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ABSTRACT

In recent years a number of statistical tests have been proposed for testing the hypothesis that global warming
is occurring. The standard approach is to examine one or two of the more prominent global temperature datasets
by letting Y, = g + bt + E,, where Y, represents the temperature at time ¢, and E, represents error from the
trend line, and to test the hypothesis that & = 0. Several authors have applied these tests for trend to determine
whether or not a significant long-term or deterministic trend exists, and have generally concluded that there is
a significant deterministic trend in the data. However, we show that certain autoregressive-moving average
(ARMA ) models may also be very reasonable models for these data due to the random trends present in their
realizations. In this paper, we provide simulation evidence to show that the tests for trend detect a deterministic
trend in a relatively high percentage of realizations from a wide range of ARMA models, including those
obtained for the temperature series, for which it is improper to forecast a trend to continue over more than a
very short time period. Thus, we demonstrate that trend tests based on models such as ¥, = a + bt + E, for the
purpose of prediction or inference concerning future behavior should be used with caution.

Of course, the projections that the warming trend will extend into the future are largely based on such factors
as the buildup of atmospheric greenhouse gases. We have shown here, however, that based solely on the available
temperature anomaly series, it is difficult to conclude that the trend will continue over any extended length
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of time.

1. Introduction

A common problem, which often has physical sig-
nificance, is that of testing for the presence of a linear
trend in data. The standard approach is to assume the
model

Y=a+b+E, (1.1)
where Y, represents the data at time ¢ and E, is the
deviation of the data from a straight line. In this paper
we make the assumption that E, is a stationary, zero-
mean process. A test of hypothesis is then often pro-
posed for testing that b = 0. If this hypothesis is rejected
at an appropriate significance level, then it is generally
accepted that a linear trend is present. By the nature
of the model, such a trend is said to be deterministic
or long term.

There has been much recent interest in determining
whether or not “global warming” is occurring. The
issues involved in this area are very complex and in-
volve the role of the so-called “greenhouse gases,”
clouds, the ocean, relationship to solar activity, etc. In
order to determine the effects of these various factors
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and in order to provide evidence concerning a warming
or lack of warming, climatologists have compiled
“global” temperature data for approximately the past
century from world weather records. Two of the more
prominent datasets of this type are the series of Hansen
and Lebedeff (1987, 1988) and the series given by Fol-
land et al. (1990). These two datasets are shown in
Fig. 1 where the temperatures are calculated by Hansen
and Lebedeff as degrees Celsius deviation from the
1951-1980 average while Folland et al. use the 1950-
1979 average. Throughout this paper we will refer to
these two series as the Hansen and Lebedeff series and
the IPCC series, respectively. The Hansen and Lebedeft
series is predicated on land-based stations. The IPCC
series incorporates land and marine data based on re-
sults obtained by Jones et al. (1991 ) along with a com-
bination of land-based results from Jones (1988) and
marine data from Bottomley et al. (1990). The Hansen
and Lebedeff series covers the 108 years from 1880-
1987 while the IPCC series extends from 1867-1990.
Although there are significant differences between these
two temperature series, the primary feature of each
temperature series is the general appearance of an in-
creasing trend over the time periods for which the data
are compiled.

Of course the concept of “average global tempera-
ture” is a difficult one to define and is particularly dif-
ficult to measure. Problems such as varying station
coverage and changing instrumentation cause difficul-
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FIG. 1. Global temperature deviation datasets.

ties in the data handling. Additionally, the problem of
optimally combining data from spatially and tempo-
rally related stations is a very difficult one. These issues
have been recently investigated by Gunst et al. (1993).
Nevertheless, much interest has been focused on these
particular series, and statisticians have been working
to determine whether or not the series, assumed to be
valid measures of global average temperature deviation,
provide evidence of an increasing temperature trend.
Researchers have used a variety of tests of the nature
of the linear trend test we described in the first para-
graph. In this paper we review many of those tests and
apply them to the Hansen and Lebedeff and IPCC
temperature datasets. In each case the hypothesis b
= 0 (i.e., Hy: b = 0) is rejected. Before proceeding it
is important to discuss the implications of such a find-
ing. One of the goals of time series analysis is to provide
forecasts beyond the time frame of the data, that is, to
predict Y, . givendata Y, . . ., Y, ; consequently, one
of the uses for time series models such as (1.1) is to
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provide equations for optimal forecasts. In the current
setting, it is obvious that climate predictions are nor-
mally more complex than those obtained from the
simpie model of (1.1) and certainly involve factors
other than the past history of the temperature data.
However, the implication of adopting such a model as
an appropriate model for slope detection and finding
a significant slope is that if conditions do not change,
then the fitted model suggests that temperature will
continue to climb, roughly along the fitted line. In fact,
this is the general form of the optimal forecasts from
this model (see Cryer 1986). This is the sense in which
the detected trend is called a long-term trend.

In this paper we investigate the performance of sta-
tistical tests for testing the hypothesis Hy: b = 0 in the
model Y, = a + bt + E,. In particular it is shown that -
when there is a large correlation between successive
values (but no deterministic trend ), temporary trends
will occur in the data and tests based on the model Y,
= g+ bt + E, will very frequently conclude that a trend
exists, whereas the best forecasts based on autoregres-
sive-moving average (ARMA) processes do not sup-
port this conclusion.

Further, we fit ARMA models to the warming trend
temperature datasets. In each case we see that the cor-
relation structure of the data is not nearly strong enough
for the ARMA-based forecasts to predict any continued
increase, that is, to support the position of long-term
trend. Moreover when data are generated from these
ARMA models, we demonstrate that the aforemen-
tioned tests quite often incorrectly predict that a trend
will continue, that is, the short-term trends in these
realizations cause the tests to erroneously conclude &
# 0 (and hence, treat them as if they were long-term
trends). We hasten to add that we are not suggesting
there is or is not a warming trend. We are simply
pointing out that these statistical tests for testing Hy:
b = 0 have little or no ability to distinguish between
realizations from ARMA models with a high correla-
tion between successive values and those from models
of the form Y, = a + bt + E,. Consequently, the con-
clusion of a warming trend using the above-mentioned
tests is clearly heavily dependent on the assumed
model.

2. Testing for trend
a. Regression-based models

A basic approach to testing for trend in the data is
a regression approach in which time, ¢, (in years) is
taken as the independent variable and temperature de-
viation, Y,, is taken as the dependent variable. Specif-
ically, the model :

Y=a+bt+E, (2.1)

is assumed where the E, are the residuals. Without loss
of generality we will assume throughout that temper-
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ature readings are taken at ¢ = 1, 2,
squares estimator

-+ », 1. The least-
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was obtained for the series in question resulting in &

= 0.00543 for the Hansen and Lebedeff data and b

= 0.00396 for the IPCC data. (It should be noted that
the two temperature series span somewhat different
time periods.) Under the usual regression assumptions,
that is, when the residuals are independent and nor-
mally distributed with mean zero and variance o, the
estimated standard error of b is given by

 n 172
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where d = ¥ — bt The test of Hy: b = 0 is based on
the fact that 5/SE(" () is distributed as Student’s t
with 7 — 2 degrees of freedom when the null hypothesis
is true. Hanson et al. (1989) use a two-phase regression
analysis on Northern Hemisphere temperature data.
They also used a nonparametric approach that does
not assume normal residuals to test whether or not
there was a significant temperature trend in data for
the Northern Hemisphere. Their approach is equivalent
to ranking independent and dependent variables sep-
arately and performmg a regression analysis on the
ranks. In Table 1 we give the ratios /SE‘"(b) for the
ongmal data and rank-based estimators for the two
series. In each case we see that the results strongly in-
.dicate an increasing linear trend.

In Fig. 2 we show the residuals associated with the
least-squares fits to the two temperature series. It is
clear that in both cases there is noticeable autocorre-
lation among the residuals. Thus, the usual regression
analysis results in Table 1 (either on the original data

or on ranks) are not appropriate for the data under
consideration.

TABLE 1. Ratios b/SE®(b) based on regression approaches
for global temperature series.

Series b/SED(H) rank/SEV(Brani)
IPCC 13.15 13.01
Hansen and Lebedeff 12.441 11.675
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FIG. 2. Residuals of temperature deviation
datasets from least-squares lines.

b. Time series models with constant mean

Closer examination of the temperature datasets in
Fig. 1 suggests the need for time series approaches
that take into consideration the correlation structure
in the data. Time series analysis of such data involves
determining models that describe the manner in which
the series evolve in time, and then based on the models,
calculating the forecasts of temperature deviations for
future years. The key question of interest is whether
these models assess the increasing tendency of the tem-
peratures in the observed realizations of Fig. 1 to be of
sufficient strength to predict that future temperatures
will increase and if not, would tests of Hy: b = 0 still
often conclude & # 0?

Box and Jenkins (1976) have popularized the AR-
IMA (autoregressive integrated moving average ) mod-
els for describing a wide variety of time series behavior.
These models are either stationary or are nonstationary
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on the boundary of the stationary region. Letting B*Y,
= Y,.r, the ARMA(p, q) model is given by

®(B)(Y, — u) = 6(B)a,, (2.4)

where
$(B)=1-¢B— - — B
(B)y=1-6B— --- —0,B4,

with ¢, # 0 and 6, # 0, where the polynomials ¢(B)
and #(B) share no common factors, and where 4, is
zero mean white noise with variance 3. An ARMA
(p, g) process is stationary if and only if all the roots
of the characteristic equation ¢(r) = 0 lie outside the
unit circle. Best forecasts based on a stationary ARMA
model eventually tend to Y.

An interesting class of nonstationary ARMA models
is that for which some of the roots of ¢(r) = 0 lie on
the unit circle. Box and Jenkins (1976) refer to such
a model as an ARIMA (p, d, ¢) model if ¢(B)
= ¢,(B)(1 — B)? where ¢,(B) is of order p and all of
the roots of ¢,(7) = 0 lie outside the unit circle. Fore-
casts of Y,.; for / = 1 based on a realization Y, ..

-
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Y, from the process (1 — B)(Y, — p) = a, are simply
the last observed value, that is, Y, for each /. Forecasts
from an ARIMA(p, 1, g) model ¢,(B)(1 — B)(Y,
— p) = 6(B)a, tend to a constant that is not usually
equal to Y. In Fig. 3 we show realizations from a model
of this form. The nature of these realizations is dis-
cussed in section 3. A model with one root near +1
will have short-term forecasts which are relatively con-
stant.

Forecasts beyond the end of a realization from the
model (1 — B)*(Y, — ) = a, follow a line determined
by the last two data values. Forecasts from the ARIMA
model ¢,(B)(1 — B)2(Y, — u) = 6(B)a, would even-
tually tend to a line, and thus, these types of models
would forecast a linear trend to continue. A nearly
nonstationary ARMA (p, ¢) model that has two roots
near +1 and no other roots near the unit circle will
have forecasts that approximate a linear trend for the
near future.

Gray and Woodward (1981) discussed the ARUMA
(autoregressive unit root moving average) models,
which are nonstationary models for which the roots
on the unit circle are not constrained to be

20 40 60 80

100 120 140 160 180 200
Time

FIG. 3. Realizations of length n = 200 from the ARIMA(9, 1, 0) model for the Hansen and Lebedeff series.
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TABLE 2. ARIMA models for global temperature series.

IPCC
(1 — B)Y(1 + .5618B + 1.3398B% + .68378® + .6966B* + .57368°
+ .3208B° + .4653B" + .1421B® + 2917B°)(Y, + .127)
= (1 + .2868B + .7678B%a,

o2 = .008035
Hansen and Lebedeff data

(1 — BY(1 + .4774B + .5473B% + .4594B° + 3276B* + .3680B°
+ .0545B° + .2968B" + .0303B°% + .1559B°)(Y, + .110) = q,
o =.013188

+1. For example, forecasts from the model ¢,(B)(1
—(3)!2B + B*)(Y, — p) = 6(B)a, will have a sinusoidal
behavior with period 12.

In Table 2 we show the ARIMA models obtained
for the two temperature series. Realizations from the
ARIMA (9, 1, 0) model fit to the Hansen and Lebedeft
data are shown in Fig. 3 and discussed in section 3. In
each case the procedure given by Gray and Woodward
(1986) was utilized for prefiltering the series to deter-
mine nonstationary or near-nonstationary components
in the data. In each case this procedure identified one
near-unit root, and the series were differenced. The
orders of the transformed data were identified using
Akaike’s information criterion (AIC; Akaike 1974) and
generalized partial autocorrelations (GPAC; Wood-
ward and Gray 1981). Both methods independently
produced the same models. Maximum likelihood es-
timates of the parameters in these transformed series
were found using International Mathematical and Sta-
tistical Laboratories (IMSL) subroutine FTML. For
each model, the residuals passed the standard tests for
white noise. In Table 3 we show the irreducible first-
and second-order factors of the polynomial ¢(B) for
the two models. This presentation is similar to that
used by Woodward and Gray (1983) and Gray and
Woodward (1986). For an irreducible second-order
factor, 1 — o, B — a B?, the associated roots are com-
plex conjugates whose absolute reciprocal is |az|. The
system frequency associated with this factor is

f= ! cos“( & )
2w 2V — ay
For a first-order factor, 1 — a; B, the absolute value of
the reciprocal of the associated root is |a;| while the
associated frequency is f=0if oy > 0and f= .5if ¢,
< 0. Frequency is given in cycles per sampling unit
which in this case is cycles per year. Nonstationary and
nearly nonstationary factors dominate the behavior of
an ARIMA or ARMA model in the sense of deter-
mining the correlation structure. [See, e.g., Box and
Jenkins (1976 ) and Gray and Woodward (1981).] In
Table 3 it is seen that in each case, the most dominant
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factoris 1 — B, the factor associated with the unit root.
Thus, the ARIMA models for the temperature datasets
are accounting for the “trendiness” in the data by in-
corporating a first-order factor with positive unit root
which, as we have discussed, produces random tem-
porary trends. In neither model is there an indication
of two roots of +1 or even of two roots near +1. Thus,
the ARIMA models fit to the temperature series do not
predict that the trend will continue.

It should be noted that Tsonis and Elsner ( 1989) fit
a stationary AR (4) model to the 108-year Jones et al.
(1991) data for 1881-1988. The key difference between
the model we obtained and that used by Tsonis and
Elsner is that their model is stationary with a root

near +1 while our model is nonstationary due to a
root of +1.

¢. Time series models with nonconstant mean

Several authors have approached the topic of testing
for trend in a time series by assuming that the observed
series Y, can be expressed as Y, = u, + E, where E, is
a stationary process with zero mean. See for example,
Grenander (1954), Brillinger (1989), Kuo et al.
(1990), Cryer (1986), Bloomfield (1992), and
Bloomfield and Nychka (1992). Moreover, the work
by Bloomfield and Nychka, Bloomfield, and Kuo et
al. considered the specific application of testing for
trend in global temperature data. If u, is considered to
be a linear function of ¢, that is, u, = a + bt, then the
residuals E, are the same as those in (2.1). A procedure

TABLE 3. Autoregressive factor tables associated with
ARIMA models for temperature data.

ARIMA(9,1,2) fit to IPCC data

Absolute reciprocal

AR factors of root Frequency
1—-B 1.000 .00
1 + .346B + .9228° .960 28
1 — .431B + 76482 874 21
I + .865B .865 .50
1+ 1.054B + .727B* .853 .36
1 — 1.271B + 659B* 812 A

Absolute reciprocal

MA factors of root Frequency

1 + 287B + .768B* 876 28

ARIMA(9,1,0) fit to Hansen and Lebedeff data

Absolute reciprocal

AR factors of root Frequency
1-B . 1.000 .00
1 + .959B 959 .50
1 + 1.100B + .706B* .840 .36
1 — .611B+ .672B* .820 19
1 — 1.279B + .6228° .789 .10
1 +.308B + .551 82 .742 28
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that has been widely employed has been that of esti-
mating b using the least-squares estimator given in (2.2)
and testing its significance using a standard error that
does not make the independent errors assumption of
regression analysis. Grenander (1954 ), Cryer (1986),
and Bloomfield and Nychka (1992), address this
problem. Specifically, it can be seen that the standard
error of b is given by

o 12
%mwk{aptﬁ

24 nos! 1/2
X (’Yo Ao 2 > 2 (t—0)(s— l)%«)] ,
where v, denotes the kth autocovariance of E,. Another
form for this standard error considered by Bloomfield

and Nychka (1992) is

i 5 172
SE<3>(b>=[2 [ W(f)S(f)df] . @25)

where
W)= I% be 7|2,
=1
with
b= — t—1 ’
Z(t—1)?

that is, b = 27, b,Y,, and where S(f) denotes the
spectrum_of E,. It should be noted that SE®(b)
= SE®(b), but we introduce each here because they
lead to different standard error estimates. For a given
realization, ¢ and b can be obtained as the usual least-
squares estimates, and E, can be estimated by

E, =Y —d— bt (2.6)
We consider the estimator
~ R ~ R 288
(2) = (1) 2, %90
SE(b) (SEY (b)) +n2(n2—1)2
n s—1 _ _ 1/2
X 2 2 (t=0(s— )Y (2.7)
s=2 =1

where

Thus SE‘Z)(b) is the naive estimator obtained by re-
placing v by 4 in SE®(b) except at k = 0 where we
use nyo/n — 2 to estimate <y, as is done in the regres-
sion case. It will be seen in the simulations that follow
that SE®(b) in (2.7) is a poor estimator of
SE®(b). The inferior performance of this estimator
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seems to be based on its use of estimates, ¥, which
for lags near 7 are quite variable. Alternative estimators
that eliminate or downweight the contribution of 4,
for k near n might be used, but these have not been
considered here. We follow the suggestion of Bloom-
field and Nychka and estimate SE) () by replacing
S(f)in (2.5) with an appropriate estimate. In our im-
plementation we fit an autoregressive model to E, and
use the corresponding autoregressive spectral estimator
to estimate S(f).

Grenander (1954) has shown that the asymptotic
standard error of b in the current setting is given by

- 1/2

SE®(b) = , (2.8)

where S(0) is the spectrum of E, at f = 0. In our im-
plementation we estimated S(0) using the autoregres-
sive spectral estimator used for SE‘®(5).

Ratios b/SE(b), j = 2, 3, 4 are shown in Table 4
for each of the temperature series in Fig. 1. Since these
ratios are smaller than those in Table 1, we see that
the standard errors that take into consideration the au-
tocorrelation in the data are larger than those based
on usual regression assumptions. However, from Table
4 we see that these approaches all yield ratios ranging
from 4.0 to 6.6 and thus indicate a significant linear
trend when 5/SEY(b) is approximately standard nor-
mal under the null hypothesis of no trend. We will
discuss these issues further in section 3. The residuals
from the estimated trend line, that is, E, as given in
(2.6), were modeled with an autoregressive model of
order p = 10 for the IPCC data and the Hansen and
Lebedeff data. Thus, SE®(5) and SE() were ob-
tained using the corresponding autoregressive spectral
estimator in each case. Since the slope estimates are
significantly different from zero, forecasts based on
these models predict an increasing linear trend in future
temperature. It should be noted that although we have
not implemented their procedure in our analysis, Kuo
et al. (1990) also found a significant linear trend in the
Hansen and Lebedeff data.

Another approach to estimating the parameters in
(2.1)isto assume E, to be an AR( p) model and obtain
estimates of a, b, ¢y, . .., ¢p, and o2 using maximum
likelihood procedures. Bloomﬁeld (1992) uses this
technique on the Hansen and Lebedeff and the IPCC
data and concludes that there is a significant trend

TABLE 4. Ratios b/SEX(D), j = 2, 3, 4 for time series approaches
applied to global temperature series.

Series b/SE®(b) b/SEX(b) b/SEW(b)
IPCC 6.575 4975 4.780
Hansen and Lebedeff 5.874 4.697 3.976
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~ TABLE 5. Maximum likelihood results for the
temperature datasets.

Test statistic

bwe ratio
IPCC 00415 3.779
Hansen and Lebedeff .00583 4.983

component. Qur implementation of this procedure us-
ing SAS AUTOREG (1984 ) again used p = 10 in both
cases. The results in Table 5 were obtained, and our
results agree with those of Bloomfield in finding a sig-
nificant trend. This approach has the intuitive appeal
that the estimation of b is made “‘simultaneously” with
that of the autoregressive components of the model,
allowing for the possibility that the estimation scheme
can intelligently distinguish between trend-type be-
havior induced by a + bf and that induced by the au-
toregressive component of the model. We address the
ability of the MLE to make this distinction in the next
section.

Brillinger (1989) considers the time series model Y,
= u, + E, where u, is monotonic and where E; is a
stationary process with zero mean. The monotonicity
implies that either u, < .+, for all ¢ or else yx; = u,4q
for all ¢. In either case we require that strict inequality
holds for some ¢ in order to declare u, monotonic. Bril-
linger (1989) considers the estimator >, ¢;Y, where
the coefficients ¢, are due to Abelson and Tukey (1963)
and are given by

i L

“The residuals E, are calculated as E, = Y, — fi, where

1 v
iy = Yirss
e 2v+lszz_u "

fort=v+ 1, «---, n— v. A test statistic which is
approximately standard normal when Hy: u, = u is
true, is given by Brillinger (1989) as

M=

Y,

4

[S,(0) Z i)'
=1

3

(2.10)

where .§',,( 0) is the smoothed periodogram spectral es-
timator given by

L
T 1|

S$,(0) = ,
( 1 - aj)2

™M S~

j=1
where §; denotes the discrete Fourier transform of the
residuals, given by
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n—v

§= 3 E(t)exp(—2mi(t — 1)j/n),

t=v+1

and the g; values are given by
2= sin{2mj(2v + 1)/2n}
T (2v + 1) sin(2wi/2n)

The window length, L, should be small with respect
to n. The linear combination 2., ¢, Y, strongly con-
trasts the beginning and ending of the series and should
be positive or negative depending upon whether the
monotonic trend is increasing or decreasing, respec-
tively.

In our implementation we have taken L = n/20 and
v = n/ 10. The resulting test statistics for the IPCC and
Hansen and Lebedeff series are 6.650 and 8.468, re-
spectively, again strongly indicating a monotonic trend.

3. Simulations

In the preceding section we considered several tech-
niques for analyzing time series data and determining
whether or not an increasing temperature trend is fore-
cast for an extended time into the future. It is important
to understand that models (1.1) and (2.4) are philo-
sophically different. Model (1.1) assumes that the ob-
servation is a line plus noise while the ARIMA model
assumes that no such line exists. That is, the first model
accounts for the appearance of a trend by the assump-
tion of the deterministic curve a + bt while the ARIMA
model assumes that this behavior is due to correlation
in the data. Specifically, for ARIMA models with at
least one unit root, it is very common for realizations
to trend up for a while and then down for a while as a
part of their typical behavior. Since none of these
ARMA models will forecast a trend to continue unless
at least two unit roots are present, the question of trend
when posed with regard to ARMA models is, for the
reason discussed in section 2, a question of testing for
unit roots. A single unit root would imply that the time
series has random temporary trends, that is, changes
level. However, as mentioned earlier, forecasts from
such a model are relatively constant and do not predict
that a trend will continue. Two such roots would pro-
duce a linear trend as the best forecast for the future,
while two roots near unity or complex roots close to
the unit circle with associated frequency near zero
would give similar behavior. In the case of one unit
root and another positive root, say in the range <.8,
the trend will be forecast to continue only for a short
time, and long term forecasts soon level off. It is quite
clear from Table 3 that neither of the fitted models for
these data has two roots sufficiently close to unity to
forecast even a short trend.

The preceding discussion does not imply that real-
izations from ARIMA models with a single unit root,
such as those fit to the temperature series, will not ex-
hibit some trend. Quite the contrary, since almost all
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realizations of such a process will exhibit some rather
lengthy trends, but none of these trends persist. Figure
3 shows four realizations of length » = 200 from the
ARIMA (9, 1, 0) model obtained for the Hansen and
Lebedeff data. In all four of the realizations there are
periods of increasing or decreasing trends of varying
lengths. The first 100 observations in Figs. 3a and 3b
have an appearance similar to that of the temperature
series. However, in each case, the trend did not con-
tinue for the entire realization length. In Fig. 3a there
is somewhat of a leveling off after the initial climb,
while in Fig. 3b a more modest upward trend is fol-
lowed by a noticeable decrease. In Fig. 3c a realization
is displayed for which the trend is downward and fairly
persistent for the entire 200 time periods of the real-
ization. In Fig. 3d we see a picture of the classic “wan-
dering” behavior (more precisely, random changes in
level) associated with models having one unit root. In
all cases, had the realizations been sufficiently long,
this same type of wandering behavior would have been
observed. Paleoclimate obtained from such sources as
ice cores, ocean sediments, and data from tree rings
suggest that plots of past global temperatures over a
much longer record would have very much the same
appearance as Fig. 3d.

Based on our analysis of the actual temperature data,
we believe that ARIMA models such as those given in
Table 3 are plausible models for these datasets. The
question then arises concerning the appropriateness of
our previously described tests for linearity if in fact the
data are generated from an appropriate ARIMA model.
In this section we report on simulations designed to
examine this question.

The simulations involve generating 100 realizations
of length n = 100 from selected models. For each re-
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alization we test for a significant trend using the tests
suggested by the results in section 2. Specifically, the
decision criteria used are as follows:

(i) Linear trend, that is, , = a + bt: null hypothesis
of no trend is Hy: b = 0. We will appeal to asymptotic
normality and for each of the associated tests, we reject
H, at_the nominal o = 0.05 level whenever z¢/
= b/SED(b) s greater than 1.96 in absolute value. For
the “regression setting,” that is, i = 1, we consider tests
based on original data and ranks.

(ii) Monotonic trend: null hypothesis of no trend
is Hy: u, = p. Again we appeal to asymptotic results
and reject H, at the nominal 0.05 significance level
whenever the test statistic in (2.10) is greater than 1.96
in absolute value.

The tests considered above are all approximate tests,
so we first consider the actual significance level asso-
ciated with the nominal significance level of 0.05. To
this end we first simulated 100 realizations of length »
= 100 from the model in which Y, is normal white
noise with zero mean. Thus, in this setting even the
regression assumptions apply. In the first row of Table
6 we show the proportion of the realizations for which
the null hypothesis of no trend is rejected when the
model is white noise. There it can be seen that all of
the tests except that using SE®(4) have observed sig-
nificance level (false-alarm rate) close to 0.05. The ob-
served significance levels associated with the use of
SE®(b) are unacceptably high which is consistent with
our earlier observation that SE®(b) would be a
poorly behaved estimator.

Of course, the situation in which Y, is white noise
is not the only model for which the null hypothesis of

TABLE 6. Proportion of realizations from AR models for which significant trend is incorrectly detected at the nominal 5% level.

Number of realizations = 100
Realization length = 100

Tests for linear trend based on SE?(b)

J

Test for
1 monotonic
1 (ranks) 2 3 4 trend
(a) Y, = a .04 .04 26 .06 .07 .07
(b)(1 —.5B)Y, = q 13 13 .14 .05 .05 .03
© (1 +.5B)Y,=aq, .00 .00 23 .07 .07 10
(d) (1 — .9B)YY, = q, .64 .63 43 .20 17 25
) (1 + 9B)Y, = a, .00 .00 1 .04 .06 .30
(- .95B)Y, = a, .79 .76 53 .35 31 .50
(g) (1 + 95B)Y, = q, .00 .00 11 .05 12 27
M) —-BY,=a 85 .83 65 .59 .52 75
i) (1 + BY,=aqa, .00 .00 03 .02 .54 63
() (1 +.5BYY, =q, .00 .00 27 11 13 15
%) (1 + .9B%Y, = q, .00 .00 14 .07 17 25
O (1 + 95BYY, = a, ) .00 .00 12 1 .26 36
(m) (1 — BY1 —.7B)Y, = q, .87 .86 73 63 .58 79
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no trend is true. Specifically, if Y, is any stationary
process, then the null hypothesis is technically true. In
Table 6 we show the proportion of rejections for several
other simple autoregressive models that are stationary
or have one unit root. We include models that should
show some trending behavior in their realizations and
models that should not. Although it is not surprising
that the tests would perform poorly on model (m) since
it should show some temporary trend behavior, it is.
amazing that several perform poorly on model (i),
which would rarely show trend behavior. Indeed for
several of the models considered, the false-alarm rate
is surprisingly large. In order to understand this phe-
nomenon, we examine these models more closely. One
of the models that shows a large false-alarm rate for
the tests for trend is the AR(1) model, (1 — .95B)X,
= g,. For this model, px = .95% and thus there is a high
positive autocorrelation among values in the series rel-
atively close to each other. Such an autocorrelation
structure causes wandering or the rather random tem-
porary trend behavior in realizations, and according
to Table 6, resulted in several realizations for which
the tests identified a trend in the data. However, the
behavior of these realizations is such that trends are
equally likely in either direction and very long realiza-
tions will typically show both upward and downward
trends. The realizations for the nonstationary models
(1 — B)YY,=a,and (1 — B)(1 — .7B)Y, = a, showed
an even stronger tendency to have significant trends
in realizations. Forecasts from the models (1 — B)(1
—.7B)Y, = a, typically suggest a weak trend to continue
for fewer than five time periods beyond the end of the
observed series. The models of the form (1 — ¢,B?)Y,
= q,, ¢, = —0.5, —0.9, and —0.95, have peaks in the
spectrum at /= 0.25 and consequently have realiza-
tions that display periodic behavior. Similarly, the
models (1 — ¢, B)Y, = a, for negative ¢, have realiza-
tions with periodic behavior associated with /= 0.5.
These periodic models did not have trends introduced
by the wandering behavior associated with models that
have a high positive correlation between successive
values produced by positive real roots of ¢(r) =
However, the observed proportions of realizations for
which several of the tests detected a significant trend
were still substantially higher than the nominal 0.05
level for these models, a surprlsmg result. It should be
noted that for all models in Table 5, SE®)(b) and
SE“(b) were obtained using an AR(2) model for E,.
Use of an AR(5) model was also examined, and this
produced only minor differences from the tabled
values.

Again, for all of the models considered in Table 6 it
is inappropriate to incorporate a deterministic trend
in the forecasts of the form introduced by the models
of section 2. The important point is that if a trend is
detected in a dataset using the tests discussed in that
section, such a finding does not eliminate from con-
sideration ARMA models for which the characteristic
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equation has a positive real root close to or on the unit
circle.

Finally, we examine simulated realizations from the
ARIMA models in Table 3 that were fit to the tem-
perature series in order to determine whether or not
the realizations have the appearance of the temperature
series and whether the tests detect a significant trend.
In each case we have simulated 100 realizations of the
length in the corresponding temperature series. In Ta-
ble 7 we show the results of the simulations and it is
clear that in both cases, the tests often detect a trend,
with the results being similar to those for the case (1
— B)(1 — .7B)Y, = a,in Table 6. In Table 7 we also
see that the MLE does not distinguish between the two
types of trend behavior, since for these two models,
which do not have a deterministic trend, at least 50%
of the realizations were found to have a significant
trend. However, it is important to recall that neither
of the fitted models of Table 3 would predict a future
trend under a continuation of the conditions that pro-
duced the data.

4. Concluding remarks

In this paper we have shown that although there is
a major distinction between ARIMA models whose
characteristics produce random trends and models of
the form (1.1), this difference may be very difficult to
ascertain from realizations of length approximately »
= 100. Several authors (e.g., Bloomfield and Nychka
1992; Bloomfield 1992; Kuo et al. 1990) have applied
tests for trend to determine whether or not a significant
trend component exists in the widely referenced global
temperature datasets, and have generally concluded
that there is a significant deterministic, that is, long-
term trend in the data. In this paper we apply several
tests for trend to the Hansen and Lebedeff and the
IPCC temperature series. These tests do indeed suggest
the existence of a significant deterministic trend. At
first glance this appears to answer the question con-
cerning whether or not a deterministic trend compo-
nent should be included in the model. However, as we
have demonstrated, the ARIMA model is also a plau-

TABLE 7. Proportion of realizations from models fit to temperature
deviations series for which a significant trend is incorrectly detected.

Number of realizations = 100

Tests for linear trend

based on SEX(d)
J
Test for
1 monotonic
1 (ranks) 2 3 4 MLE trend
1PCC
ARIMA(9,1,2) 81 81 .66 .57 49 .50 .69
Hansen and Lebedefl
ARIMA(9,1,0) 85 .84 .75 .67 .57 .60 .74
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sible model for these data. Moreover, our simulation
results indicate that application of these trend tests to
realizations from ARIMA models fit to the temperature
series results in the detection of a significant trend in
a high percentage of the realizations even though it
would be inappropriate to forecast such a future trend
for even a short time interval. Let it be clear that we
do not claim that our best predictions, using the tem-
perature data alone, are that there will be no increase
in the temperature; or that the fixed-mean ARIMA
models fit to the temperature series are preferable to
fits using model (1.1). We do claim, however, that
these ARIMA models are at least plausible models for
the temperature series. Realizations from these ARIMA
models have random trends that cause the trend tests
to detect a long-term trend in a high percentage of the
cases. Thus, if temperature were behaving according
to a “correlation-based” model such as the ARIMA,
then there is a high chance that a significant determin-
istic trend would be incorrectly inferred.

The authors have previously observed a similar phe-
nomenon concerning the use of Priestley’s P()\) test
for determining whether or not a harmonic component
should be included in a model for the Canadian lynx
data (see Woodward and Gray 1983). In that paper it
was shown that this test (designed to determine whether
the peak in the estimated spectra is sufficiently sharp
to assume that the model contains a harmonic com-
ponent) is unable to satisfactorily distinguish between
a model with a harmonic component and an ARMA
model associated with a pair of complex roots near the
unit circle. The results of the current paper are entirely
analogous, except here the peak in the spectrum is at
the zero frequency.

As stated previously, the projections that the warm-
ing trend will extend into the future are largely based
on such factors as the buildup of atmospheric green-
house gases. We have shown here, however, that based
solely on the available temperature data, there is no
conclusive evidence that the trend should be predicted
to continue. This is primarily due to the difficulty in
distinguishing between data with long-term trends and
those with random trends for series of the lengths of
the temperature series. Consequently, tests based on
the model Y, = u, + E, for the purpose of prediction
or inference concerning future behavior should be used
with caution.

Acknowledgments. This research was partially sup-
ported by DOE Environmental Sciences Division
Grant DE-FG05-90ER61015. .

JOURNAL OF CLIMATE

VOLUME 6

REFERENCES

Abelson, R. P., and J. N. Tukey, 1963: Efficient utilization of non-
numerical information in quantitative analysis: General theory
and the case of simple order. Ann. Math. Stat., 34, 1347-1369.

Akaike, H., 1974: A new look at the statistical model identification,
IEEE Trans. Autom. Control, 19, 716-723.

Bloomfield, P., 1992: Trends in global temperature. Clim. Change,
21, 1-16.

——, and D. W. Nychka, 1992: Climate spectra and detecting climate
change. Clim. Change, 21, 275-287.

Bottomley, M. C., C. K. Folland, J. Hsiung, R. E. Newell, and D. E.
Parker, 1990: Global Ocean Surface Temperature Atlas. U.K.
Meteorological Office, 20 pp., 313 plates.

Box, G. E. P, and G. M. Jenkins, 1976: Time Series Analysis: Fore-
casting and Control. Holden-Day, 575 pp.

Brillinger, D. R., 1989: Consistent detection of a monotonic trend
superposed on a stationary time series. Biometrika, 76, 23-30.

Cryer, J. D., 1986: Time Series Analysis. Duxbury Press, 286 pp.

Folland, C. K., T. R. Karl, and K. Y. Vinnikov, 1990: Observed
climatic variations and change. Climate Change: The IPPC Sci-
entific Assessment. J. T. Houghton, G. J. Jenkins, and J. J.
Ephraums, Eds., Cambridge University Press, 192-238.

Gray, H. L., and W. A. Woodward, 1981: Applications of s-arrays
to seasonal data. Applied Time Series Analysis II, D. Findley,
Ed., 379-413.

——, and ——, 1986: A new ARMA spectral estimator. J. Amer.
Stat. Assoc., 81, 1100-1108.

Grenander, U., 1954: On the estimation of regression coefficients in
the case of an autocorrelated disturbance. Ann. Math. Stat., 29,
252-272.

Gunst, R. F., S. Basu, and R. Brunell, 1993: Defining and estimating
mean global temperature change. J. Climate, in press.

Hansen, J., and S. Lebedeff, 1987: Global trends of measured surface
air temperature. J. of Geophys. Res., 92, 13 345-13 372,

——, and ——, 1988: Global surface air temperatures: Update
through 1987. Geophys. Res. Lett., 15, 323-326.

Hanson, K., G. A. Maul, and T. R. Karl, 1989: Are the atmospheric
‘greenhouse’ effects apparent in the climatic records of the con-
tiguous U.S. (1895-1987)? Geophys. Res. Lett., 16, 49-52.

Jones, P. D., 1988: Hemispheric surface air temperature variations:
recent trends and an update to 1987. J. Climate, 1, 654-660.

——, T. M. L. Wigley, and G. Farmer, 1991: Marine and land tem-
perature data sets: A comparison and a look at recent trends.
Greenhouse Induced Climatic Change: A Critical Appraisal of
Simulations and Observations. M. E. Schlesinger, Ed., 153-172.

Kuo, C., C. Lindberg, and D. J. Thomson, 1990: Coherence estab-
lished between atmospheric carbon dioxide and global temper-
ature. Nature, 343, 709-714.

SAS Institute, 1988: SAS/ETS User’s Guide, Version 6, first ed. SAS
Institute, Inc., 560 pp.

Tsonis, A. A., and J. B. Elsner, 1989: Testing the global warming
hypothesis. Geophys. Res. Lett., 16, 795-797.

Woodward, W. A., and H. L. Gray, 1981: On the relationship between
the s-array and the Box-Jenkins method of ARMA model iden-
tification. J. Amer. Stat. Assoc., 76, 579-587.

, and , 1983: A Comparison of autoregressive and harmonic

component models for the lynx data. J. Roy. Stat. Soc., A146,

71-73.




