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Chapter 31  Examples of algorithms
There are dozens of machine learning algorithms. Here we provide a few examples spanning
rather different approaches. Throughout the chapter we will be using the two predictor digits
data introduced in Section 27.8 to demonstrate how the algorithms work.

31.1  Linear regression
Linear regression can be considered a machine learning algorithm. In Section 27.8 we
demonstrated how linear regression can be too rigid to be useful. This is generally true, but for
some challenges it works rather well. It also serves as a baseline approach: if you can’t beat it
with a more complex approach, you probably want to stick to linear regression. To quickly make
the connection between regression and machine learning, we will reformulate Galton’s study with
heights, a continuous outcome.

library(tidyverse)  

library(dslabs)  

library(caret)  

data("mnist_27")

library(HistData)  

set.seed(1983) 

galton_heights <- GaltonFamilies %>%

  filter(gender == "male") %>%  

  group_by(family) %>%  

  sample_n(1) %>%  

  ungroup() %>%  

  select(father, childHeight) %>%  

  rename(son = childHeight)

https://rafalab.github.io/dsbook/introduction-to-machine-learning.html#two-or-seven
https://rafalab.github.io/dsbook/introduction-to-machine-learning.html#two-or-seven
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Suppose you are tasked with building a machine learning algorithm that predicts the son’s height
 using the father’s height . Let’s generate testing and training sets:

In this case, if we were just ignoring the father’s height and guessing the son’s height, we would
guess the average height of sons.

Our squared loss is:

Can we do better? In the regression chapter, we learned that if the pair  follow a bivariate
normal distribution, the conditional expectation (what we want to estimate) is equivalent to the
regression line:

In Section 18.3 we introduced least squares as a method for estimating the slope  and
intercept :

This gives us an estimate of the conditional expectation:

y <- galton_heights$son  

test_index <- createDataPartition(y, times = 1, p = 0.5, list = FALSE) 

train_set <- galton_heights %>% slice(-test_index) 

test_set <- galton_heights %>% slice(test_index)

m <- mean(train_set$son)  

m

#> [1] 69.2

mean((m - test_set$son)^2)  

#> [1] 7.65

fit <- lm(son ~ father, data = train_set)  

fit$coef  

#> (Intercept)      father  

#>      35.976       0.482

https://rafalab.github.io/dsbook/linear-models.html#lse
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We can see that this does indeed provide an improvement over our guessing approach.

31.1.1  The  predict  function

The  predict  function is very useful for machine learning applications. This function takes a
fitted object from functions such as  lm  or  glm  (we learn about  glm  soon) and a data frame
with the new predictors for which to predict. So in our current example, we would use  predict 
like this:

Using  predict , we can get the same results as we did previously:

 predict  does not always return objects of the same types; it depends on what type of object
is sent to it. To learn about the specifics, you need to look at the help file specific for the type of
fit object that is being used. The  predict  is actually a special type of function in R (called a
generic function) that calls other functions depending on what kind of object it receives. So if
 predict  receives an object coming out of the  lm  function, it will call  predict.lm . If it
receives an object coming out of  glm , it calls  predict.glm . These two functions are similar
but different. You can learn more about the differences by reading the help files:

y_hat <- fit$coef[1] + fit$coef[2]*test_set$father 

mean((y_hat - test_set$son)^2)  

#> [1] 6.47

y_hat <- predict(fit, test_set)

y_hat <- predict(fit, test_set) 

mean((y_hat - test_set$son)^2)  

#> [1] 6.47

?predict.lm 

?predict.glm

? Typos I think. 

By the way, I prefer ROOT mean square error 
since it can be interpreted as a typical error size. 
sqrt(6.47) = 2.54.  
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There are many other versions of  predict  and many machine learning algorithms have a
 predict  function.

31.2  Exercises
1. Create a dataset using the following code.

Use the caret package to partition into a test and training set of equal size. Train a linear model
and report the RMSE. Repeat this exercise 100 times and make a histogram of the RMSEs and
report the average and standard deviation. Hint: adapt the code shown earlier like this:

and put it inside a call to  replicate .

2. Now we will repeat the above but using larger datasets. Repeat exercise 1 but for datasets
with  n <- c(100, 500, 1000, 5000, 10000) . Save the average and standard deviation of
RMSE from the 100 repetitions. Hint: use the  sapply  or  map  functions.

3. Describe what you observe with the RMSE as the size of the dataset becomes larger.

a. On average, the RMSE does not change much as  n  gets larger, while the variability of
RMSE does decrease.

b. Because of the law of large numbers, the RMSE decreases: more data, more precise
estimates.

n <- 100  

Sigma <- 9*matrix(c(1.0, 0.5, 0.5, 1.0), 2, 2) 

dat <- MASS::mvrnorm(n = 100, c(69, 69), Sigma) %>%  

  data.frame() %>% setNames(c("x", "y"))

y <- dat$y  

test_index <- createDataPartition(y, times = 1, p = 0.5, list = FALSE) 

train_set <- dat %>% slice(-test_index) 

test_set <- dat %>% slice(test_index) 

fit <- lm(y ~ x, data = train_set)  

y_hat <- fit$coef[1] + fit$coef[2]*test_set$x 

mean((y_hat - test_set$y)^2)
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c.  n = 10000  is not sufficiently large. To see a decrease in RMSE, we need to make it larger.
d. The RMSE is not a random variable.

4. Now repeat exercise 1, but this time make the correlation between  x  and  y  larger by
changing  Sigma  like this:

Repeat the exercise and note what happens to the RMSE now.

5. Which of the following best explains why the RMSE in exercise 4 is so much lower than
exercise 1.

a. It is just luck. If we do it again, it will be larger.
b. The Central Limit Theorem tells us the RMSE is normal.
c. When we increase the correlation between  x  and  y ,  x  has more predictive power and

thus provides a better estimate of  y . This correlation has a much bigger effect on RMSE
than  n . Large  n  simply provide us more precise estimates of the linear model
coefficients.

d. These are both examples of regression, so the RMSE has to be the same.

6. Create a dataset using the following code:

Note that  y  is correlated with both  x_1  and  x_2 , but the two predictors are independent of
each other.

n <- 100  

Sigma <- 9*matrix(c(1, 0.95, 0.95, 1), 2, 2) 

dat <- MASS::mvrnorm(n = 100, c(69, 69), Sigma) %>%  

  data.frame() %>% setNames(c("x", "y"))

n <- 1000  

Sigma <- matrix(c(1, 3/4, 3/4, 3/4, 1, 0, 3/4, 0, 1), 3, 3) 

dat <- MASS::mvrnorm(n = 100, c(0, 0, 0), Sigma) %>%  

  data.frame() %>% setNames(c("y", "x_1", "x_2"))

cor(dat)
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Use the caret package to partition into a test and training set of equal size. Compare the RMSE
when using just  x_1 , just  x_2 , and both  x_1  and  x_2 . Train a linear model and report the
RMSE.

7. Repeat exercise 6 but now create an example in which  x_1  and  x_2  are highly correlated:

Use the caret package to partition into a test and training set of equal size. Compare the RMSE
when using just  x_1 , just  x_2 , and both  x_1  and  x_2  Train a linear model and report the
RMSE.

8. Compare the results in 6 and 7 and choose the statement you agree with:

a. Adding extra predictors can improve RMSE substantially, but not when they are highly
correlated with another predictor.

b. Adding extra predictors improves predictions equally in both exercises.
c. Adding extra predictors results in over fitting.
d. Unless we include all predictors, we have no predicting power.

31.3  Logistic regression
The regression approach can be extended to categorical data. In this section we first illustrate
how, for binary data, one can simply assign numeric values of 0 and 1 to the outcomes , and
apply regression as if the data were continuous. We will then point out a limitation with this
approach and introduce logistic regression as a solution. Logistic regression is a specific case of
a set of generalized linear models. To illustrate logistic regression, we will apply it to our previous
predicting sex example:

If we define the outcome  as 1 for females and 0 for males, and  as the height, we are
interested in the conditional probability:

n <- 1000  

Sigma <- matrix(c(1.0, 0.75, 0.75, 0.75, 1.0, 0.95, 0.75, 0.95, 1.0), 3, 3) 

dat <- MASS::mvrnorm(n = 100, c(0, 0, 0), Sigma) %>%  

  data.frame() %>% setNames(c("y", "x_1", "x_2"))
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As an example, let’s provide a prediction for a student that is 66 inches tall. What is the
conditional probability of being female if you are 66 inches tall? In our dataset, we can estimate
this by rounding to the nearest inch and computing:

To construct a prediction algorithm, we want to estimate the proportion of the population that is
female for any given height , which we write as the conditional probability described
above: . Let’s see what this looks like for several values of  (we will remove
strata of  with few data points):

train_set %>%  

  filter(round(height)==66) %>%  

  summarize(y_hat = mean(sex=="Female"))  

#>   y_hat 

#> 1 0.327

heights %>%  

  mutate(x = round(height)) %>%  

  group_by(x) %>%  

  filter(n() >= 10) %>%  

  summarize(prop = mean(sex == "Female")) %>%  

  ggplot(aes(x, prop)) +  

  geom_point()  

#> `summarise()` ungrouping output (override with `.groups` argument)

this is a crude estimate. 
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Since the results from the plot above look close to linear, and it is the only approach we currently
know, we will try regression. We assume that:

Note: because , we will only estimate  and drop the  index.

If we convert the factors to 0s and 1s, we can estimate  and  with least squares.

Once we have estimates  and , we can obtain an actual prediction. Our estimate of the
conditional probability  is:

To form a prediction, we define a decision rule: predict female if . We can compare
our predictions to the outcomes using:

We see this method does substantially better than guessing.

31.3.1  Generalized linear models

The function  can take any value including negatives and values larger than 1. In fact,
the estimate  computed in the linear regression section does indeed become negative at
around 76 inches.

lm_fit <- mutate(train_set, y = as.numeric(sex == "Female")) %>%  

  lm(y ~ height, data = .)

p_hat <- predict(lm_fit, test_set) 

y_hat <- ifelse(p_hat > 0.5, "Female", "Male") %>% factor() 

confusionMatrix(y_hat, test_set$sex)[["Accuracy"]] 

#> NULL
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The range is:

But we are estimating a probability:  which is constrained between 0 and 1.

The idea of generalized linear models (GLM) is to 1) define a distribution of  that is consistent
with it’s possible outcomes and 2) find a function  so that  can be
modeled as a linear combination of predictors. Logistic regression is the most commonly used
GLM. It is an extension of linear regression that assures that the estimate of 
is between 0 and 1. This approach makes use of the logistic transformation introduced in
Section 9.8.1:

heights %>%  

  mutate(x = round(height)) %>%  

  group_by(x) %>%  

  filter(n() >= 10) %>%  

  summarize(prop = mean(sex == "Female")) %>%  

  ggplot(aes(x, prop)) +  

  geom_point() +  

  geom_abline(intercept = lm_fit$coef[1], slope = lm_fit$coef[2])  

#> `summarise()` ungrouping output (override with `.groups` argument)

range(p_hat)  

#> [1] -0.331  1.036

https://rafalab.github.io/dsbook/gapminder.html#logit
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This logistic transformation converts probability to log odds. As discussed in the data
visualization lecture, the odds tell us how much more likely it is something will happen compared
to not happening.  means the odds are 1 to 1, thus the odds are 1. If , the odds
are 3 to 1. A nice characteristic of this transformation is that it converts probabilities to be
symmetric around 0. Here is a plot of  versus :

With logistic regression, we model the conditional probability directly with:

With this model, we can no longer use least squares. Instead we compute the maximum
likelihood estimate (MLE). You can learn more about this concept in a statistical theory
textbook .

In R, we can fit the logistic regression model with the function  glm : generalized linear models.
This function is more general than logistic regression so we need to specify the model we want
through the  family  parameter:

We can obtain prediction using the predict function:

107

glm_fit <- train_set %>%  

  mutate(y = as.numeric(sex == "Female")) %>%  

  glm(y ~ height, data=., family = "binomial")
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When using  predict  with a  glm  object, we have to specify that we want  type="response" 
if we want the conditional probabilities, since the default is to return the logistic transformed
values.

This model fits the data slightly better than the line:

#> `summarise()` ungrouping output (override with `.groups` argument)

Because we have an estimate , we can obtain predictions:

The resulting predictions are similar. This is because the two estimates of  are larger than
1/2 in about the same region of x:

p_hat_logit <- predict(glm_fit, newdata = test_set, type = "response")

y_hat_logit <- ifelse(p_hat_logit > 0.5, "Female", "Male") %>% factor 

confusionMatrix(y_hat_logit, test_set$sex)[["Accuracy"]] 

#> NULL
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Both linear and logistic regressions provide an estimate for the conditional expectation:

which in the case of binary data is equivalent to the conditional probability:

31.3.2  Logistic regression with more than one predictor

In this section we apply logistic regression to the two or seven data introduced in Section 27.8.
In this case, we are interested in estimating a conditional probability that depends on two
variables. The standard logistic regression model in this case will assume that

data.frame(x = seq(min(tmp$x), max(tmp$x))) %>% 

  mutate(logistic = plogis(glm_fit$coef[1] + glm_fit$coef[2]*x),  

         regression = lm_fit$coef[1] + lm_fit$coef[2]*x) %>% 

  gather(method, p_x, -x) %>%  

  ggplot(aes(x, p_x, color = method)) +  

  geom_line() +  

  geom_hline(yintercept = 0.5, lty = 5)

https://rafalab.github.io/dsbook/introduction-to-machine-learning.html#two-or-seven
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with  the logistic function described in the previous section. To fit the model we
use the following code:

Comparing to the results we obtained in Section 27.8, we see that logistic regression performs
similarly to regression. This is not surprising, given that the estimate of  looks similar as
well:

Just like regression, the decision rule is a line, a fact that can be corroborated mathematically
since

fit_glm <- glm(y ~ x_1 + x_2, data=mnist_27$train, family = "binomial") 

p_hat_glm <- predict(fit_glm, mnist_27$test, type="response") 

y_hat_glm <- factor(ifelse(p_hat_glm > 0.5, 7, 2)) 

confusionMatrix(y_hat_glm, mnist_27$test$y)$overall["Accuracy"] 

#> Accuracy  

#>     0.75

p_hat <- predict(fit_glm, newdata = mnist_27$true_p, type = "response") 

mnist_27$true_p %>% mutate(p_hat = p_hat) %>%  

  ggplot(aes(x_1, x_2,  z=p_hat, fill=p_hat)) +  

  geom_raster() +  

  scale_fill_gradientn(colors=c("#F8766D","white","#00BFC4")) +  

  stat_contour(breaks=c(0.5), color="black") 

https://rafalab.github.io/dsbook/introduction-to-machine-learning.html#two-or-seven
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Thus  is a linear function of . This implies that, just like regression, our logistic regression
approach has no chance of capturing the non-linear nature of the true . Once we move
on to more complex examples, we will see that linear regression and generalized linear
regression are limited and not flexible enough to be useful for most machine learning challenges.
The new techniques we learn are essentially approaches to estimating the conditional probability
in a way that is more flexible.

31.4  Exercises
1. Define the following dataset:

Note that we have defined a variable  x  that is predictive of a binary outcome  y .

Compare the accuracy of linear regression and logistic regression.

make_data <- function(n = 1000, p = 0.5,  

                      mu_0 = 0, mu_1 = 2,  

                      sigma_0 = 1,  sigma_1 = 1){ 

  y <- rbinom(n, 1, p)  

  f_0 <- rnorm(n, mu_0, sigma_0)  

  f_1 <- rnorm(n, mu_1, sigma_1)  

  x <- ifelse(y == 1, f_1, f_0)  

  test_index <- createDataPartition(y, times = 1, p = 0.5, list = FALSE) 

  list(train = data.frame(x = x, y = as.factor(y)) %>%  

         slice(-test_index), 

       test = data.frame(x = x, y = as.factor(y)) %>%  

         slice(test_index)) 

}

dat <- make_data()

dat$train %>% ggplot(aes(x, color = y)) + geom_density()
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2. Repeat the simulation from exercise 1 100 times and compare the average accuracy for each
method and notice they give practically the same answer.

3. Generate 25 different datasets changing the difference between the two class:  delta <-
seq(0, 3, len = 25) . Plot accuracy versus  delta .

31.5  k-nearest neighbors
We introduced the kNN algorithm in Section 29.1 and demonstrated how we use cross validation
to pick  in Section 30.2. Here we quickly review how we fit a kNN model using the caret
package. In Section 30.2 we introduced the following code to fit a kNN model:

We saw that the parameter that maximized the estimated accuracy was:

This model improves the accuracy over regression and logistic regression:

A plot of the estimated conditional probability shows that the kNN estimate is flexible enough
and does indeed capture the shape of the true conditional probability.

train_knn <- train(y ~ ., method = "knn",  

                   data = mnist_27$train, 

                   tuneGrid = data.frame(k = seq(9, 71, 2)))

train_knn$bestTune

#>     k

#> 10 27

confusionMatrix(predict(train_knn, mnist_27$test, type = "raw"), 

                mnist_27$test$y)$overall["Accuracy"] 

#> Accuracy  

#>    0.835

https://rafalab.github.io/dsbook/cross-validation.html#knn-cv-intro
https://rafalab.github.io/dsbook/caret.html#caret-cv
https://rafalab.github.io/dsbook/caret.html#caret-cv
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31.6  Exercises
1. Earlier we used logistic regression to predict sex from height. Use kNN to do the same. Use
the code described in this chapter to select the  measure and plot it against . Compare to
the  of about 0.6 we obtained with regression.

2. Load the following dataset:

This dataset includes a matrix  x :

with the gene expression measured on 500 genes for 189 biological samples representing seven
different tissues. The tissue type is stored in  y :

data("tissue_gene_expression")

dim(tissue_gene_expression$x)
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Split the data in training and test sets, then use kNN to predict tissue type and see what
accuracy you obtain. Try it for .

31.7  Generative models
We have described how, when using squared loss, the conditional expectation/probabilities
provide the best approach to developing a decision rule. In a binary case, the smallest true error
we can achieve is determined by Bayes’ rule, which is a decision rule based on the true
conditional probability:

We have described several approaches to estimating . In all these approaches, we estimate
the conditional probability directly and do not consider the distribution of the predictors. In
machine learning, these are referred to as discriminative approaches.

However, Bayes’ theorem tells us that knowing the distribution of the predictors  may be
useful. Methods that model the joint distribution of  and  are referred to as generative models
(we model how the entire data,  and , are generated). We start by describing the most
general generative model, Naive Bayes, and then proceed to describe two specific cases,
quadratic discriminant analysis (QDA) and linear discriminant analysis (LDA).

31.7.1  Naive Bayes

Recall that Bayes rule tells us that we can rewrite  like this:

with  and  representing the distribution functions of the predictor  for the two
classes  and . The formula implies that if we can estimate these conditional
distributions of the predictors, we can develop a powerful decision rule. However, this is a big if.
As we go forward, we will encounter examples in which  has many dimensions and we do not
have much information about the distribution. In these cases, Naive Bayes will be practically

table(tissue_gene_expression$y)
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impossible to implement. However, there are instances in which we have a small number of
predictors (not much more than 2) and many categories in which generative models can be quite
powerful. We describe two specific examples and use our previously described case studies to
illustrate them.

Let’s start with a very simple and uninteresting, yet illustrative, case: the example related to
predicting sex from height.

In this case, the Naive Bayes approach is particularly appropriate because we know that the
normal distribution is a good approximation for the conditional distributions of height given sex
for both classes  (female) and  (male). This implies that we can approximate the
conditional distributions  and  by simply estimating averages and standard
deviations from the data:

library(tidyverse)  

library(caret)  

library(dslabs)  

data("heights")  

y <- heights$height  

set.seed(1995) 

test_index <- createDataPartition(y, times = 1, p = 0.5, list = FALSE) 

train_set <- heights %>% slice(-test_index) 

test_set <- heights %>% slice(test_index)

params <- train_set %>%  

  group_by(sex) %>% 

  summarize(avg = mean(height), sd = sd(height))  

#> `summarise()` ungrouping output (override with `.groups` argument) 

params

#> # A tibble: 2 x 3 

#>   sex      avg    sd 

#>   <fct>  <dbl> <dbl> 

#> 1 Female  64.8  4.14 

#> 2 Male    69.2  3.57
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The prevalence, which we will denote with , can be estimated from the data with:

Now we can use our estimates of average and standard deviation to get an actual rule:

Our Naive Bayes estimate  looks a lot like our logistic regression estimate:

#> `summarise()` ungrouping output (override with `.groups` argument)

In fact, we can show that the Naive Bayes approach is similar to the logistic regression
prediction mathematically. However, we leave the demonstration to a more advanced text, such
as the Elements of Statistical Learning . We can see that they are similar empirically by
comparing the two resulting curves.

pi <- train_set %>% summarize(pi=mean(sex=="Female")) %>% pull(pi)  

pi

#> [1] 0.212

x <- test_set$height  

f0 <- dnorm(x, params$avg[2], params$sd[2])  

f1 <- dnorm(x, params$avg[1], params$sd[1])  

p_hat_bayes <- f1*pi / (f1*pi + f0*(1 - pi))

108
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31.7.2  Controlling prevalence

One useful feature of the Naive Bayes approach is that it includes a parameter to account for
differences in prevalence. Using our sample, we estimated ,  and . If we use hats
to denote the estimates, we can write  as:

As we discussed earlier, our sample has a much lower prevalence, 0.21, than the general
population. So if we use the rule  to predict females, our accuracy will be affected
due to the low sensitivity:

Again, this is because the algorithm gives more weight to specificity to account for the low
prevalence:

This is due mainly to the fact that  is substantially less than 0.5, so we tend to predict  Male 
more often. It makes sense for a machine learning algorithm to do this in our sample because we
do have a higher percentage of males. But if we were to extrapolate this to a general population,
our overall accuracy would be affected by the low sensitivity.

The Naive Bayes approach gives us a direct way to correct this since we can simply force  to
be whatever value we want it to be. So to balance specificity and sensitivity, instead of changing
the cutoff in the decision rule, we could simply change  to 0.5 like this:

Note the difference in sensitivity with a better balance:

y_hat_bayes <- ifelse(p_hat_bayes > 0.5, "Female", "Male") 

sensitivity(data = factor(y_hat_bayes), reference = factor(test_set$sex)) 

#> [1] 0.213

specificity(data = factor(y_hat_bayes), reference = factor(test_set$sex)) 

#> [1] 0.967

p_hat_bayes_unbiased <- f1 * 0.5 / (f1 * 0.5 + f0 * (1 - 0.5))  

y_hat_bayes_unbiased <- ifelse(p_hat_bayes_unbiased> 0.5, "Female", "Male")
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The new rule also gives us a very intuitive cutoff between 66-67, which is about the middle of the
female and male average heights:

31.7.3  Quadratic discriminant analysis

Quadratic Discriminant Analysis (QDA) is a version of Naive Bayes in which we assume that the
distributions  and  are multivariate normal. The simple example we
described in the previous section is actually QDA. Let’s now look at a slightly more complicated
case: the 2 or 7 example.

sensitivity(factor(y_hat_bayes_unbiased), factor(test_set$sex)) 

#> [1] 0.693 

specificity(factor(y_hat_bayes_unbiased), factor(test_set$sex)) 

#> [1] 0.832

qplot(x, p_hat_bayes_unbiased, geom = "line") +  

  geom_hline(yintercept = 0.5, lty = 2) +  

  geom_vline(xintercept = 67, lty = 2)

data("mnist_27")
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In this case, we have two predictors so we assume each one is bivariate normal. This implies
that we need to estimate two averages, two standard deviations, and a correlation for each case 

 and . Once we have these, we can approximate the distributions  and 
. We can easily estimate parameters from the data:

Here we provide a visual way of showing the approach. We plot the data and use contour plots
to give an idea of what the two estimated normal densities look like (we show the curve
representing a region that includes 95% of the points):

params <- mnist_27$train %>%  

  group_by(y) %>%  

  summarize(avg_1 = mean(x_1), avg_2 = mean(x_2),  

            sd_1= sd(x_1), sd_2 = sd(x_2),  

            r = cor(x_1, x_2)) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

params

#> # A tibble: 2 x 6 

#>   y     avg_1 avg_2   sd_1   sd_2     r 

#>   <fct> <dbl> <dbl>  <dbl>  <dbl> <dbl> 

#> 1 2     0.129 0.283 0.0702 0.0578 0.401 

#> 2 7     0.234 0.288 0.0719 0.105  0.455

mnist_27$train %>% mutate(y = factor(y)) %>%  

  ggplot(aes(x_1, x_2, fill = y, color=y)) +  

  geom_point(show.legend = FALSE) +  

  stat_ellipse(type="norm", lwd = 1.5)
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This defines the following estimate of .

We can use the  train  function from the caret package to fit the model and obtain predictors:

We see that we obtain relatively good accuracy:

The estimated conditional probability looks relatively good, although it does not fit as well as the
kernel smoothers:

library(caret)  

train_qda <- train(y ~ ., method = "qda", data = mnist_27$train)

y_hat <- predict(train_qda, mnist_27$test) 

confusionMatrix(y_hat, mnist_27$test$y)$overall["Accuracy"] 

#> Accuracy  

#>     0.82
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One reason QDA does not work as well as the kernel methods is perhaps because the
assumption of normality does not quite hold. Although for the 2s it seems reasonable, for the 7s
it does seem to be off. Notice the slight curvature in the points for the 7s:

mnist_27$train %>% mutate(y = factor(y)) %>%  

  ggplot(aes(x_1, x_2, fill = y, color=y)) +  

  geom_point(show.legend = FALSE) +  

  stat_ellipse(type="norm") +  

  facet_wrap(~y)
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QDA can work well here, but it becomes harder to use as the number of predictors increases.
Here we have 2 predictors and had to compute 4 means, 4 SDs, and 2 correlations. How many
parameters would we have if instead of 2 predictors, we had 10? The main problem comes from
estimating correlations for 10 predictors. With 10, we have 45 correlations for each class. In
general, the formula is , which gets big fast. Once the number of parameters
approaches the size of our data, the method becomes impractical due to overfitting.

31.7.4  Linear discriminant analysis

A relatively simple solution to the problem of having too many parameters is to assume that the
correlation structure is the same for all classes, which reduces the number of parameters we
need to estimate.

In this case, we would compute just one pair of standard deviations and one correlation, and the
distributions looks like this:
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Now the size of the ellipses as well as the angle are the same. This is because they have the
same standard deviations and correlations.

We can fit the LDA model using caret:

When we force this assumption, we can show mathematically that the boundary is a line, just as
with logistic regression. For this reason, we call the method linear discriminant analysis (LDA).
Similarly, for QDA, we can show that the boundary must be a quadratic function.

train_lda <- train(y ~ ., method = "lda", data = mnist_27$train) 

y_hat <- predict(train_lda, mnist_27$test) 

confusionMatrix(y_hat, mnist_27$test$y)$overall["Accuracy"] 

#> Accuracy  

#>     0.75

It was .82 for QDA. 
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In the case of LDA, the lack of flexibility does not permit us to capture the non-linearity in the
true conditional probability function.

31.7.5  Connection to distance

The normal density is:

If we remove the constant  and then take the log, we get:

which is the negative of a distance squared scaled by the standard deviation. For higher
dimensions, the same is true except the scaling is more complex and involves correlations.

31.8  Case study: more than three classes
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We can generate an example with three categories like this:

Here is the training data:

if(!exists("mnist")) mnist <- read_mnist()  

set.seed(3456) 

index_127 <- sample(which(mnist$train$labels %in% c(1,2,7)), 2000)  

y <- mnist$train$labels[index_127]  

x <- mnist$train$images[index_127,]  

index_train <- createDataPartition(y, p=0.8, list = FALSE) 

## get the quadrants 

row_column <- expand.grid(row=1:28, col=1:28)  

upper_left_ind <- which(row_column$col <= 14 & row_column$row <= 14) 

lower_right_ind <- which(row_column$col > 14 & row_column$row > 14) 

## binarize the values. Above 200 is ink, below is no ink 

x <- x > 200  

## proportion of pixels in lower right quadrant 

x <- cbind(rowSums(x[ ,upper_left_ind])/rowSums(x),  

           rowSums(x[ ,lower_right_ind])/rowSums(x))  

##save data 

train_set <- data.frame(y = factor(y[index_train]), 

                        x_1 = x[index_train,1], x_2 = x[index_train,2]) 

test_set <- data.frame(y = factor(y[-index_train]), 

                       x_1 = x[-index_train,1], x_2 = x[-index_train,2])

train_set %>% ggplot(aes(x_1, x_2, color=y)) + geom_point()
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We can use the caret package to train the QDA model:

Now we estimate three conditional probabilities (although they have to add to 1):

Our predictions are one of the three classes:

The confusion matrix is therefore a 3 by 3 table:

train_qda <- train(y ~ ., method = "qda", data = train_set)

predict(train_qda, test_set, type = "prob") %>% head()  

#>        1       2       7 

#> 1 0.7655 0.23043 0.00405 

#> 2 0.2031 0.72514 0.07175 

#> 3 0.5396 0.45909 0.00132 

#> 4 0.0393 0.09419 0.86655 

#> 5 0.9600 0.00936 0.03063 

#> 6 0.9865 0.00724 0.00623

predict(train_qda, test_set) %>% head()  

#> [1] 1 2 1 7 1 1 

#> Levels: 1 2 7



11/17/2020 Chapter 31 Examples of algorithms | Introduction to Data Science

https://rafalab.github.io/dsbook/examples-of-algorithms.html 30/59

The accuracy is 0.749

Note that for sensitivity and specificity, we have a pair of values for each class. To define these
terms, we need a binary outcome. We therefore have three columns: one for each class as the
positives and the other two as the negatives.

To visualize what parts of the region are called 1, 2, and 7 we now need three colors:

The accuracy for LDA, 0.629, is much worse because the model is more rigid. This is what the
decision rule looks like:

confusionMatrix(predict(train_qda, test_set), test_set$y)$table 

#>           Reference 

#> Prediction   1   2   7 

#>          1 111   9  11 

#>          2  10  86  21 

#>          7  21  28 102
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The results for kNN

are much better with an accuracy of 0.749. The decision rule looks like this:

Note that one of the limitations of generative models here is due to the lack of fit of the normal
assumption, in particular for class 1.

train_knn <- train(y ~ ., method = "knn", data = train_set, 

                   tuneGrid = data.frame(k = seq(15, 51, 2)))
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Generative models can be very powerful, but only when we are able to successfully approximate
the joint distribution of predictors conditioned on each class.

31.9  Exercises
We are going to apply LDA and QDA to the  tissue_gene_expression  dataset. We will start
with simple examples based on this dataset and then develop a realistic example.

1. Create a dataset with just the classes “cerebellum” and “hippocampus” (two parts of the
brain) and a predictor matrix with 10 randomly selected columns.

train_set %>% mutate(y = factor(y)) %>%  

  ggplot(aes(x_1, x_2, fill = y, color=y)) +  

  geom_point(show.legend = FALSE) +  

  stat_ellipse(type="norm") 
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Use the  train  function to estimate the accuracy of LDA.

2. In this case, LDA fits two 10-dimensional normal distributions. Look at the fitted model by
looking at the  finalModel  component of the result of train. Notice there is a component called
 means  that includes the estimate  means  of both distributions. Plot the mean vectors against
each other and determine which predictors (genes) appear to be driving the algorithm.

3. Repeat exercises 1 with QDA. Does it have a higher accuracy than LDA?

4. Are the same predictors (genes) driving the algorithm? Make a plot as in exercise 2.

5. One thing we see in the previous plot is that the value of predictors correlate in both groups:
some predictors are low in both groups while others are high in both groups. The mean value of
each predictor,  colMeans(x) , is not informative or useful for prediction, and often for
interpretation purposes it is useful to center or scale each column. This can be achieved with the
 preProcessing  argument in  train . Re-run LDA with  preProcessing = "scale" . Note that
accuracy does not change but see how it is easier to identify the predictors that differ more
between groups in the plot made in exercise 4.

6. In the previous exercises we saw that both approaches worked well. Plot the predictor values
for the two genes with the largest differences between the two groups in a scatterplot to see how
they appear to follow a bivariate distribution as assumed by the LDA and QDA approaches.
Color the points by the outcome.

7. Now we are going to increase the complexity of the challenge slightly: we will consider all the
tissue types.

set.seed(1993) 

data("tissue_gene_expression")  

tissues <- c("cerebellum", "hippocampus") 

ind <- which(tissue_gene_expression$y %in% tissues)  

y <- droplevels(tissue_gene_expression$y[ind])  

x <- tissue_gene_expression$x[ind, ]  

x <- x[, sample(ncol(x), 10)]
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What accuracy do you get with LDA?

8. We see that the results are slightly worse. Use the  confusionMatrix  function to learn what
type of errors we are making.

9. Plot an image of the centers of the seven 10-dimensional normal distributions.

31.10  Classification and regression trees (CART)

31.10.1  The curse of dimensionality

We described how methods such as LDA and QDA are not meant to be used with many
predictors  because the number of parameters that we need to estimate becomes too large. For
example, with the digits example , we would have over 600,000 parameters with LDA,
and we would multiply that by the number of classes for QDA. Kernel methods such as kNN or
local regression do not have model parameters to estimate. However, they also face a challenge
when multiple predictors are used due to what is referred to as the curse of dimensionality. The
dimension here refers to the fact that when we have  predictors, the distance between two
observations is computed in -dimensional space.

A useful way of understanding the curse of dimensionality is by considering how large we have
to make a span/neighborhood/window to include a given percentage of the data. Remember that
with larger neighborhoods, our methods lose flexibility.

For example, suppose we have one continuous predictor with equally spaced points in the [0,1]
interval and we want to create windows that include 1/10th of data. Then it’s easy to see that our
windows have to be of size 0.1:

set.seed(1993) 

data("tissue_gene_expression")  

y <- tissue_gene_expression$y  

x <- tissue_gene_expression$x  

x <- x[, sample(ncol(x), 10)]
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Now, for two predictors, if we decide to keep the neighborhood just as small, 10% for each
dimension, we include only 1 point. If we want to include 10% of the data, then we need to
increase the size of each side of the square to :

Using the same logic, if we want to include 10% of the data in a three-dimensional space, then
the side of each cube is . In general, to include 10% of the data in a case with 
dimensions, we need an interval with each side of size  of the total. This proportion gets
close to 1 quickly, and if the proportion is 1 it means we include all the data and are no longer
smoothing.

library(tidyverse)  

p <- 1:100  

qplot(p, .1^(1/p), ylim = c(0,1))
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By the time we reach 100 predictors, the neighborhood is no longer very local, as each side
covers almost the entire dataset.

Here we look at a set of elegant and versatile methods that adapt to higher dimensions and also
allow these regions to take more complex shapes while still producing models that are
interpretable. These are very popular, well-known and studied methods. We will concentrate on
regression and decision trees and their extension to random forests.

31.10.2  CART motivation

To motivate this section, we will use a new dataset that includes the breakdown of the
composition of olive oil into 8 fatty acids:

For illustrative purposes, we will try to predict the region using the fatty acid composition values
as predictors.

We remove the  area  column because we won’t use it as a predictor.

Let’s very quickly try to predict the region using kNN:

library(tidyverse)  

library(dslabs)  

data("olive")  

names(olive)  

#>  [1] "region"      "area"        "palmitic"    "palmitoleic" 

#>  [5] "stearic"     "oleic"       "linoleic"    "linolenic"   

#>  [9] "arachidic"   "eicosenoic"

table(olive$region)  

#> 

#> Northern Italy       Sardinia Southern Italy  

#>            151             98            323

olive <- select(olive, -area)
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We see that using just one neighbor, we can predict relatively well. However, a bit of data
exploration reveals that we should be able to do even better. For example, if we look at the
distribution of each predictor stratified by region we see that eicosenoic is only present in
Southern Italy and that linoleic separates Northern Italy from Sardinia.

library(caret)  

fit <- train(region ~ .,  method = "knn",  

             tuneGrid = data.frame(k = seq(1, 15, 2)),  

             data = olive) 

ggplot(fit)

olive %>% gather(fatty_acid, percentage, -region) %>%  

  ggplot(aes(region, percentage, fill = region)) +  

  geom_boxplot() +  

  facet_wrap(~fatty_acid, scales = "free", ncol = 4) +  

  theme(axis.text.x = element_blank(), legend.position="bottom")
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This implies that we should be able to build an algorithm that predicts perfectly! We can see this
clearly by plotting the values for eicosenoic and linoleic.

In Section 33.3.4 we define predictor spaces. The predictor space here consists of eight-
dimensional points with values between 0 and 100. In the plot above, we show the space
defined by the two predictors eicosenoic and linoleic, and, by eye, we can construct a prediction
rule that partitions the predictor space so that each partition contains only outcomes of a one

olive %>%  

  ggplot(aes(eicosenoic, linoleic, color = region)) +  

  geom_point() +  

  geom_vline(xintercept = 0.065, lty = 2) +  

  geom_segment(x = -0.2, y = 10.54, xend = 0.065, yend = 10.54,  

               color = "black", lty = 2)

https://rafalab.github.io/dsbook/large-datasets.html#predictor-space
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category. This in turn can be used to define an algorithm with perfect accuracy. Specifically, we
define the following decision rule. If eicosenoic is larger than 0.065, predict Southern Italy. If not,
then if linoleic is larger than , predict Sardinia, and if lower, predict Northern Italy. We can
draw this decision tree like this:

Decision trees like this are often used in practice. For example, to decide on a person’s risk of
poor outcome after having a heart attack, doctors use the following:

(Source: Walton 2010 Informal Logic, Vol. 30, No. 2, pp. 159-184 .)

A tree is basically a flow chart of yes or no questions. The general idea of the methods we are
describing is to define an algorithm that uses data to create these trees with predictions at the
ends, referred to as nodes. Regression and decision trees operate by predicting an outcome
variable  by partitioning the predictors.

31.10.3  Regression trees

109
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When the outcome is continuous, we call the method a regression tree. To introduce regression
trees, we will use the 2008 poll data used in previous sections to describe the basic idea of how
we build these algorithms. As with other machine learning algorithms, we will try to estimate the
conditional expectation  with  the poll margin and  the day.

The general idea here is to build a decision tree and, at the end of each node, obtain a predictor 
. A mathematical way to describe this is to say that we are partitioning the predictor space into 
 non-overlapping regions, , and then for any predictor  that falls within region 
, estimate  with the average of the training observations  for which the associated

predictor  is also in .

But how do we decide on the partition  and how do we choose ? Here is where
the algorithm gets a bit complicated.

Regression trees create partitions recursively. We start the algorithm with one partition, the entire
predictor space. In our simple first example, this space is the interval [-155, 1]. But after the first
step we will have two partitions. After the second step we will split one of these partitions into
two and will have three partitions, then four, then five, and so on. We describe how we pick the
partition to further partition, and when to stop, later.

data("polls_2008")  

qplot(day, margin, data = polls_2008)
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Once we select a partition  to split in order to create the new partitions, we find a predictor 
and value  that define two new partitions, which we will call  and , that split our
observations in the current partition by asking if  is bigger than :

In our current example we only have one predictor, so we will always choose , but in
general this will not be the case. Now, after we define the new partitions  and , and we
decide to stop the partitioning, we compute predictors by taking the average of all the
observations  for which the associated  is in  and . We refer to these two as  and 
respectively.

But how do we pick  and ? Basically we find the pair that minimizes the residual sum of square
(RSS):

This is then applied recursively to the new regions  and . We describe how we stop later,
but once we are done partitioning the predictor space into regions, in each region a prediction is
made using the observations in that region.

Let’s take a look at what this algorithm does on the 2008 presidential election poll data. We will
use the  rpart  function in the rpart package.

Here, there is only one predictor. Thus we do not have to decide which predictor  to split by, we
simply have to decide what value  we use to split. We can visually see where the splits were
made:

library(rpart)  

fit <- rpart(margin ~ ., data = polls_2008)

plot(fit, margin = 0.1)  

text(fit, cex = 0.75)
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The first split is made on day 39.5. One of those regions is then split at day 86.5. The two
resulting new partitions are split on days 49.5 and 117.5, respectively, and so on. We end up with
8 partitions. The final estimate  looks like this:

polls_2008 %>%  

  mutate(y_hat = predict(fit)) %>%  

  ggplot() +  

  geom_point(aes(day, margin)) +  

  geom_step(aes(day, y_hat), col="red")
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Note that the algorithm stopped partitioning at 8. Now we explain how this decision is made.

First we need to define the term complexity parameter (cp). Every time we split and define two
new partitions, our training set RSS decreases. This is because with more partitions, our model
has more flexibility to adapt to the training data. In fact, if you split until every point is its own
partition, then RSS goes all the way down to 0 since the average of one value is that same value.
To avoid this, the algorithm sets a minimum for how much the RSS must improve for another
partition to be added. This parameter is referred to as the complexity parameter (cp). The RSS
must improve by a factor of cp for the new partition to be added. Large values of cp will
therefore force the algorithm to stop earlier which results in fewer nodes.

However, cp is not the only parameter used to decide if we should partition a current partition or
not. Another common parameter is the minimum number of observations required in a partition
before partitioning it further. The argument used in the  rpart  function is  minsplit  and the
default is 20. The  rpart  implementation of regression trees also permits users to determine a
minimum number of observations in each node. The argument is  minbucket  and defaults to
 round(minsplit/3) .

As expected, if we set  cp = 0  and  minsplit = 2 , then our prediction is as flexible as
possible and our predictor is our original data:

fit <- rpart(margin ~ ., data = polls_2008,  

             control = rpart.control(cp = 0, minsplit = 2)) 

polls_2008 %>%  

  mutate(y_hat = predict(fit)) %>%  

  ggplot() +  

  geom_point(aes(day, margin)) +  

  geom_step(aes(day, y_hat), col="red")

I stopped here. 
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Intuitively we know that this is not a good approach as it will generally result in over-training.
These  cp ,  minsplit , and  minbucket , three parameters can be used to control the
variability of the final predictors. The larger these values are the more data is averaged to
compute a predictor and thus reduce variability. The drawback is that it restricts flexibility.

So how do we pick these parameters? We can use cross validation, described in Chapter 29,
just like with any tuning parameter. Here is an example of using cross validation to chose cp.

library(caret)  

train_rpart <- train(margin ~ .,  

                     method = "rpart", 

                     tuneGrid = data.frame(cp = seq(0, 0.05, len = 25)), 

                     data = polls_2008) 

ggplot(train_rpart)

https://rafalab.github.io/dsbook/cross-validation.html#cross-validation
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To see the resulting tree, we access the  finalModel  and plot it:

And because we only have one predictor, we can actually plot :

plot(train_rpart$finalModel, margin = 0.1)  

text(train_rpart$finalModel, cex = 0.75)
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Note that if we already have a tree and want to apply a higher cp value, we can use the  prune 
function. We call this pruning a tree because we are snipping off partitions that do not meet a
 cp  criterion. We previously created a tree that used a  cp = 0  and saved it to  fit . We can
prune it like this:

31.10.4  Classification (decision) trees

Classification trees, or decision trees, are used in prediction problems where the outcome is
categorical. We use the same partitioning principle with some differences to account for the fact
that we are now working with a categorical outcome.

The first difference is that we form predictions by calculating which class is the most common
among the training set observations within the partition, rather than taking the average in each
partition (as we can’t take the average of categories).

polls_2008 %>%  

  mutate(y_hat = predict(train_rpart)) %>%  

  ggplot() +  

  geom_point(aes(day, margin)) +  

  geom_step(aes(day, y_hat), col="red")

pruned_fit <- prune(fit, cp = 0.01)
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The second is that we can no longer use RSS to choose the partition. While we could use the
naive approach of looking for partitions that minimize training error, better performing
approaches use more sophisticated metrics. Two of the more popular ones are the Gini Index
and Entropy.

In a perfect scenario, the outcomes in each of our partitions are all of the same category since
this will permit perfect accuracy. The Gini Index is going to be 0 in this scenario, and become
larger the more we deviate from this scenario. To define the Gini Index, we define  as the
proportion of observations in partition  that are of class . The Gini Index is defined as

If you study the formula carefully you will see that it is in fact 0 in the perfect scenario described
above.

Entropy is a very similar quantity, defined as

Let us look at how a classification tree performs on the digits example we examined before:

We can use this code to run the algorithm and plot the resulting tree:

train_rpart <- train(y ~ ., 

                     method = "rpart", 

                     tuneGrid = data.frame(cp = seq(0.0, 0.1, len = 25)), 

                     data = mnist_27$train) 

plot(train_rpart)
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The accuracy achieved by this approach is better than what we got with regression, but is not as
good as what we achieved with kernel methods:

The plot of the estimated conditional probability shows us the limitations of classification trees:

y_hat <- predict(train_rpart, mnist_27$test)

confusionMatrix(y_hat, mnist_27$test$y)$overall["Accuracy"] 

#> Accuracy  

#>     0.82
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Note that with decision trees, it is difficult to make the boundaries smooth since each partition
creates a discontinuity.

Classification trees have certain advantages that make them very useful. They are highly
interpretable, even more so than linear models. They are easy to visualize (if small enough).
Finally, they can model human decision processes and don’t require use of dummy predictors for
categorical variables. On the other hand, the approach via recursive partitioning can easily over-
train and is therefore a bit harder to train than, for example, linear regression or kNN.
Furthermore, in terms of accuracy, it is rarely the best performing method since it is not very
flexible and is highly unstable to changes in training data. Random forests, explained next,
improve on several of these shortcomings.

31.11  Random forests

Random forests are a very popular machine learning approach that addresses the shortcomings
of decision trees using a clever idea. The goal is to improve prediction performance and reduce
instability by averaging multiple decision trees (a forest of trees constructed with randomness). It
has two features that help accomplish this.
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The first step is bootstrap aggregation or bagging. The general idea is to generate many
predictors, each using regression or classification trees, and then forming a final prediction
based on the average prediction of all these trees. To assure that the individual trees are not the
same, we use the bootstrap to induce randomness. These two features combined explain the
name: the bootstrap makes the individual trees randomly different, and the combination of trees
is the forest. The specific steps are as follows.

1. Build  decision trees using the training set. We refer to the fitted models as .
We later explain how we ensure they are different.

2. For every observation in the test set, form a prediction  using tree .

3. For continuous outcomes, form a final prediction with the average . For
categorical data classification, predict  with majority vote (most frequent class among 

).

So how do we get different decision trees from a single training set? For this, we use
randomness in two ways which we explain in the steps below. Let  be the number of
observations in the training set. To create  from the training set we do the
following:

1. Create a bootstrap training set by sampling  observations from the training set with
replacement. This is the first way to induce randomness.

2. A large number of features is typical in machine learning challenges. Often, many features can
be informative but including them all in the model may result in overfitting. The second way
random forests induce randomness is by randomly selecting features to be included in the
building of each tree. A different random subset is selected for each tree. This reduces
correlation between trees in the forest, thereby improving prediction accuracy.

To illustrate how the first steps can result in smoother estimates we will demonstrate by fitting a
random forest to the 2008 polls data. We will use the  randomForest  function in the
randomForest package:

Note that if we apply the function  plot  to the resulting object, stored in  fit , we see how the
error rate of our algorithm changes as we add trees.

library(randomForest)  

fit <- randomForest(margin~., data = polls_2008) 
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We can see that in this case, the accuracy improves as we add more trees until about 30 trees
where accuracy stabilizes.

The resulting estimate for this random forest can be seen like this:

rafalib::mypar()  

plot(fit)

polls_2008 %>%  

  mutate(y_hat = predict(fit, newdata = polls_2008)) %>%  

  ggplot() +  

  geom_point(aes(day, margin)) +  

  geom_line(aes(day, y_hat), col="red")
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Notice that the random forest estimate is much smoother than what we achieved with the
regression tree in the previous section. This is possible because the average of many step
functions can be smooth. We can see this by visually examining how the estimate changes as
we add more trees. In the following figure you see each of the bootstrap samples for several
values of  and for each one we see the tree that is fitted in grey, the previous trees that were
fitted in lighter grey, and the result of averaging all the trees estimated up to that point.
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Here is the random forest fit for our digits example based on two predictors:
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Here is what the conditional probabilities look like:

Visualizing the estimate shows that, although we obtain high accuracy, it appears that there is
room for improvement by making the estimate smoother. This could be achieved by changing
the parameter that controls the minimum number of data points in the nodes of the tree. The
larger this minimum, the smoother the final estimate will be. We can train the parameters of the
random forest. Below, we use the caret package to optimize over the minimum node size.
Because, this is not one of the parameters that the caret package optimizes by default we will
write our own code:

library(randomForest)  

train_rf <- randomForest(y ~ ., data=mnist_27$train) 

confusionMatrix(predict(train_rf, mnist_27$test), 

                mnist_27$test$y)$overall["Accuracy"] 

#> Accuracy  

#>     0.79
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We can now fit the random forest with the optimized minimun node size to the entire training
data and evaluate performance on the test data.

The selected model improves accuracy and provides a smoother estimate.

nodesize <- seq(1, 51, 10) 

acc <- sapply(nodesize, function(ns){  

  train(y ~ ., method = "rf", data = mnist_27$train,  

               tuneGrid = data.frame(mtry = 2), 

               nodesize = ns)$results$Accuracy 

})

qplot(nodesize, acc)

train_rf_2 <- randomForest(y ~ ., data=mnist_27$train, 

                           nodesize = nodesize[which.max(acc)]) 

confusionMatrix(predict(train_rf_2, mnist_27$test), 

                mnist_27$test$y)$overall["Accuracy"] 

#> Accuracy  

#>    0.815



11/17/2020 Chapter 31 Examples of algorithms | Introduction to Data Science

https://rafalab.github.io/dsbook/examples-of-algorithms.html 56/59

Note that we can avoid writing our own code by using other random forest implementations as
described in the caret manual .

Random forest performs better in all the examples we have considered. However, a
disadvantage of random forests is that we lose interpretability. An approach that helps with
interpretability is to examine variable importance. To define variable importance we count how
often a predictor is used in the individual trees. You can learn more about variable importance in
an advanced machine learning book . The caret package includes the function  varImp  that
extracts variable importance from any model in which the calculation is implemented. We give an
example on how we use variable importance in the next section.

31.12  Exercises
1. Create a simple dataset where the outcome grows 0.75 units on average for every increase in
a predictor:

110
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Use  rpart  to fit a regression tree and save the result to  fit .

2. Plot the final tree so that you can see where the partitions occurred.

3. Make a scatterplot of  y  versus  x  along with the predicted values based on the fit.

4. Now model with a random forest instead of a regression tree using  randomForest  from the
randomForest package, and remake the scatterplot with the prediction line.

5. Use the function  plot  to see if the random forest has converged or if we need more trees.

6. It seems that the default values for the random forest result in an estimate that is too flexible
(not smooth). Re-run the random forest but this time with  nodesize  set at 50 and  maxnodes 
set at 25. Remake the plot.

7. We see that this yields smoother results. Let’s use the  train  function to help us pick these
values. From the caret manual  we see that we can’t tune the  maxnodes  parameter or the
 nodesize  argument with  randomForest , so we will use the Rborist package and tune the
 minNode  argument. Use the  train  function to try values  minNode <- seq(5, 250, 25) .
See which value minimizes the estimated RMSE.

8. Make a scatterplot along with the prediction from the best fitted model.

9. Use the  rpart  function to fit a classification tree to the  tissue_gene_expression  dataset.
Use the  train  function to estimate the accuracy. Try out  cp  values of  seq(0, 0.05,
0.01) . Plot the accuracy to report the results of the best model.

10. Study the confusion matrix for the best fitting classification tree. What do you observe
happening for placenta?

11. Notice that placentas are called endometrium more often than placenta. Note also that the
number of placentas is just six, and that, by default,  rpart  requires 20 observations before
splitting a node. Thus it is not possible with these parameters to have a node in which placentas

n <- 1000  

sigma <- 0.25 

x <- rnorm(n, 0, 1)  

y <- 0.75 * x + rnorm(n, 0, sigma)  

dat <- data.frame(x = x, y = y)

112
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are the majority. Rerun the above analysis but this time permit  rpart  to split any node by using
the argument  control = rpart.control(minsplit = 0) . Does the accuracy increase? Look at
the confusion matrix again.

12. Plot the tree from the best fitting model obtained in exercise 11.

13. We can see that with just six genes, we are able to predict the tissue type. Now let’s see if
we can do even better with a random forest. Use the  train  function and the  rf  method to
train a random forest. Try out values of  mtry  ranging from, at least,  seq(50, 200, 25) . What
 mtry  value maximizes accuracy? To permit small  nodesize  to grow as we did with the
classification trees, use the following argument:  nodesize = 1 . This will take several seconds
to run. If you want to test it out, try using smaller values with  ntree . Set the seed to 1990.

14. Use the function  varImp  on the output of  train  and save it to an object called  imp .

15. The  rpart  model we ran above produced a tree that used just six predictors. Extracting
the predictor names is not straightforward, but can be done. If the output of the call to train was
 fit_rpart , we can extract the names like this:

What is the variable importance in the random forest call for these predictors? Where do they
rank?

16. Advanced: Extract the top 50 predictors based on importance, take a subset of  x  with just
these predictors and apply the function  heatmap  to see how these genes behave across the
tissues. We will introduce the  heatmap  function in Chapter 34.

107. http://www.amazon.com/Mathematical-Statistics-Analysis-Available-
Enhanced/dp/0534399428

108. https://web.stanford.edu/~hastie/Papers/ESLII.pdf

ind <- !(fit_rpart$finalModel$frame$var == "<leaf>")  

tree_terms <-  

  fit_rpart$finalModel$frame$var[ind] %>%  

  unique() %>%  

  as.character()  

tree_terms

https://rafalab.github.io/dsbook/clustering.html#clustering
http://www.amazon.com/Mathematical-Statistics-Analysis-Available-Enhanced/dp/0534399428
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
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109. https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID1759289_code1486039.pdf?
abstractid=1759289&mirid=1&type=2

110. http://topepo.github.io/caret/available-models.html

111. https://web.stanford.edu/~hastie/Papers/ESLII.pdf

112. https://topepo.github.io/caret/available-models.html
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