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ABSTRACT

A generalized, structural, time series modeling framework was developed to analyze the monthly records
of absolute surface temperature, one of the most important environmental parameters, using a deterministic-
stochastic combined (DSC) approach. Although the development of the framework was based on the char-
acterization of the variation patterns of a global dataset, the methodology could be applied to any monthly
absolute temperature record. Deterministic processes were used to characterize the variation patterns of
the global trend and the cyclic oscillations of the temperature signal, involving polynomial functions and
the Fourier method, respectively, while stochastic processes were employed to account for any remaining
patterns in the temperature signal, involving seasonal autoregressive integrated moving average (SARIMA)
models. A prediction of the monthly global surface temperature during the second decade of the 21st century
using the DSC model shows that the global temperature will likely continue to rise at twice the average rate
of the past 150 years. The evaluation of prediction accuracy shows that DSC models perform systematically
well against selected models of other authors, suggesting that DSC models, when coupled with other eco-
environmental models, can be used as a supplemental tool for short-term (ª10-year) environmental planning
and decision making.
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1. Introduction

The air temperature at the Earth’s surface is one
of the most important environmental factors. Model-
ing the variations of surface temperature and making
dependable forecasts underlie the foundation of sound
environmental policies (Romilly, 2005). The temporal
changes of the global surface temperature, for exam-

ple, have been used as a prominent indicator of global
climate change, paving the way for smooth communi-
cation among environmental researchers, policy mak-
ers, and the general public (IPCC, 2007). In a broader
context, temperature aÆects many other environmen-
tal factors in complex ways. Examples of such influ-
ences include, but are not limited to (1) the positive
feedback between ambient temperature and the global
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carbon cycle (Grace, 2004; Chapin III et al., 2009), (2)
the role of soil temperature in controlling the rate of
soil respiration (Conant et al., 2000; Bond-Lamberty
and Thomson, 2010) and soil degradation (Bindraban
et al., 2012), and (3) the cause-eÆect relationships
between global warming and decreased biodiversity
(Mayhew et al., 2008), increased mortality (Chung et
al., 2009), and shifts of crop phenology (Peñuelas et al.,
2009) and growing seasons (Steltzer and Post, 2009).
Moreover, temperature is a critical input parameter in
many eco-environmental models in the fields of crop
growth simulation (Verdoodt et al., 2004; Bechini et
al., 2006), agro-ecological zoning (Caldiz et al., 2001;
Ye et al., 2008), and food security assessment (Ye and
Van Ranst, 2002, 2009; Ye et al., 2012), for example.
Policy analysis using these ecosystem models is only
possible with accurate prediction of future tempera-
tures.

Temperature data are usually given as monthly
means in an equally spaced time series. Instrumen-
tal records used in computing these mean values glob-
ally have only been available for the past ª150 years
(Jones and Moberg, 2003). Many eÆorts have been
made in the statistical modeling of temperature vari-
ations using these records (e.g., Hansen et al., 2006;
Rahmstorf et al., 2007). Among them, the univari-
ate time-series models have gained relative popularity
in recent years, partly due to the complexity of main-
stream climate models, which are strongly constrained
by the current knowledge of the physical climate sys-
tem (IPCC, 2001). One subcategory of the univariate
models, namely the structural time-series models (e.g.,
Lee and Sohn, 2007), has become quite popular due to
its trend-detecting capability. In general, a structural
time-series model comprises a deterministic trend plus
random residuals about the trend, where the residuals
are assumed to represent natural variability and can be
viewed as a realization of an autoregressive integrated
moving average (ARIMA) process (Romilly, 2005).

However, almost all of these existing statistical
models deal with temperature anomalies. Although
the expression of temperatures in climate change re-
search in terms of anomaly values relative to a pre-
defined “normal” period (e.g., 1961–90, as in Jones
et al., 1999; or 1901–2000, as in Smith et al., 2008)
is well justified, the use of temperature anomalies in-
stead of absolute temperatures in the other areas of
environmental research introduces extra complexity in
data preparation and result interpretation. In addi-
tion, the use of temperature anomalies instead of ab-
solute temperatures is not cost-eÆective (Dale and En-
glish, 1999). Unfortunately, models based on temper-
ature anomalies cannot be directly used to deal with
absolute temperatures. One reason is that seasonal-

ity is intentionally removed from temperature anoma-
lies. Therefore, a diÆerent approach to characteriz-
ing the variation patterns of absolute temperatures is
needed; however, systematic studies regarding the de-
tails of this pattern characterization process are still
lacking. The objectives of this study were the follow-
ing: (1) to present a generalized modeling framework
of absolute temperatures based on both deterministic
and stochastic time-series techniques; (2) to show the
performance advantages of the models obtained here
over a batch of other models in both in-sample fitting
and out-of-sample prediction; (3) to make a short-term
(ª10-year) prediction of the monthly global surface
temperature; and (4) to evaluate the significance of
the results obtained.

2. Material and methods

2.1 Data

Monthly global merged land–air–sea surface tem-
perature data (January 1880–December 2011, Fig. 1a),
provided by the National Climate Data Center
(NCDC) at the National Oceanic and Atmospheric
Administration (NOAA) of the United States, were
used in this research. This dataset represents one of
the best systematic estimates of the average tempera-
ture anomalies of the Earth’s surface, taking all land
and sea surfaces together, based on historical observa-
tions (Smith and Reynolds, 2005). The dataset is reg-
ularly updated and is freely available (NCDC, 2012).

The absolute temperature (T ) was inversely cal-
culated from the temperature anomaly (¢T ) and the
20th-century average absolute temperature (T ), using
the method stipulated by the NCDC (2012):

Tm = ¢Tm + Tm , (1)

where m is the month in a year. Both ¢T and T are
given by the dataset.

2.2 Framework of the modeling approach

A five-step approach was adopted in this research
(Fig. 2). First, the whole dataset was divided into
two subsets, namely the training set (January 1880–
December 2001) and the calibration set (January
2012–December 2011). The temperature data in the
training set were statistically analyzed (a) to deter-
mine the presence of and (b) to identify the temporal
patterns of any global trend and/or periodic oscilla-
tion, employing analytical techniques in both time and
frequency domains. Second, the residuals of the tem-
perature signal, after the trend and periodicity had
been accounted for, were modeled using a seasonal
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Fig. 1. (a) Time plot of the NCDC monthly global absolute surface temper-
ature series (Smith et al., 2008), January 1880–December 2011 (blank cir-
cles) superimposed with two moving-average-smoothed curves using a window
length of 12 months (thin solid line) and 120 months (thick dashed line) re-
spectively. The smoothed curves are expressed as temperature anomalies (±C)
relative to the 20th-century average (broken horizontal line) and are aligned
to the secondary y-axis on the right. The dotted vertical line indicates the
splitting between the training (January 1880–December 2001) and the cali-
bration (January 2002–December 2011) subsets of the data; (b) time plot of
the 1990–2000 section of the NCDC series. The curve of the absolute tem-
peratures (blank circles) exhibits a distinct pattern of recurring oscillations at
the annual frequency, while the same pattern is not observed for temperature
anomalies (blank triangles). Alternating shaded and unshaded areas mark the
boundaries of the annual cycles.

ARIMA process, following the Box-Jenkins approach
(Box et al., 1994). Third, the deterministic processes
obtained in step one and the stochastic processes ob-
tained in step two were combined to form the candi-
date models using Eq. (2). The respective adequa-
cies of these candidate models were then vigorously
tested. Fourth, the overall performances of the can-
didate models in both in-sample fitting and out-of-
sample prediction were compared to identify the best-
performing model. Finally, a prediction of the global
surface temperature in the second decade of the 21st
century was made, together with an evaluation of the
significance of the predicted warming trend.

The general model used in this research to deal
with the time series of absolute temperatures (T ) is
given by

T = L + C + E , (2)

where L is the trend term, C is the periodicity term

or, in other words, the term of cyclic oscillations, and
E is the error term. Both L and C can be represented
by analytical models and are thus said to be the deter-
ministic components of T , while E can be considered
as the realization of a seasonal ARIMA process and is
thus said to be the stochastic component of T .

2.3 Deterministic processes

The trend term L in Eq. (2) is defined using

L (j) = a +
X

j

°
bjt

j
¢

, (3)

where a and b are parameters, t is time, and j is the
order of the polynomials.

The periodicity term C in Eq. (2) is defined by the
Fourier functions as

C (k) =
X

k

Ak cos (2ºfkt + 'k) , (4)
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Fig. 2. Functional flowchart of the modeling approach.

Fig. 3. (a) Theoretical modeling of periodic oscillations of monthly absolute temperatures. The
temperature signal is represented by the sum of a linear trend and a stationary sinusoidal wave with
amplitude A and phase '. The shaded area marks one cycle of the sinusoidal wave; (b) smoothed
periodogram (Bloomfield, 2000) of the NCDC absolute temperature data showing a fundamental
frequency at 1/12 cycles per month (marked as 1 on the x-axis) and its harmonic frequencies at
multiples of the fundamental frequency (i.e., n£1/12 cycles per month where n = 2, 3, 4, . . . as
marked on the x-axis).
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where A is the amplitude, ' is the phase, f is the fre-
quency of the sinusoidal wave in cycles per unit time,
and k is the order of the sinusoids, i.e., the number of
coexisting sinusoidal waves (Fig. 3a).

2.4 Stochastic processes

The following multiplicative seasonal ARIMA
model, or seasonal autoregressive integrated moving
average (SARIMA) model, of Box and Jenkins (Box
et al., 1994) was used to represent the error term E in
Eq. (2):

©P (Bs) ¡ (B)rD,srdEt = Æ + £Q (Bs) µ (B) wt , (5)

where wt is the Gaussian white-noise process; ¡(B)
and µ(B) are the ordinary autoregressive (AR) and
moving average (MA) operators of orders p and q,
respectively; ©P (Bs) and £Q(Bs) are the seasonal
AR and MA operators of orders P and Q, respec-
tively, with seasonal period s; B is the backshift op-
erator: B(Et) = Et°1 for any value of E at time
t; Bs is the seasonal backshift operator: Bs (Et) =
Et°s; rd is the ordinary diÆerence operator, rd =
(1°B)d; rD,s is the seasonal diÆerence operator, rD,s

= (1 ° Bs)D; integers d and D are the orders of the
ordinary and seasonal diÆerencing, respectively; and
Æ = µ(1° ¡1 ° . . .° ¡p) with µ being the mean of E.
In this model, Eq. (5) is denoted in short as ARIMA(p,
d, q)£(P , D, Q)s.

The ordinary AR and MA operators, ¡(B) and
µ(B), in Eq. (5) are given by Eqs. (6) and (7), re-
spectively:

¡ (B) = 1°
X

p

¡pB
p , (6)

µ (B) = 1 +
X

q

µqB
q , (7)

where ¡1, ¡2, . . . , ¡p and µ1, µ2, . . . , µq are param-
eters. The seasonal AR and MA operators, ©P (Bs)
and £Q(Bs), in Eq. (5) are given by Eqs. (8) and (9),
respectively:

©P (Bs) = 1°
X

P

©P BPs , (8)

£Q (Bs) = 1 +
X

Q

£QBQs , (9)

where ©1, ©2, . . . , ©P and £1, £2, . . . , £Q are pa-
rameters.

Thus the general model given in Eq. (2) is said to
be a deterministic-stochastic combined (DSC) model
of monthly absolute temperatures and can be denoted
as DSC(j, k)+(p, d, q)£(P , D, Q)s.

2.5 Computing techniques

The open-source statistical package R (R Develop-
ment Core Team, 2008) was used as the computing
platform for data analysis, model estimation, model
discrimination, and prediction.

2.5.1 Multiple regressions

The right-hand side of Eq. (4) is essentially a non-
linear function of the phase variable '. Equation (4)
can be rewritten in the linear form (Bloomfield, 2000)
as

C (k) =
X

k

(Mk cos 2ºfkt + Nk sin 2ºfkt) , (10)

where Mk = Ak cos 'k and Nk = °Ak sin'k. In
practice, the frequency fk is regarded as known for
a particular dataset (Fig. 3b). The values of Mk and
Nk can therefore be statistically determined by solv-
ing Eq. (10) using the principle of least squares. Given
any values of Mk and Nk, the corresponding values of
Ak and 'k can be obtained using Ak =

p
M2

k + N2
k

and 'k = arctan(°Nk/Mk).
Multiple regression analysis was applied to the

NCDC temperature data (Fig. 1a) to determine the
trend Eq. (3) and periodicity Eq. (10) terms at once:

bT = a+
X

j

°
bjt

j
¢
+

X

k

(mk cos 2ºfkt + nk sin 2ºfkt) ,

(11)
where bT is the temperature estimate, and a, b, m, and
n are parameters. The orders of the polynomial trend
and the periodicities, j and k, were statistically de-
termined using a “trial and error” approach. For the
trend term, if the parameter bj in a model with j poly-
nomials Eq. (11) is significant (i.e., the order j is thus
said to be significant, whether parameters b1, b2, . . . ,
bj°1 are significant or not), the model with (j + 1)
polynomials must also be tried. This looping process
stops when two consecutive orders of j are insignifi-
cant. Tests (Table 1) show that the maximum order of
the polynomial trend for the NCDC data is five, where
orders six and seven are both insignificant, meaning
that the trend term up to the fifth order can be used
to construct the candidate models. For the periodicity
term, the upper limit of the order k is suggested by
data analysis. The spectral analysis (Fig. 3b) of the
NCDC data using a smoothed peridogram (Bloom-
field, 2000) showed that the temperature signal may
contain four sinusoidal waves. Among them, two waves
can be easily observed at the fundamental frequency of
1/12 cycles per month and at the harmonic frequency
of 1/4(= 3£1/12) cycles per month, respectively, as
identified by the arrows in Fig. 3b. Other, less obvious
waves may also be detected at the frequencies of, for
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Table 1. Deterministic processes Eq. (11) estimated on the NCDC global temperature data. Values in parenthesis are
standard errors. The “°” sign means “not applicable”, as in the case of parameter b2 for models with a linear trend (j
= 1). Insignificant parameters (e.g., b4) are not listed.

k = 1 k = 3

Parameter j = 1 j= 2 j = 5 j= 1 j = 2 j = 5

a 3.6940 2.0740£102 6.0350£105 3.6888 2.0740£102 6.0340£105

(0.2380) (13.6600) (4.0310£104) (0.2278) (12.9800) (3.7990£104)
b1 0.0052 °0.2048 °1.1660£103 0.0052 °0.2048 °1.1660£103

(0.0001) (0.0141) (77.9200) (0.0001) (0.0134) (73.4200)
b2 – 5.4100£10°5 0.8008 – 5.4100£10°5 0.8008

– (3.6270£10°6) (0.05354) – (3.4470£10°6) (0.0505)
b3 – – °2.0630£10°4 – – °2.0630£10°4

– – (1.3790£10°5) – – (1.300£10°5)
b5 – – 5.4710£10°12 – – 5.4710£10°12

– – (3.6610£10°13) – – (3.4490£102)
m1 °0.1249 °0.1249 °0.1249 °0.1249 °0.1249 °0.1249

(0.0061) (0.0057) (0.0053) (0.0058) (0.0054) (0.4994)
n1 °1.9684 °1.9680 °1.9680 °1.9684 °1.9680 °1.9680

(0.0061) (0.0057) (0.0053) (0.0058) (0.0054) (0.4994)
m3 – – – 0.0129 0.0129 0.0129

– – – (0.0058) (0.0054) (0.4994)
n3 – – – 0.0675 0.0669 0.0669

– – – (0.0058) (0.0054) (0.4994)

example, 1/6 and 1/3 cycles per month, respectively.
This suggests that the periodicity term up to the
fourth order can be considered in the construction of
the candidate models. In total, 20 models (j = 1. . . 5
in combination with k = 1 · · · 4) were attempted; six
models (j = 1, 2, and 5 in combination with k = 1 and
3) tested significant (Table 1).

2.5.2 Seasonal ARIMA

Seasonal ARIMA models were employed to han-
dle the remaining patterns in the temperature signal
that had not been accounted for by the determinis-
tic processes. The time plot of the error term E in
Fig. 4a shows no evidence that E is a Gaussian pro-
cess or that E is stationary, suggesting that hidden
patterns are still contained in E and need to be recog-
nized. As a prerequisite, E has to be made stationary
before ARIMA modeling can be considered. Both or-
dinary and seasonal diÆerencing techniques were used
to achieve this. The first-order ordinary diÆerence on
E, or rE, produced a nonseasonal stationary state
(Fig. 4b) but not a seasonal one (Fig. 4c). The seasonal
stationary state was achieved by taking the first-order
seasonal diÆerence on rE, or r12rE. To be more
explicit, E was made stationary at the orders of d =
1, D = 1, and s = 12 [see Eq. (5)].

The standard deviation (æ) of the ordinary and
seasonal diÆerences of E was closely monitored to try

to avoid over diÆerencing, using the following criteria:

¢æd = æ(rd+1E)° æ(rdE) , (12)

or

¢æD = æ(rD+1,12rdE)° æ(rD,12rdE) , (13)

where ¢æd is the change of the æ value before and
after an ordinary diÆerence operation, and ¢æD is the
æ value change before and after a seasonal diÆerence
operation. Over diÆerencing is detected by an increase
in the standard deviation values, or ¢æ>0. A 65% in-
crease in the æ value, for example, was observed when
the ordinary diÆerencing order was incremented from
one [æ(rE) = 0.11±C] to two [æ(r2E) = 0.18±C],
suggesting that E was over diÆerenced at d = 2. Sim-
ilarly, a 73% increase in the æ value, from 0.15±C
for r1,12rE to 0.26±C for r2,12rE, occurred when
the seasonal diÆerence order was incremented from
one to two, showing that rE was over diÆerenced
at D = 2. Moreover, the æ values of both r2E and
r2,12rE were larger than the baseline level of æ(E),
contrasting the fact that both æ(rE) and æ(r1,12rE)
were smaller than the baseline level. This additional
evidence suggests that the second-order ordinary or
seasonal diÆerence does not tend to create a stationary
status, but rather tends to create an E or rE that is
not stationary, respectively.
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Fig. 4. (a) Time plot of the residual series E in Eq. (2) with both the trend and the periodicity
terms being of the second order; (b) time plot of the first-order ordinary diÆerence of series E; (c)
plot of the monthly subseries, or month plot, of the first-order ordinary diÆerence of series E; (d)
month plot of the first-order seasonal diÆerence of the first-order ordinary diÆerence of series E.
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Fig. 5. (a) Sample autocorrelation function (ACF) and (b) sample par-
tial autocorrelation function (PACF) (Venables and Ripley, 2002) of the
stationarized residual series E [see Eq. (2) and Fig. 2]. The station-
ary state was achieved by consecutively taking the first-order ordinary
diÆerence and the first-order seasonal diÆerence on series E. Dashed
horizontal lines indicate the 95% confidence interval within which the
ACF or PACF values are not significantly diÆerent from zero. The lags
are given in the number of years on the x-axis.
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Table 2. Creation and numbering of the candidate DSC(j,
k)+(p, d, q)£(P , D, Q)s models based on the characteri-
zation of the deterministic and stochastic processes.

Orders SARIMA(p, d, q)£(P, D, Q)s

j and k (1, 1, 1)£(0, 1, 1)12 (3, 1, 1)£(0, 1, 1)12

k = 1
j = 1 1 2
j = 2 3 4
j = 5 5 6

k = 3
j = 1 7 8
j = 2 9 10
j = 5 11 12

The sample autocorrelation function (ACF) and
the partial sample autocorrelation function (PACF)
of r2,12rE were computed (Venables and Ripley,
2002), plotted (Fig. 5), and inspected to identify pos-
sible SARIMA models, using the Box-Jenkins diag-
nostic techniques (Shumway and StoÆer, 2006). Con-
sequently, two nonseasonal and one seasonal compo-
nent models were identified, resulting in two candidate

SARIMA models, namely SARIMA(1, 1, 1)£(0, 1, 1)12
and SARIMA(3, 1, 1)£(0, 1, 1)12.

3. Results and discussion

3.1 Model estimation

The DSC models built from the characterized de-
terministic and stochastic processes are given in Table
2. The parameters of the stochastic processes of the
estimated DSC models are given in Table 3, in addi-
tion to the parameters of the deterministic processes
in Table 1. A comparison between the values and the
standard errors of the parameters of both the deter-
ministic and the stochastic processes shows that all of
the parameters are, in any case, significantly diÆerent
from zero. In the worst case, for example, the param-
eter m3 = 0.0129 (Table 1, j = 1, k = 3) lies more
than two standard errors away from the value m3 =
0, meaning that the third-order periodicity term (i.e.,
k = 3) can be included into the model at a signifi-
cance level of p<0.05. In fact, the significance levels
of the parameters in Tables 1 and 3 are mostly (83 of
86 cases) at p<0.001. This is a clear indication of the

Table 3. SARIMA processes of the DSC(j, k)+(p, d, q)£ (P , D, Q)s models estimated on the NCDC temperature data.
The deterministic processes of the same DSC models are given in Table 1. Values in parenthesis are standard errors.
The “–” sign means “not applicable”, as in the case of parameter ¡2 for models with an AR(1) component.

AR MA SMA

Model ¡1 ¡2 ¡3 µ £

1 0.2391 – – °0.7053 °0.9500
(0.0542) – – (0.0421) (0.0118)

2 0.4878 0.1665 0.0991 °0.9761 °0.9472
(0.2699) (0.0295) (0.0273) (0.0095) (0.0129)

3 0.2394 – – °0.7056 °0.9502
(0.0542) – – (0.0421) (0.0118)

4 0.4894 0.1674 0.1003 °0.9785 °0.9484
(0.0277) (0.0295) (0.0273) (0.0091) (0.0130)

5 0.2396 – – °0.7059 °0.9503
(0.0542) – – (0.0408) (0.0118)

6 0.5043 0.1777 0.1133 °1.0000 °0.9453
(0.0261) (0.0290) (0.0262) (0.0034) (0.0132)

7 0.2391 – – °0.7053 °0.9500
(0.0542) – – (0.0408) (0.0118)

8 0.4878 0.1665 0.0991 °0.9761 °0.9472
(0.0278) (0.0295) (0.0273) (0.0095) (0.0129)

9 0.2394 – – °0.7056 °0.9502
(0.0542) – – (0.0421) (0.0118)

10 0.4289 0.1674 0.1003 °0.9785 °0.9484
(0.0277) (0.0295) (0.0273) (0.0091) (0.0130)

11 0.2396 – – °0.7059 °0.9503
(0.0542) – – (0.0422) (0.0118)

12 0.5043 0.1777 0.1133 °1.0000 °0.9453
(0.0261) (0.0290) (0.0262) (0.0034) (0.0132)
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Fig. 6. Statistical diagnostics of the adequacy of DSC model #2 (see Table 2). (a) Time
plot of the standardized residual series e

0 = e/æ(e), where e is the residual series of model
#2 and æ(e) is the standard deviation of e; (b) histogram of e

0 superposed with the density
curve of e

0; (c) normal-QQ plot of e

0; (d) sample autocorrelation function (ACF) of e; (e)
the Ljung-Box goodness-of-fit test of e. The lags in both (d) and (e) are given in months on
the x-axis.

validity of the characterization of the orders of the
DSC models.

3.2 Model adequacy

The residual series of each of the estimated DSC
models (Table 2) was statistically analyzed to ensure
model adequacy. The analyses of the adequacy of DSC
model #2 are shown in Fig. 6 as an example. A visual
check of the time plot of the standardized residual se-
ries (e0) of DSC model #2 (Fig. 6a) shows that the time
plot is analogous to that of a typical, random noise pro-
cess, primarily suggesting that no sensible patterns are
still contained in e0. The histogram of the standard-
ized residual series (Fig. 6b) reveals that the residual
series is normally distributed. The normality of the
residual series is further confirmed by the linearity be-

tween the quantiles of e0 and the quantiles of a the-
oretically normally distributed process (Fig. 6c). The
sample autocorrelation function (ACF) of the residual
series (e) of DSC model #2 (Fig. 6d) shows that no
spikes of the ACF are extended beyond the bound-
aries of the 95% confidence interval, meaning that the
values of the ACF are not significantly diÆerent from
zero at the lags ranging from h = 0 to, for example,
h = 60 months. This suggests that e is not auto-
correlated. The results of the Ljung-Box goodness-of-
fit test (Ljung and Box, 1978) of e (Fig. 6e) reveals
that all of the obtained p-values are larger than the
significance threshold of p=0.05. These relatively large
p-values confirm that the variation patterns of the tem-
perature signal in the NCDC dataset have been ade-
quately accounted for and that the remaining residuals
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Table 4. In-sample fitting and out-of-sample forecasting performances of the DSC(j, k)+(p, d, q)£(P , D, Q)s models
estimated on the NCDC temperature data. Models are ranked by criterion, with the ranking values given in parentheses.
Rank 1 represents the highest performance. The categorical rank is calculated based on the sum of the ranking values
per category (e.g., R̄

2 + AIC + SIC for “fit”).

Fit Forecast Rank

Model R̄

2 AIC BIC R̄

2 RMSE MAE MAPE Fit Forecast Overall

1 0.9956 °3.7084 °4.6831 0.9931 0.1237 0.0970 0.6979
(3) (7) (5) (3) (5) (5) (5) 6 5 5

2 0.9956 °3.7257 °4.6931 0.9936 0.1112 0.0883 0.6353
(3) (3) (1) (1) (1) (1) (1) 2 1 1

3 0.9956 °3.7071 °4.6782 0.9926 0.1325 0.1039 0.7455
(3) (8) (7) (7) (7) (8) (7) 8 8 8

4 0.9956 °3.7248 °4.6886 0.9931 0.1152 0.0911 0.6553
(3) (4) (2) (3) (3) (3) (1) 3 3 2

5 0.9956 °3.7045 °4.6683 0.9827 0.2667 0.2152 1.5202
(3) (10) (10) (9) (9) (9) (9) 10 9 11

6 0.9957 °3.7289 °4.6855 0.9815 0.3007 0.2478 1.7469
(1) (1) (3) (11) (11) (11) (11) 1 11 6

7 0.9956 °3.7057 °4.6731 0.9931 0.1237 0.0970 0.6979
(3) (9) (9) (3) (5) (5) (6) 9 6 7

8 0.9956 °3.7229 °4.6832 0.9942 0.1112 0.0883 0.6353
(3) (5) (4) (1) (1) (1) (1) 5 1 2

9 0.9956 °3.7043 °4.6682 0.9926 0.1325 0.1038 0.7455
(3) (11) (11) (7) (7) (7) (7) 11 7 10

10 0.9956 °3.7220 °4.6787 0.9931 0.1152 0.0911 0.6553
(3) (6) (6) (3) (3) (3) (1) 6 3 4

11 0.9956 °3.7071 °4.6584 0.9827 0.2699 0.2153 1.5210
(3) (12) (12) (9) (10) (10) (10) 12 10 12

12 0.9957 °3.7261 °4.6756 0.9825 0.3011 0.2482 1.7499
(1) (2) (8) (11) (12) (12) (12) 4 12 8

are nothing but Gaussian noise.

3.3 Model discrimination

3.3.1 Model selection

The overall performance of each of the candidate
DSC models was evaluated on the basis of the mea-
surements of the model’s goodness of fit against the
training subset of the NCDC data and the model’s
forecasting accuracy against the calibration subset of
the data. The model’s in-sample fitting performance
was measured using the adjusted coe±cient of deter-
mination (R̄2), Akaike’s (1974) information criterion
(AIC), and the Schwarz (1978) information criterion
(SIC), while the model’s out-of-sample forecasting ac-
curacy was measured using the root-mean-squared er-
ror (RMSE), the mean absolute error (MAE), and the
mean absolute percentage error (MAPE), as suggested
by De Gooijer and Hyndman (2006), in addition to
R̄2. The results (Table 4) show that all of the mod-
els fit the temperature data well. At least 99% and
98% of the variations in the training and calibration
subsets of the temperature data, respectively, were re-
produced by the DSC models. DSC model #6, which

is composed of a quintic trend, a single sinusoidal pe-
riodicity, and an error term represented by a SARIMA
(3, 1, 1)£(0, 1, 1)12 process (Table 2), was determined
to be the best model at fitting the training data, while
DSC model #2, whose linear trend (Table 2) was the
only diÆerence from DSC model #6 and DSC model
#8, whose triple sinusoidal periodicity was the only
diÆerence from DSC model #2, were determined to
be the best models at making out-of-sample forecasts.
Taking both the in-sample fitting and out-of-sample
forecasting together, DSC model #2 was determined
to be the model with the highest overall performance
(Table 4).

3.3.2 Model calibration

The forecasting performance of DSC model #2 is
illustrated in Fig. 7a by comparing the predicted tem-
peratures to the observed temperatures in the cali-
bration subset (January 2002–December 2011) of the
NCDC data. The comparison shows that the observed
and the predicted temperatures compare well. Statis-
tics (Table 4) show that 99.4% of the variations in the
calibration data were reproduced by the model. The
RMSE and MAE of this forecast are 0.11±C and
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Fig. 7. Comparison between the predicted and the ob-
served temperatures, January 2002–December 2011. The
prediction was made with model #2 (Table 2). (a) Time
plot of the predicted (solid line) and the observed (blank
circles) temperatures; (b) scatter plot of the predicted
and the observed temperatures against the solid 1:1 line.

0.09±C, respectively, while the MAPE is merely 0.63%,
relative to the average of the predicted temperatures at
14.3±C. Moreover, the model shows no sign of biased
estimations across the entire duration of the predic-
tion period (ª10 years), as suggested by the scatter
plot of the predicted temperatures and the observed
temperatures against the 1:1 line in Fig. 7b.

3.4 Forecasting with the best-performing

model

The monthly global surface temperature during the
second decade of the 21st century was forecast us-
ing DSC model #2. The global surface temperature
was predicted to rise at a steady rate of 0.12±C per
decade during the prediction period (Fig. 8a). This
result suggests that the global temperature will con-
tinue to rise during the second decade of the 21st cen-
tury at a rate consistent with the warming during the
“pronounced warming period” of 1970–2000 (Fig. 1a;
see Smith and Reynolds, 2005; Hansen et al., 2006).
However, the predicted warming is considerably lower
not only than IPCC’s prediction of 0.2±C per decade
(IPCC, 2007) but also lower than the prediction made

by Lean and Rind (2009) in which anthropogenic in-
fluences and natural variability were explicitly consid-
ered. Lean and Rind (2009) predicted that anthro-
pogenic influences and solar irradiance will increase
the global surface temperature 0.15±C in 2014, com-
pared to 2009. But as a result of declining solar activ-
ity, average temperature in 2019 was predicted to be
only 0.03±C higher than in 2014. This translates into
a 0.72±C and 0.76±C warming over the 20th-century
mean in 2014 and 2019, respectively, compared to our
predictions of 0.61±C and 0.66±C, respectively. From a
broader perspective, nevertheless, the predicted warm-
ing rate is twice the average rate of 0.52±C per century
(as reflected by the value of parameter b1 in Table 1, j
= 1, k = 1) derived from the instrumental records of
temperature during the last 150 years, suggesting that
the rate of global warming may continue to be un-
precedented, despite the current debate over the cause
of the stagnated warming observed during the past
decade and over future warming (Knight et al., 2009;
Kerr, 2009; Wang et al., 2010a, b; see section 3.4.1).
As a result, the annual mean temperature in 2017 is
expected to bypass that of the warmest year on record,
being either 1998 (Jones et al., 1999) or 2005 (Smith
et al., 2008; Fig. 8b). This is notable because global
temperature reached the record warmth in 2005 with-
out receiving a boost from an El Niño event (Hansen
et al., 2006), meaning that global temperature could
become higher than predicted if it is coincident with a
strong El Niño. The results also show that the global
temperature is predicted to rise by 0.6±C–0.7±C above
the 20th-century mean during the second half of the
prediction period (Fig. 8b), with 0.6±C being the net
warming observed in 2005. A comparison between the
magnitude of the predicted warming and the magni-
tude of the uncertainties associated with the prediction
in terms of standard errors during 2017–21 (Fig. 8a,
green shading), and in terms of the min–max range
and the interquartile range (IQR; Fig. 8b, the height
of the whiskers and the height of the box in yellow,
respectively), suggests with moderate confidence that
the predicted warming is likely unavoidable.

3.4.1 Uncertainties

The Monte Carlo approach was employed to ex-
amine the uncertainties associated with the model-
predicted warming trend. Box-and-whisker plots of
annual global temperature during 2012–21 were pro-
duced from 1000 runs of DSC model #2 (Fig. 8b).
The average IQR during the prediction period was
measured at 0.20±C, relative to the predicted average
annual temperature of 14.49±C during the period or
an overall warming of 0.63±C above the 20th-century
mean. The predicted warming trend of 0.12±C per
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Fig. 8. (a) Monthly global surface temperature as observed (before
December 2011, open circles) and predicted (January 2012–December
2021, open triangles). The prediction was made with DSC model #2
(Table 2). The annual mean global temperature is projected to bypass
the 2005-level in 2017, with a net warming of at least +0.6±C relative
to the 20th-century mean (13.86±C, dashed horizontal line); (b) box-
and-whisker plots of the DSC model #2-predicted annual mean global
surface temperature during 2012–21, in comparison to the observed
annual mean surface temperature during 2005–11 represented by the
horizontal bars in blue, showing the predicted warming trend and its
associated uncertainties in terms of the min–max range between the
top and bottom whiskers and the interquartile range or the height of
the box in yellow color.

decade, represented by the upward trend of the thick
horizontal bars located in the middle of the boxes in
yellow (i.e., the median values, Fig. 8b), depicts one
trajectory of temperature change—hopefully the most
probable one—within the yellow boxes. The ENSO-
free trend, represented by the thick segments of red
lines, obtained by subtracting ENSO’s warming eÆect
of 0.08±C per decade from the predicted trend, is much
flatter than the predicted trend but still falls within
the IQR represented by the yellow boxes (Fig. 8b).
This suggests that trajectories of temperature change,

other than the one represented by the median values,
are possible although statistically less likely. In other
words, the model only provides moderate confidence,
and the predicted warming trend should be considered
with caution.

Many factors cause climate change. While high an-
thropogenic gas concentrations (i.e., greenhouse gases
and tropospheric aerosols) are major drivers behind
warming temperature, the contribution of natural in-
fluences (e.g., solar activity in particular) to global
temperatures is also remarkable. Recent model-based
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Table 5. Structure of selected models. The “–” sign means “not applicable”.

Model Trend Periodicity ARIMA Source

Random Walk – – (1, 1, 0)£(1, 1, 0)12 Gordon (1991)
Pure SARIMA – – (3, 1, 1)£(0, 1, 1)12 Nickerson and Madsen (2005)
Pure analytical linear 1/12 cycles per month – Madsen et al. (1992)
Mixed linear – (3, 1, 1)£(0, 1, 1)12 Visser and Molenaar (1995)

Table 6. Comparison between the forecasting performances of DSC model #2 against models in Table 5. Models are
ranked per criterion, with the ranking values given in parentheses. Rank 1 represents the highest performance. The
overall rank is calculated per model based on the sum of the ranking values.

Model R̄

2 RMSE MAE MAPE Rank

DSC Model #2 0.9936 (3) 0.1112 (1) 0.0883 (1) 0.6353 (1) 1
Random Walk 0.9171 (4) 1.0739 (4) 0.9904 (4) 6.9334 (4) 4
Pure analytical 0.9948 (1) 0.1739 (3) 0.1482 (3) 1.0427 (3) 3
Mixed 0.9942 (2) 0.1403 (2) 0.1149 (2) 0.8128 (2) 2

studies reveal that increasing anthropogenic gas con-
centrations produced 0.3±C–0.5±C warming per cen-
tury over the 1906–96 period and are the dominant
cause of the recent warming since 1976 (Allen et al.,
2006). In contrast, natural influences also substan-
tially alter global surface temperatures, producing as
much as 0.2±C warming during major ENSO events,
ª0.3±C cooling following large volcanic eruptions, and
0.1±C warming from minima to maxima of recent so-
lar cycles (Lean and Rind, 2008). The global surface
temperature warmed little from 1999 to 2008 (Fig. 1a;
Knight et al., 2009), even as greenhouse gas concen-
trations have increased. Although the cause of this
warming stagnation is being debated, the facts suggest
that more attention is needed toward the separation of
the eÆects of natural influences from the eÆects of an-
thropogenic gas concentrations on global temperature.

One of the drawbacks of pure empirical models is
that such models lack explicit consideration of driv-
ing factors behind the problem that is being modeled
and are thus inferior in associating predicted changes
to relevant causes in the problem domain. Although
the predicted warming of 0.12±C per decade during
2012–21 is consistent with the recent warming during
1970–2000 and is comparable in magnitude to other
forecasts (e.g. Lean and Rind, 2009), it does not re-
flect the current trend of stagnated warming during
the past decade (Fig. 1a; Kerr, 2009). Considering
that solar irradiance is expected to increase at the end
of its current 11-year cycle, overlapping the first half
of the prediction period, and considering that the oc-
currences of ENSO, primarily with periods of two to
four years, and considering that volcanic events are
more di±cult to predict, the end of the ongoing warm-
ing stagnation is predictable, but uncertainty remains

regarding the exact timing. Obviously, including an-
thropogenic and natural parameters into the modeling
framework (Fig. 2) is a desirable step toward improved
prediction performance.

3.5 Comparison to other models

The out-of-sample forecasting performance of DSC
model #2 was compared to that of several other mod-
els (Table 5) that were developed to represent the
temperature or other environmental parameters such
as precipitation. Gorden (1991), for instance, hy-
pothesized that the interannual change of global tem-
perature closely resembles the process of a random
walk, i.e., ARIMA without moving average compo-
nents, while Visser and Molenaar (1995) used linear
trends together with ARIMA to detect global warm-
ing from Dutch and the Northern Hemispheric tem-
perature data. A pure analytical model consisting of a
linear trend and a single sinusoidal wave component,
as suggested by Madsen et al. (1992) for analyzing pre-
cipitation data from Florida, is also included in Table
6 for performance comparisons.

The modeling results show that DSC model #2
had the best overall performance in making short-term
(ª10-year) predictions of monthly absolute tempera-
tures (Table 6). The prediction errors of DSC model
#2 were the least among the models considered, no
matter whether these errors were expressed in terms
of the root-mean-squared error (RMSE), the mean ab-
solute error (MAE) or the mean absolute percentage
error (MAPE). This finding suggests that DSC mod-
els can be used to make dependable predictions over
the short term. The results also show that the mixed
model (Visser and Molenaar, 1995), which diÆers from
the DSC models in that a periodicity term is not pre-
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sented in the former, is the second best performing
model in prediction making (Table 5). Although the
predictions made by the pure analytical model (Mad-
sen et al., 1992) had the highest goodness of fit, in
terms of the adjusted R2, against the calibration data,
these predictions were not as accurate as those made
by the DSC model or the mixed model. It is not a
surprise that the random walk model (Gorden, 1991)
was systematically inferior to the other models because
the month-to-month and year-to-year variations of the
surface temperature are driven by many factors (see
IPCC, 2007 for “climatic forcing”) and because the
theory of tossing coins cannot reproduce these varia-
tions accurately.

4. Conclusions

The proposed DSC models were successfully ap-
plied on the NCDC global monthly absolute temper-
ature data. The evaluation of the candidate DSC
models (Table 5) revealed that the variations in the
NCDC temperature time series can be well character-
ized by using a linear trend, a single cosine wave at
the fundamental frequency of 1/12 cycles per month
and a SARIMA (3, 1, 1)£(0, 1, 1)12 process. This
DSC(1, 1) + (3, 1, 1)£(0, 1, 1)12 model is recognized to
have the best overall performance, taking in-sample
fitting and out-of-sample forecasting together. The
model predicts with moderate confidence that the
global temperature will likely continue to rise during
the second decade of the 21st century at a rate of
0.12±C per decade, which is twice the average rate of
0.52±C per century for the past 150 years. This corre-
sponds to a rise in global temperature by 0.6±C–0.7±C
above the 20th-century mean. Moreover, the DSC
model’s performance advantage over selected models
of other authors suggests that DSC models, when cou-
pled with other eco-environmental models, can be used
as a supplemental tool in short-term (ª10-year) envi-
ronmental planning and decision making.
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