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Chapter 30  The caret package
We have already learned about regression and kNN as machine learning algorithms. In later
sections, we learn several others, and this is just a small subset of all the algorithms out there.
Many of these algorithms are implemented in R. However, they are distributed via different
packages, developed by different authors, and often use different syntax. The caret package
tries to consolidate these differences and provide consistency. It currently includes 237 different
methods which are summarized in the caret package manual . Keep in mind that caret does
not include the needed packages and, to implement a package through caret, you still need to
install the library. The required packages for each method are described in the package manual.

The caret package also provides a function that performs cross validation for us. Here we
provide some examples showing how we use this incredibly helpful package. We will use the 2
or 7 example to illustrate:

30.1  The caret  train  functon

The caret  train  function lets us train different algorithms using similar syntax. So, for
example, we can type:

To make predictions, we can use the output of this function directly without needing to look at
the specifics of  predict.glm  and  predict.knn . Instead, we can learn how to obtain
predictions from  predict.train .
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library(tidyverse)  

library(dslabs)  

data("mnist_27")

library(caret)  

train_glm <- train(y ~ ., method = "glm", data = mnist_27$train) 

train_knn <- train(y ~ ., method = "knn", data = mnist_27$train)



11/17/2020 Chapter 30 The caret package | Introduction to Data Science

https://rafalab.github.io/dsbook/caret.html 2/8

The code looks the same for both methods:

This permits us to quickly compare the algorithms. For example, we can compare the accuracy
like this:

30.2  Cross validation
When an algorithm includes a tuning parameter,  train  automatically uses cross validation to
decide among a few default values. To find out what parameter or parameters are optimized, you
can read the manual  or study the output of:

We can also use a quick lookup like this:

If we run it with default values:

you can quickly see the results of the cross validation using the  ggplot  function. The argument
 highlight  highlights the max:

y_hat_glm <- predict(train_glm, mnist_27$test, type = "raw") 

y_hat_knn <- predict(train_knn, mnist_27$test, type = "raw")

confusionMatrix(y_hat_glm, mnist_27$test$y)$overall[["Accuracy"]] 

#> [1] 0.75 

confusionMatrix(y_hat_knn, mnist_27$test$y)$overall[["Accuracy"]] 

#> [1] 0.84
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getModelInfo("knn")

modelLookup("knn")

train_knn <- train(y ~ ., method = "knn", data = mnist_27$train)

ggplot(train_knn, highlight = TRUE)
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By default, the cross validation is performed by taking 25 bootstrap samples comprised of 25%
of the observations. For the  kNN  method, the default is to try . We change this using
the  tuneGrid  parameter. The grid of values must be supplied by a data frame with the
parameter names as specified in the  modelLookup  output.

Here, we present an example where we try out 30 values between 9 and 67. To do this with
caret, we need to define a column named  k , so we use this:  data.frame(k = seq(9, 67,
2)) .

Note that when running this code, we are fitting 30 versions of kNN to 25 bootstrapped samples.
Since we are fitting  kNN models, running this code will take several seconds. We
set the seed because cross validation is a random procedure and we want to make sure the
result here is reproducible.

set.seed(2008) 

train_knn <- train(y ~ ., method = "knn",  

                   data = mnist_27$train, 

                   tuneGrid = data.frame(k = seq(9, 71, 2))) 

ggplot(train_knn, highlight = TRUE)

Should be 71. 
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To access the parameter that maximized the accuracy, you can use this:

and the best performing model like this:

The function  predict  will use this best performing model. Here is the accuracy of the best
model when applied to the test set, which we have not used at all yet because the cross
validation was done on the training set:

train_knn$bestTune

#>     k

#> 10 27

train_knn$finalModel 

#> 27-nearest neighbor model 

#> Training set outcome distribution: 

#> 

#>   2   7  

#> 379 421

confusionMatrix(predict(train_knn, mnist_27$test, type = "raw"), 

                mnist_27$test$y)$overall["Accuracy"] 

#> Accuracy  

#>    0.835
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If we want to change how we perform cross validation, we can use the  trainControl  function.
We can make the code above go a bit faster by using, for example, 10-fold cross validation. This
means we have 10 samples using 10% of the observations each. We accomplish this using the
following code:

We notice that the accuracy estimates are more variable, which is expected since we changed
the number of samples used to estimate accuracy.

Note that  results  component of the  train  output includes several summary statistics
related to the variability of the cross validation estimates:

30.3  Example: fitting with loess

control <- trainControl(method = "cv", number = 10, p = .9) 

train_knn_cv <- train(y ~ ., method = "knn",  

                   data = mnist_27$train, 

                   tuneGrid = data.frame(k = seq(9, 71, 2)), 

                   trControl = control) 

ggplot(train_knn_cv, highlight = TRUE)

names(train_knn$results)  

#> [1] "k"          "Accuracy"   "Kappa"      "AccuracySD" "KappaSD"

29 now, but it was 27 before. 
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The best fitting kNN model approximates the true conditional probability:

However, we do see that the boundary is somewhat wiggly. This is because kNN, like the basic
bin smoother, does not use a kernel. To improve this we could try loess. By reading through the
available models part of the manual  we see that we can use the  gamLoess  method. In the
manual  we also see that we need to install the gam package if we have not done so already:

Then we see that we have two parameters to optimize:

We will stick to a degree of 1. But to try out different values for the span, we still have to include
a column in the table with the name  degree  so we can do this:

We will use the default cross validation control parameters.
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install.packages("gam")

modelLookup("gamLoess") 

#>      model parameter  label forReg forClass probModel 

#> 1 gamLoess      span   Span   TRUE     TRUE      TRUE 

#> 2 gamLoess    degree Degree   TRUE     TRUE      TRUE

grid <- expand.grid(span = seq(0.15, 0.65, len = 10), degree = 1)
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We can see that the method performs similar to kNN:

and produces a smoother estimate of the conditional probability:

train_loess <- train(y ~ .,  

                   method = "gamLoess",  

                   tuneGrid=grid, 

                   data = mnist_27$train) 

ggplot(train_loess, highlight = TRUE)

confusionMatrix(data = predict(train_loess, mnist_27$test),  

                reference = mnist_27$test$y)$overall["Accuracy"] 

#> Accuracy  

#>     0.85
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