HW1 is 1.3, 1.20, 1.27.

1.3 asks you to generate 100 observations from an autoregressive model. Suppose we want to simulate $x_t = 0.7 x_{t-1} + 0.6 x_{t-2} + w_t$, where $\sigma^2 = v(w_t)=1$. And suppose we want to MA filter it generating $y_t = 0.5 x_{t-1} + 0.25 x_{t-2} + 0.25 x_{t-3}$.

w = rnorm(150,0,1)x = filter(w, filter=c(0.7,0.6), method="recursive")[-(1:50)] y = filter(x, c(0.5,0.25,0.25), sides = 1) plot.ts(x) lines(y,lty=2)

1.20 wants you to simulate a WN process and find the sample acf. Use the R function acf(). See p29 for an example. You can choose what σ^2 is for your WN process.

1.27 wants you to consider a 2nd-order stationary process x_t with mean μ and autocovariance $\gamma(h)$. Remember $\gamma(h) = E(X_t X_{t+h})$. Also, use the fact that expectation is linear, so $E((X+Y)^2) = E(X^2+2XY+Y^2) = E(X^2)+2E(XY)+E(Y^2)$. And also use stationarity here. If X is 2nd-order stationary, what does that tell you about $E(X_t)$ and $E(X_{t+h})$?