the wave period and height jointly. This
motivates the proposal and evaluation of the bivariate
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Fig. 1. Geographic distribution of GEFCom2014 contestants (581 people from 61 countries).

modelling and forecasting approaches considered in that
paper. The authors also apply it in another context, joint
wind and wave forecasting, which may be of great interest
in the future if one were to consider having offshore
energy hubs where energy would be collected from both
wind and waves. From a methodological point of view,
the authors build on some of their previous work, using
ARMA-GARCH models for the dynamics of the underlying
physical processes, combined with conditional kernel
density estimation for obtaining probabilistic forecasts.

3. Global Energy Forecasting Competition 2014

3.1. Planning, important dates and participation

The IEEE Power and Energy Society approved financial
support for GEFCom2014 at the end of October 2013. At
the same time, we (the six authors of this paper: Tao Hong,
Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troc-
coli, and Rob J. Hyndman) formed the executive committee
of GEFCom2014, with Tao Hong as the General Chair. The
formal planning of GEFCom2014 started immediately.

Looking back at GEFCom2012, we acknowledged that
one of the success factors was the interactive competition
platform, where contestants could communicate with each
other and with the competition organizers. We decided
to maintain this key feature when building GEFCom2014.
Meanwhile, we upgraded the competition with three new
features:

(1) The probabilistic forecasting theme, to better capture
the uncertainties in the modern grid;

(2) Four tracks, on forecasting the electric load (GEF-
Com2014-L), electricity price (GEFCom2014-P), and
wind (GEFCom2014-W) and solar (GEFCom2014-S)
power, respectively; and

(3) Rolling forecasting, with incremental data released on
a weekly basis for 15 weeks, to mimic real world
forecasting processes.

However, the platform used in GEFCom2012 did not of-
fer the feature of rolling forecasting off-the-shelf, nor did
it offer proper scoring rules for evaluating probabilistic

forecasts. Thus, to accommodate the new features in GEF-
Com2014, we worked with CrowdANALYTIX to develop a
state-of-the-art forecasting competition platform.

One lesson learned from GEFCom2012 was that many
active users of Kaggle have expertise in data mining, but
not extensive experience with forecasting or energy. In or-
der to attract contestants with more relevant background,
we decided to take advantage of the social networks of
the competition organizers and contestants. Instead of
using the community provided by CrowdANALYTIX, we
chose LinkedIn as the communication platform. Prior to the
launch date of August 15th, 2015, we received registrations
from over 200 people across over 40 countries. The com-
petition was active on CrowdANALYTIX for four months
(8/15/2014-12/15/2014). By the end of the competition,
the four tracks (load, price, wind and solar) had attracted
362,287,254 and 250 contestants, respectively. Some con-
testants joined multiple tracks. In total, 581 contestants
from 61 countries joined GEFCom2014. Fig. 1 shows the
distribution of contestants across the globe.

To help the contestants grasp the representative meth-
ods for probabilistic energy forecasting quickly, we rec-
ommended 11 research papers. Since probabilistic en-
ergy forecasting can be seen as the intersection between
probabilistic forecasting and energy forecasting, we rec-
ommended two reviews, one on probabilistic forecast-
ing (Gneiting & Katzfuss, 2014) and the other on energy
forecasting (Hong, 2014). We also recommended the pa-
per that introduced the GEFCom2012 (Hong, Pinson et al.,
2014), and one to three papers for each of the tracks, in-
cluding three for load forecasting (Hong & Fan, 2016; Hong,
Wilson, & Xie, 2014; Hyndman & Fan, 2010); one for price
forecasting (Weron, 2014); two for wind forecasting (Pin-
son, 2013; Zhang et al., 2014); and two for solar forecast-
ing (Bacher, Madsen, & Nielsen, 2009; Lorenz, Scheidste-
ger, Hurka, Heinemann, & Kurz, 2011).

One of the objectives of GEFCom2014 was to promote
education in energy analytics. To encourage students and
faculty participation, we decided to offer institute prizes to
up to three best-performing academic institutes.

Table 2 lists the important dates of GEFCom2014. The
entire competition lasted for 16 weeks. The first month
(four weeks, from August 15th to September 13th, 2014)



900 T. Hong et al. / International Journal of Forecasting 32 (2016) 896-913

Table 2
Important dates of GEFCom2014.

Activities

Date

Financial sponsorship confirmed (planning started)

Platform sponsorship confirmed

LinkedIn group started

Historical data released (competition started)
Evaluation period started

Registration deadline

Evaluation period ended

Final report and code due (competition ended)
Finalist presentations at PES General Meeting
GEFCom2014 report submitted to PES

October 31st, 2013
December 13th, 2013
May 18th, 2014
August 15th, 2014
September 14th, 2014
October 10th, 2014
December 6th, 2014
December 15th, 2014
July 29th, 2015
October 6th, 2015

was the trial period. There were three data releases (one
release of historical data and two releases of incremental
data) during the trial period, and the scores of the trial
period were not counted towards the final score. The
evaluation period included the 12 weeks from September
14th to December 6th, 2014. At the beginning of each
week, we released some incremental data. The scores of the
evaluation period were counted towards the final score.

3.2. Error measure

Although the maturity of forecast evaluation differed
among the four GEFCom2014 tracks, we decided to settle
on a single measure to be used for all four tracks, to
keep things simple. We discussed several possible error
measures for GEFCom2014, such as the mean absolute
error (MAE), the Kolmogorov-Smirnov statistic (K-S
statistic), the pinball loss function, and the continuous rank
probability score (CRPS). Since the theme was probabilistic
energy forecasting, the error measure needed to be a
proper scoring rule for probabilistic forecasting. This left
the pinball loss function and CRPS as the two most
appropriate options. Considering ease of implementation
and communication, we decided to use the pinball loss
function, which is closely related to the CRPS anyway.

For each time period over the forecast horizon, the
participants needed to provide the 1st,2nd, ..., 99th
percentiles, calling these qy, ..., g9, With gp = —o00, or
the natural lower bound, and g0 = o0, or the natural
upper bound. The full predictive densities composed by
these quantile forecasts were to be evaluated by the
quantile score calculated through the pinball loss function.

For a quantile forecast q,, with a/100 as the target
quantile, this score L is defined as:

a .
(1_ ]00> (Qa—}’), 1fy<QG
L(qaﬂy): a

7(y_qa)7

ify > qg,
100 Y=

where y is the observation used for forecast evaluation, and
a=1,2,...,99.

To evaluate the full predictive densities, this score is
then averaged over all target quantiles for all time periods
over the forecast horizon and for all zones. A lower score
indicates a better forecast.

3.3. Rating and ranking method

When designing this competition, we used a simple
method (the trimmed mean) to calculate the final score
for each team. This was easy both for CrowdANALYTIX
to implement and for the participants to understand.
However, applying the trimmed mean method to quantile
scores was not comprehensive enough for evaluating
rolling forecasts. A major drawback of this simple method
was that it treated the point spread as having the same
weight in all tasks, without considering that some tasks
had more variable scores than others. To fix this, we
created a rating that referred to a benchmark score, where
the benchmarks were generated using naive models. In
addition, we also wanted to use a scoring method that
would give preference to teams that outperformed the
benchmark more times, made fewer mistakes, and had
stronger performances in the more recent tasks. These
considerations led to the rating and ranking methodology
below:

Step 0: Initialization. We start with the scores collected
over the course of the competition, highlighting
the missing entries in blue, and the erroneous
entries in yellow. Please refer to the online
supplements in Appendix A for the rating and
ranking spreadsheets.

Step 1: Ranking permutation. We create a ranking matrix
for each valid entry in its corresponding week. For
each team, we calculate the second-worst ranking
among the valid entries. We permute the rankings
of the blue and yellow entries of a team using its
second-worst ranking. In addition, the following
rules apply:

(1) For a given week, if its second-worst ranking
is greater than the number of valid entries, its
permuted ranking will be equal to the number
of valid entries.

If all of the valid entries corresponding to this

team’s second-worst ranking are above the

benchmark, its permuted ranking will be set to
be equal to or better than the ranking of the
benchmark.

If some of the valid entries corresponding

to its second-worst ranking are worse than

the benchmark, we treat missing (blue) and
erroneous (yellow) entries differently. For

a blue entry, its ranking will be equal to

the second-worst ranking. In other words,

—
\S]
—

—
w
-
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Table 3
Winning teams of GEFCom2014.
Track Ranking Team name Team member(s) Country Score
1 Tololo P. Gaillard, Y. Goude, and R. Nedellec France 50.8%
2 Adada V. Dornonnat, A. Pichavant, and A. Pierrot France 49.8%
Load 3 Jingrui (Rain) Xie J. Xie USA 48.9%
4 OxMath G. Giasemidis and S. Haben UK 48.5%
5 E.S. Mangalova E. Mangalova Russia 46.2%
1 Tololo P. Gaillard, Y. Goude, and R. Nedellec France 71.7%
2 Team Poland K. Maciejowska and ]. Nowotarski Poland 67.7%
Price 3 GMD G. Dudek Poland 67.1%
4 C3 Green Team Z. Kolter, R. Juban, H. Ohlsson and M. Maasoumy USA 65.0%
5 patl F. Lemke Germany 64.5%
1 kPower M. Landry, T. P. Erlinger, D. Patschke and C. Varrichio USA 56.6%
2 dmlab G. Nagy, G. Borbely, G. Simon and G. Barta Hungary 55.9%
Wind 3 E.S. Mangalova E. Mangalova Russia 55.7%
4 C3 Green Team Z.Kolter, R. Juban, H. Ohlsson and M. Maasoumy USA 55.5%
5 Yao Zhang Y. Zhang China 54.7%
1 Gang-gang J. Huang and M. Perry Australia 68.1%
2 dmlab G. Nagy, G. Borbely, G. Simon and G. Barta Hungary 67.6%
Solar 3 C3 Green Team Z. Kolter, R. Juban, H. Ohlsson and M. Maasoumy USA 66.1%
4 UT_Argonne D. Lee, Z. Zhou, Y. Kwon USA 64.3%
5 Giuseppe C. G. Casalicchio Germany 65.4%

its permuted ranking may be below the
benchmark. For a yellow entry, its permuted
ranking will be equal to or better than the
ranking of the benchmark.

Step 2: Score permutation. With the permuted rankings,
we can then permute the scores. A permuted score
for team i in week j with permuted ranking r is the
same as the score from a team with ranking r in
week j.

Step 3: Rating and ranking. We define the rating for each
entry as “the percentage by which it beats the
benchmark”. To give preference to teams that
improve their methodologies along the way, we
assign a linearly increasing weight to the 12
evaluation weeks. The last week is weighted as
12 times the first week. We also make the sum
of the 12 weights equal to one. Such a weighting
method will also reduce the impact of missing and
erroneous entries during the first few weeks. A
team’s rating is the weighted sum of its ratings
over the 12 weeks. This rating tells us roughly
how much a team improves on the benchmark.
The rankings are calculated based on the ratings in
ascending order.

The implementation of the above rating and ranking
method is published along with this paper in its online
supplements (see Appendix A).

3.4. Winning teams and universities

The leaderboard was updated every week based on the
forecasts submitted for each task. The final score from
each team was then calculated after the four months of
the competition. The participants submitted their reports
through CrowdANALYTIX, after which Tao Hong, the
General Chair of GEFCom2014, distributed the reports to
the other members of the executive committee for review.
Having reviewed the reports submitted by the contestants,

the executive committee then adjusted the rankings as
necessary. This adjustment favored teams that used more
practical methods and submitted more comprehensive
reports. Table 3 lists the top five teams from each track.
Note that UT_Argonne has a lower score than Giuseppe C.,
but a higher ranking, due to an adjustment based on the
quality of their report. This is the only adjustment that was
made by the executive committee.

The institute prize winners were determined based
on the performances of the participating teams. Each
individual team that beat the benchmark and ranked
among the top eight of a track received 10 — r points,
where r is the ranking of the team. A team who participated
and ranked in the top eight in multiple tracks received a
number of points equal to the sum of the points from each
track. The institute score is the sum of the points of all
teams associated with the institute. To win, an institute has
to have at least two teams beating the benchmark(s) and at
least one team in the top eight for a track. Table 4 lists the
winning universities and their contributing teams.

4. Probabilistic electric load forecasting

4.1. Problem and data description

The aim of the GEFCom2014-L was to forecast the
quantiles of hourly loads for a US utility on a rolling basis.
The forecast horizon was one month. Hourly historical load
and weather data for the utility were provided. In addition
to the data provided by the competition organizer, the
contestants were also allowed to use US federal holiday
information, including the dates listed in Table 5.

The first data release on August 15th included 69
months of hourly load data (from January 2005 to
September 2010) and 117 months of hourly weather data
(from January 2001 to September 2010). Starting from the
second data release, we made one month of hourly load
and weather data available to the contestants each week
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Table 4
Winning universities of GEFCom2014 and the contributing teams.
University Faculty advisor Institute score Team name Track Ranking
E.S. Mangalova Wind 3
E.S. Mangalova Load 5
S . . . Arkadiy Strelnikov Price 6
Siberian State Aerospace University, Russia Olesya Shesterneva 18 ES. Mangalova Price 3
SAOR Load 15
Power Team (SAOR) Solar 15
Jingrui (Rain) Xie Load 3
Yanghai Cong Price 7
Bidong Liu Load 8
Jiali Liu Wind 8
University of North Carolina at Charlotte, USA Tao Hong 14 Florencio Gonzalez Price 9
Ying Chen Solar 9
Christopher Benfield Load 11
Mohamed Abuella Solar 12
Nikolina Load 13
T_morning Solar 6
Tsinghua University, China Chongging Kang 6 THU_EILAB#6 Solar 8
Sniper Load 10
Table 5
US federal holidays.
Holiday name Date
New year’s day January 1
Birthday of Martin Luther King, Jr. Third Monday in January

Washington’s birthday (Presidents’ day)

Memorial day
Independence day
Labor day
Columbus day
Veterans day
Thanksgiving day
Christmas day

Third Monday in February
Last Monday in May

July 4

First Monday in September
Second Monday in October
November 11

Fourth Thursday in November
December 25

as the solution of the previous week. The load forecasting
track involved a total of 11 years of weather data and five
years of load data.

Figs. 2 and 3 show the load and temperature series,
respectively. Fig. 4 shows a scatter plot of the load and
temperature in 2010. The three figures depict the salient
features that are typically studied in the load forecasting
literature.

In addition to the common challenges mentioned in the
introduction section, we also designed the load forecasting
track to address a few more:

(1) Weather station selection. We provided 25 weather
stations but no identification of their geographical lo-
cations. We expected that the contestants would de-
velop some advanced algorithms for selecting weather
stations. This was similar to the setup of the hierarchi-
cal load forecasting track in GEFCom2012.

Multi-horizon load forecasting. We chose one-month-

ahead load forecasting as the competition topic, so that

there was some room for the contestants to develop
short-term load forecasting models to improve the
scores for forecasts a few days ahead.

(3) Scenario generation. Ten years of weather data were
available to the contestants at the beginning of the
evaluation period. We expected that some of the
contestants would investigate the weather scenario
generation methods for probabilistic load forecasting.

2

~—

One of the challenges that we did not address in this
competition is hierarchical probabilistic load forecasting.
We avoided this challenge intentionally, for two reasons.
Firstly, the probabilistic load forecasting literature is not
yet rich, so we wanted this competition to help the com-
munity build a solid foundation. Secondly, hierarchical
probabilistic load forecasting would require the contes-
tants to submit large datasets, which could have caused
technical issues for the newly-developed competition plat-
form.

4.2. Fall 2015 in-class probabilistic load forecasting competi-
tion

Tao Hong from UNC Charlotte organized an in-class
probabilistic load forecasting competition in Fall 2015,
which was also open to external participants. Since
this in-class competition was an extended version of
GEFCom2014-L, we denote it as GEFCom2014-E in this pa-
per. In total, 16 teams joined the competition, including
seven external teams. The setup of this in-class competi-
tion was similar to that of GEFCom2014-L. The topic was
one-year-ahead probabilistic load forecasting. The compe-
tition included five tasks. Six years of hourly temperature
data and four years of hourly load data were provided in
the first task, then one year of hourly temperature and load
data was released incrementally for each of the following
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Fig. 4. Scatter plot of the load and temperature in GEFCom2014-L (the year 2010).

four tasks. Figs. 5 and 6 show the load and temperature se-
ries respectively. Fig. 7 shows the scatter plot of the load
and temperature. The data are published in the online sup-
plements to this paper (see Appendix A).

4.3. Summary of the methods

A total of 16 teams beat the benchmark and submitted
final reports in GEFCom2014-L. The top five teams
submitted papers to this special issue. In GEFCom2014-E, a
total of eight teams were eligible on the final leaderboard.
The team Ziel Florian, which took second place, was invited
to submit a paper to this special section. Ziel Florian’s
forecast was compared with the benchmarks developed
by Bidong Liu, a top-8 team in GEFCom2014-L. Table 6
summarizes seven aspects of the methods used by the

seven teams. The first four are forecasting techniques, data
cleansing methods, forecast combination methods and
integration methods, which were mentioned as the four
main challenges in the introduction section. The last three
are the three specific challenges for the load forecasting
track, namely weather station selection methods, multi-
horizon forecasting methods, and scenario generation
methods.

5. Probabilistic electricity price forecasting

5.1. Problem and data description

The aim of GEFCom2014-P was to forecast the prob-
abilistic distribution (in quantiles) of the electricity price
for one zone on a rolling basis. The forecast horizon was
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Fig. 7. Scatter plot of the load and temperature in GEFCom2014-E (the year 2014).

24 h. Hourly data were provided, including the locational
marginal price, zonal load forecasts and a system load fore-
cast.

The first data release on August 15th included about
2.5 years of hourly prices, and zonal and system load
forecast data (from January 1st, 2011, to June 15th, 2013),
together with the zonal and system load forecasts for the
next day (June 16th, 2013), for which the contestants were
asked to forecast the price. Unlike the other three tracks,
where the forecast origin was moved forward with each
task, the price forecasting track was set up so that the
contestants were asked to forecast the following days, as
listed in Table 7, using the historical data given right before
each forecasted period. In total, the price forecasting track
involved about three years of locational marginal price,
zonal and system load forecast data (from January 1st,2011
to December 17th, 2013), as shown in Fig. 8. The data are
published along with this paper in the online supplements
(see Appendix A).

The main challenge when designing a price forecasting
track was to mimic the real-world price forecasting tasks.
In reality, the electricity price is driven by other many
factors in addition to the load, such as generator outages
and transmission congestions. Price forecasters usually
perform sophisticated market simulations with all relevant
data in order to predict price spikes. However, to keep
the competition problem easy for a large data science
community to understand, we decided to keep the dataset
as simple as possible. Therefore, only zonal and system
load forecast data were provided for the forecasting of
electricity prices.

5.2. Summary of the methods

A total of 14 teams beat the benchmark and submitted
final reports in the probabilistic electricity price forecast-
ing track. The top four teams submitted papers to this spe-
cial issue. Table 8 summarizes their methods from three
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Table 6
Summary of the methods used by the top five teams of the load forecasting track.
Team Techniques Data cleansing Forecast Integration Weather Multi-horizon Scenario
combination station forecasting generation
selection
Tololo Quantile No No Yes. Using Four stations Yes. One Probabilistic
regression; cross (6, 10,22 and method for temperature
generalized validation to 25) based on forecasting 1 forecasts for
additive models figure out the Generalized to 48 h ahead, medium-term
cut-off Cross one for forecasting; 800
between short  validation forecasting temperature
and medium (GCV). beyond 49 h scenarios for
forecast ahead. short-term
horizons. forecasting.
Adada Generalized No Yes. An Yes. Found out Initially seven No 1000
additive models exponentially weather stations based temperature
weighted stations on GCV. scenarios from
algorithm selected for Refined a temperature
(EWA). point load selection simulation
forecasting are  using EWA, model.
not optimized reaching three
for stations (6, 10,
probabilistic 13).
forecasting.
Jingrui Multiple linear Yes. Model-based Yes. Averaging  Yes. Optimize 11 stations. No 10 scenarios
(Rain) Xie regression, outlier detection point the based on
unobserved and data forecasts. parameters by 10 years of
component cleansing. considering temperature
models, residual history. Also
exponential simulation tried shifting
smoothing with model the
models, selection. temperature
artificial neural history.
networks,
ARIMA, residual
simulation
OxMath Conditional No Yes. Weighted Yes. Through No. Using Yes. Dividing No
kernel density average of the implementa- average of all the forecast
estimation; quantile time tion of the 25 stations. horizon into
quantile series for the hybrid five periods.
regression horizon forecast.
beyond the
first day.
E.S. Nadaraya-Watson No No No No. Using No No
Mangalova kernel average of all
regression 25 stations.
Ziel Florian Lasso; bivariate No No No Two stations No No
threshold selected based
autoregressive on the
model goodness-of-
fit from a
cubic
regression.
Bidong Liu Multiple linear No No No No. Using No No
regression average of all
25 stations.
Table 7
Days to be forecasted in the price forecasting track.
Task # Forecasted day Task # Forecasted day Task # Forecasted day
1 June 16th, 2013 6 July 13th, 2013 11 July 24th, 2013
2 June 17th, 2013 7 July 16th, 2013 12 July 25th, 2013
3 June 24th, 2013 8 July 18th, 2013 13 December 7th, 2013
4 July 4th, 2013 9 July 19th, 2013 14 December 8th, 2013
5 July 9th, 2013 10 July 20th, 2013 15 December 17th, 2013
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Table 8

Summary of the methods used by the top four teams of the price forecasting track.

Techniques

Spike preprocessing

Forecast combination

Tololo (1) Quantile regression, generalized additive

models; (2) autoregressive models, random

forest regression, gradient boosting machine; (3)

Kernel based quantile regression.

Autoregressive models with exogenous

variables; filtering; quantile regression;

judgmental forecasting

GMD Feed forward neural network

C3 Green Team Quantile regression; radial basis function
network; k-means algorithm; alternating
direction method of multipliers; Autoregressive
models with exogenous variables

Team Poland

Preprocessed spikes for some of the models.

Three filtering methods: day type filtering,
similar load profile filtering and expected bias
filtering

None None
None None

ML-Poly aggregation

Arithmetic average

aspects, namely forecasting techniques, price spike pre-
processing methods, and forecast combination methods.
It is worth noting that three of the top four teams in
GEFCom2014-P used quantile regression.

6. Probabilistic wind power forecasting

6.1. Problem and data description

The aim of the probabilistic wind power forecasting
track of GEFCom2014 was to predict the wind power

generation 24 h ahead in 10 zones, corresponding to 10
wind farms in Australia, on a rolling basis. The wind power
output series from these wind farms are shown in Fig. 9.
The locations of these 10 wind farms were not disclosed
during GEFCom2014. New forecasts were to be issued each
day at midnight. Since the period being forecast for each
task was one month, each of these 15 tasks required 28-31
24-h forecasts to be issued for each zone. The forecasts
were to be expressed in the form of a set of 99 quantiles,
with various nominal proportions between 0 and 1.
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Fig. 9. Zonal wind power generation in GEFCom2014-W.

The predictors included wind forecasts at two heights,
10 and 100 m above ground level, obtained from the
European Centre for Medium-range Weather Forecasts
(ECMWEF). These forecasts were for the zonal and merid-
ional wind components (denoted u and v), i.e., projections
of the wind vector on the west-east and south-north axes,
respectively. Fig. 10 shows the scatter plots between wind

power generation and wind speeds. It was up to the con-
testants to deduce wind speed and direction forecasts, if
necessary. The predictions were provided for the exact
locations of these wind farms, issued every day at mid-
night with an hourly resolution out to 24 h ahead, in line
with the specifications of the forecasting exercise. Weather
forecasts were available for training, and also as inputs to
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Fig. 10. Scatter matrices of zonal wind power generation and wind speed in GEFCom2014-W.

the various tasks used for forecast evaluation. In addition,
power measurements at the various wind farms, with an
hourly resolution, were also provided, but only over the
training period. All power measurements were normalized
by the nominal capacity of the wind farm that they corre-
spond to, while the weather forecasts were left untouched.

Thus, the challenge was to design parametric or
nonparametric methods that would allow conditional
predictive densities of the wind power generation to be
described as a function of the input weather forecasts.
Alternative options could have included building a bank of
quantile regression models for each location and lead time,
based on a wealth of input variables for all wind farms, or
more simply formulating a parametric assumption for the
predictive densities at each site, with low-order models for
their parameters.

6.2. Summary of the methods

The main characteristics of the methods considered
by the top-5 teams within this track are summarized in
Table 9. They all chose to employ nonparametric ap-
proaches to this probabilistic forecasting problem, possibly
due to the very definition of the problem, which requested
a set of quantiles as a description of predictive densities.
Similarly, these teams mostly invested in modern data-
mining techniques, such as Gradient Boosting Machines
(GBM) and Quantile Regression Forests (QRFs), based on
large numbers of input variables and features, possibly
considered in multiple layers. Interestingly, some of the
teams considered offsite information, e.g., wind forecast
data from other wind farms, while others did not. In the

frame of GEFCom2012, where the focus was on single-
valued predictions and the lead evaluation criterion was
the Root Mean Square Error (RMSE), it was clear that em-
ploying offsite information was beneficial. Here, though,
while the best teams used offsite information, it is not clear
whether this was a deciding factor in their outperforming
of the others, or whether this was due more to the actual
models and forecasting methodologies that they used.

7. Probabilistic solar power forecasting

7.1. Problem and data description

The probabilistic solar power forecasting problem in
GEFCom2014 was very similar in design to the wind track
described in Section 6. Solar power generation was to
be predicted on a rolling basis for 24 h ahead, for three
solar power plants located in a certain region of Australia.
The solar power generation profiles are shown in Fig. 11.
The exact locations of these solar power plants were not
disclosed during GEFCom2014. The forecasts were to be
issued at midnight each day. Since the forecast period
for each task was one month, 28-31 forecast series were
issued for each of these 15 tasks. The forecasts were to be
expressed in the form of 99 quantiles with various nominal
proportions between zero and one.

The data available included weather forecasts for 12
weather variables, as obtained from the European Centre
for Medium-range Weather Forecasts (ECMWEF). These
variables are summarized in Table 10.
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Table 9

Summary of the methods used by the top five teams in the wind track of GEFCom2014.

909

Team Parametric/nonparametric  Forecasting models Generalization ability Input variables and Offsite information
and techniques (preventing features (most
overfitting) important)
kPower Nonparametric Gradient Boosting Cross validation Forecasts of wind Yes
Machines (GBM), speed and direction at
organized in two 10 and 100 m, at
layers target and neighboring
lead times, time of day
dmlab Nonparametric Quantile Regression Cross validation Forecasts of wind No
Forest (QRF) and speed and direction at
Gradient Boosting 10 and 100 m, and
Decision Trees (GBDT) features derived from
these
E.S. Mangalova  Nonparametric k-Nearest Neighbor Training data selection =~ Wind components, Yes
(k-NN) wind speed and
direction at 10 and
100 m (filtered), time
of day
C3 Green Nonparametric Multiple Quantile Feature selection Forecasts of wind Yes
Team Regression (MQR) algorithm, speed and direction at
regularization when 10 and 100 m, and
estimating, and features derived from
cross-validation these, time of day and
year
Yao Zhang Nonparametric k-Nearest Neighbor Cross-validation Forecasts of wind No
(k-NN) and Kernel speed and direction at
Density Estimation 10 and 100 m, time of
(KDE) year, deterministic
wind power prediction
Table 10
Variables for GEFCom2014-S.
Variable id. Variable name Units Comments
078.128 Total column liquid water (tclw) kg m~—2 Vertical integral of cloud liquid water content
079.128 Total column ice water (tciw) kg m~2 Vertical integral of cloud ice water content
134.128 Surface pressure (SP) Pa
157.128 Relative humidity at 1000 mbar (r) % Relative humidity is defined with respect to saturation of
the mixed phase, i.e., with respect to saturation over ice
below —23 °C and with respect to saturation over water
above 0 °C. In the regime in between, a quadratic
interpolation is applied.
164.128 Total cloud cover (TCC) 0-1 Total cloud cover derived from model levels using the
model’s overlap assumption
165.128 10-metre U wind component (10u) ms~!
166.128 10-metre V wind component (10v) ms~!
167.128 2-metre temperature (2T) K
169.128 Surface solar rad down (SSRD) Jm™2 Accumulated field
175.128 Surface thermal rad down (STRD) Jm™2 Accumulated field
178.128 Top net solar rad (TSR) Jm™2 Net solar radiation at the top of the atmosphere.
Accumulated field
228.128 Total precipitation (TP) m Convective precipitation + stratiform precipitation

(CP + LSP). Accumulated field.

The contestants were free to perform variable selection
based on all these variables, and/or to generate and
select new features. The predictions were provided for
the exact locations of the solar power plants, and were
issued every day at midnight with an hourly resolution
out to 24 h ahead, in line with the specifications of the
forecast exercise. Weather forecasts were available for
training, and also as inputs to the forecasting exercises.
Power measurements with an hourly resolution were also
provided, but only over the training period.

7.2. Summary of the methods

Although the setup for the forecast competition was
very similar to that for wind power, the solar power case
was a bit more subtle, in view of the larger number of
input variables, and also since there are additional factors
(time of day, clear sky, etc.) that may affect solar power
generation and its dynamics. A summary of the features
of the approaches employed by the five best teams in this
track is given in Table 11.
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Fig. 11. Zonal solar power generation in GEFCom2014-S.

All of the approaches that ranked highly in this
competition were nonparametric, and most used variants
of quantile regression and gradient boosting. It should
be noted that, as for the wind power case, the team
that ranked second did not use offsite information,
while all of the others did. This could mean that, while
it is intuitive that offsite information could help to
improve the forecast quality, large gains may be possible
simply by carefully designing a forecasting approach
that accounts for local information only. Considering
offsite information increases dimensionality substantially,
making the variable/feature selection more complex. In the
present case, all of the best teams had methodologically
sound strategies for defining the variables and features
that were used as inputs for their forecasting. They were
actually very creative in deriving new features from the
variables originally provided, using differentiation from
accumulated fields, time shifting, integration, etc.

8. A 10-year ahead forecast of energy forecasting

8.1. The research maturity quadrant

Fig. 12 depicts the maturity level of each subdomain
(demand, price and supply) of energy forecasting, for

point and probabilistic forecasting. We separated long
term (a few months to a few decades ahead) and short
term (two weeks ahead or shorter) load forecasting in
the area of demand forecasting, due to their distinct
characteristics. The temperature is a key factor driving the
load. Because the temperature is fairly predictable in the
short term, we can generate fairly accurate short term
load forecasts. Many statistical and artificial intelligence
techniques have been tried for short term point load
forecasting in the literature, which makes STLF the most
mature for point forecasting. Since the temperature is
less predictable in the long term, point load forecasts are
considerably less skillful. On the other hand, researchers
have presented several appealing case studies for long
term probabilistic load forecasting, bringing LTLF second
highest for probabilistic forecasting maturity.

Wind power forecasting takes the highest place in prob-
abilistic forecasting maturity. This is largely because wind
power forecasting is the closest to meteorological forecast-
ing, where probabilistic forecasting is well-established and
commonly accepted. Although solar power forecasting is
in the same subdomain (renewable generation) as wind
power forecasting, it is not as mature as WPF for either
point or probabilistic forecasting. This is due to the fact that
solar power penetration has not been significant enough
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Table 11
Summary of the methods used by the top five teams in the solar track of GEFCom2014.
Team Parametric/nonparametric ~ Forecasting models and Generalization Input variables and Offsite
techniques ability (preventing features (most information
overfitting) important)
Gang-gang Nonparametric Gradient Boosting (GB) Cross-validation Clear sky model, as Yes
and k-Nearest well as all variables
Neighbour (k-NN) provided
dmlab Nonparametric Quantile Regression Cross validation Variables provided, No
Forest (QRF) and time of day and of
Gradient Boosting year, differentiated
Decision Trees (GBDT) variables (for the
accumulated fields)
C3 Green Team Nonparametric Multiple Quantile Feature selection Wealth of features Yes
Regression (MQR) algorithm, based on all input
regularization when variables, time of
estimating, and day and time of year
cross-validation
Giuseppe Casalicchio ~ Nonparametric Quantile Regression and  Lasso penalization Wealth of features Yes
Quantile Regression based on all input
Forest (QRF) variables,
considering lagging,
smoothing, and
combination
UT_Argonne Nonparametric Ensemble of Random Training data Wealth of features Yes
Forest (RF), Gradient selection based on all input
Boosting Machines variables,
(GBM) and Support considering time
Vector Machines (SVM) shifting, integration,
etc.
robabilistic forecasting .
e e less than that of wind power or short term loads. The
Mature probabilistic forecasting maturity of prices is also less than
<O that of either wind or loads.
8.2. Twelve predictions for the next decade of energy
<D forecasting
— -~ Point g

Immature

Fig. 12. Maturity quadrant of the energy forecasting subdomains (SPF:
solar power forecasting; LTLF: long term load forecasting; EPF: electricity
price forecasting; WPF: wind power forecasting; STLF: short term load
forecasting).

until the last few years. This is why we separated wind and
solar power forecasting in Fig. 12.

Research into price forecasting took off right after
the deregulation of the electric power industry. Most
papers in the literature take a data-driven approach,
without modeling the market or the circuit. Unlike
wind power, which is influenced chiefly by one or two
factors, namely the wind speed and direction, electricity
prices, and especially price spikes, are influenced heavily
by a wide range of factors other than the electricity
demand, such as transmission congestion, generation
outage, market participant behaviors, etc. These factors,
and the uncertainties associated with them, are hard to
incorporate into statistical or artificial intelligence models.
Therefore, the point forecasting maturity of prices is

To conclude this paper, we make a 10-year ahead
forecast for the field of energy forecasting, which is
summarized into the following 12 predictions:

(1) Solar power forecasting research will flourish
With the increasing penetration of solar power, in the
forms of both rooftops and solar farms, the research
progress of solar power forecasting is expected to
advance greatly over the next decade.

(2) The development of practical error measures for
probabilistic energy forecasting
The probabilistic wind power forecasting literature
has long embraced proper scoring rules for evaluating
probabilistic forecasts. The GEFCom2014 has now
brought the pinball loss function to the attention of
the wider energy forecasting community. Despite its
simplicity from an academic standpoint, the pinball
loss function has still been difficult for industry
practitioners to adopt. The proposal and widespread
use of more practical error measures, similar to the
way in which the MAPE is often used as a reference
for load forecasting, or the RMSE for wind power
forecasting, is expected to fill this gap.

(3) A connection between probabilistic and point energy
forecasting
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One observation from Fig. 12 is that, for most of
these subdomains, the maturity of point forecasting
is not aligned with that of probabilistic forecasting.
This is due primarily to an important but unanswered
question: can a better point forecasting model
lead to a better probabilistic forecast? If such is
the case, we would be able to take advantage of
the extensive point energy forecasting literature
to enhance probabilistic energy forecasts across all
subdomains.

(4) An increased use of high resolution data, temporally,

spatially and conceptually

Modern information technologies have enabled en-
ergy companies and weather service providers to
make measurements at very high resolutions, which
can go sub-second, within acres, and for a large vari-
ety of meteorological variables. We expect to see such
rich information sets being used more widely by the
energy forecasting community.

(5) The unification of energy forecasting methodologies

Several teams in GEFCom2014 won multiple tracks
using similar methodologies. This fact indicates that
there are some general methodologies or frameworks
that can be used across a range of subdomains of
probabilistic energy forecasting. Essentially, proba-
bilistic energy forecasting is a branch of probabilistic
forecasting. Over the next decade, it is expected that
energy forecasters will explore the probabilistic fore-
casting literature further, and adopt the most effec-
tive methods for probabilistic energy forecasting.

(6) A diversification of energy forecasting subjects

The evolution of the electric grid has provided many
emerging problems for the energy forecasting com-
munity to deal with, such as forecasting the demand
at the premises level, forecasting the trend of rooftop
PV penetration, forecasting changes in load due to de-
mand response programs, and forecasting system in-
terruptions due to severe weather conditions. Thus,
it is expected that the energy forecasting community
will have to tackle many more problems like these in
the near future.

(7) The fusion of energy forecasting problems

Most energy forecasting papers in the literature
focus on specific subdomains. More and more cross-
subdomain energy forecasting papers are expected
to appear in the literature, due to the fusion of
energy forecasting problems. For instance, when
residential customers install solar rooftops without
sub-metering, the traditional load forecasting and
solar power forecasting problems fuse into net
demand forecasting. Similarly, prices are driven by
both supply and demand. Load control activities,
together with an increased penetration of renewable
energy, are fusing the demand, supply and price
forecasting problems.

(8) Interdisciplinary collaborations with other communi-

ties

The maturity of probabilistic wind power forecasting
is due largely to its collaboration with the meteoro-
logical forecasting community; one weakness of elec-
tricity price forecasting is the difficulty of including

(10

market and circuit models; and the advancement of
short term load forecasting is due partly to the in-
volvement of both the statistics and artificial intelli-
gence communities. These past examples have shown
us the importance of interdisciplinary collaborations
for the advancement of energy forecasting research
progress. As various communities become more in-
volved in energy forecasting, our knowledge will be
advanced further.

(9) Additional energy forecasting competitions

Over the past two decades, forecasting competitions,
from the EPRI and EUNITE competitions in the 1990s
to the GEFCom2012 and GEFCom2014 in the 2010s,
have been playing an important role in encouraging
research progress and attracting data scientists across
a range of disciplines. It is therefore essential to keep
organizing new energy forecasting competitions.
Regular conferences in energy forecasting

There are not yet regular conferences dedicated to en-
ergy forecasting. Over the past few years, energy fore-
casting has been part of the technical programs of sev-
eral large conferences, such as the IEEE Power and En-
ergy Society General Meeting, the International Sym-
posium on Forecasting (ISF), and the International
Conference on Energy & Meteorology (ICEM). The In-
ternational Symposium on Energy Analytics has been
scheduled right before ISF2017 in Australia. In future,
we hope to make this a regular event.

Nad

(11) A dedicated publication outlet for energy forecasters

There is not yet a journal dedicated to energy
forecasting either. Top quality energy forecasting
papers have been published in journals such as the
International Journal of Forecasting, IEEE Transactions
on Smart Grid, IEEE Transactions on Power Systems,
IEEE Transactions on Sustainable Energy, Solar Energy,
and Wind Energy. In recent years, the community
has been publishing hundreds of energy forecasting
papers each year. We believe that there will soon
be enough interest to support an energy forecasting
journal.

(12) A society for energy forecasters

The researchers working on energy forecasting are
spread across various different technical societies,
such as the IEEE Power and Energy Society, the In-
ternational Institute of Forecasters, and the American
Meteorological Society. Some of the industry practi-
tioners have also been gathering atlocal society meet-
ings, such as the Association of Edison Illuminating
Companies Load Research Conference and the Edison
Electric Institute Load Forecasting Group Meeting. We
believe that the next decade will be a good time to
bring researchers and practitioners together to form
a society for energy forecasters.
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Appendix A. Supplementary data

Supplementary material related to this article can be
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